atomic.cc revision 4240:cde9d7751cce
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "sim/builder.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60    return "AtomicSimpleCPU tick event";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else
71        panic("No Such Port\n");
72}
73
74void
75AtomicSimpleCPU::init()
76{
77    BaseCPU::init();
78#if FULL_SYSTEM
79    for (int i = 0; i < threadContexts.size(); ++i) {
80        ThreadContext *tc = threadContexts[i];
81
82        // initialize CPU, including PC
83        TheISA::initCPU(tc, tc->readCpuId());
84    }
85#endif
86}
87
88bool
89AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
90{
91    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
92    return true;
93}
94
95Tick
96AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
97{
98    //Snooping a coherence request, just return
99    return 0;
100}
101
102void
103AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
104{
105    //No internal storage to update, just return
106    return;
107}
108
109void
110AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
111{
112    if (status == RangeChange) {
113        if (!snoopRangeSent) {
114            snoopRangeSent = true;
115            sendStatusChange(Port::RangeChange);
116        }
117        return;
118    }
119
120    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvRetry()
125{
126    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
127}
128
129void
130AtomicSimpleCPU::DcachePort::setPeer(Port *port)
131{
132    Port::setPeer(port);
133
134#if FULL_SYSTEM
135    // Update the ThreadContext's memory ports (Functional/Virtual
136    // Ports)
137    cpu->tcBase()->connectMemPorts();
138#endif
139}
140
141AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
142    : BaseSimpleCPU(p), tickEvent(this),
143      width(p->width), simulate_stalls(p->simulate_stalls),
144      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
145{
146    _status = Idle;
147
148    icachePort.snoopRangeSent = false;
149    dcachePort.snoopRangeSent = false;
150
151    ifetch_req = new Request();
152    ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
153    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
154    ifetch_pkt->dataStatic(&inst);
155
156    data_read_req = new Request();
157    data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
158    data_read_pkt = new Packet(data_read_req, MemCmd::ReadReq,
159                               Packet::Broadcast);
160    data_read_pkt->dataStatic(&dataReg);
161
162    data_write_req = new Request();
163    data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
164    data_write_pkt = new Packet(data_write_req, MemCmd::WriteReq,
165                                Packet::Broadcast);
166    data_swap_pkt = new Packet(data_write_req, MemCmd::SwapReq,
167                                Packet::Broadcast);
168}
169
170
171AtomicSimpleCPU::~AtomicSimpleCPU()
172{
173}
174
175void
176AtomicSimpleCPU::serialize(ostream &os)
177{
178    SimObject::State so_state = SimObject::getState();
179    SERIALIZE_ENUM(so_state);
180    Status _status = status();
181    SERIALIZE_ENUM(_status);
182    BaseSimpleCPU::serialize(os);
183    nameOut(os, csprintf("%s.tickEvent", name()));
184    tickEvent.serialize(os);
185}
186
187void
188AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
189{
190    SimObject::State so_state;
191    UNSERIALIZE_ENUM(so_state);
192    UNSERIALIZE_ENUM(_status);
193    BaseSimpleCPU::unserialize(cp, section);
194    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
195}
196
197void
198AtomicSimpleCPU::resume()
199{
200    if (_status != SwitchedOut && _status != Idle) {
201        assert(system->getMemoryMode() == System::Atomic);
202
203        changeState(SimObject::Running);
204        if (thread->status() == ThreadContext::Active) {
205            if (!tickEvent.scheduled()) {
206                tickEvent.schedule(nextCycle());
207            }
208        }
209    }
210}
211
212void
213AtomicSimpleCPU::switchOut()
214{
215    assert(status() == Running || status() == Idle);
216    _status = SwitchedOut;
217
218    tickEvent.squash();
219}
220
221
222void
223AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
224{
225    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
226
227    assert(!tickEvent.scheduled());
228
229    // if any of this CPU's ThreadContexts are active, mark the CPU as
230    // running and schedule its tick event.
231    for (int i = 0; i < threadContexts.size(); ++i) {
232        ThreadContext *tc = threadContexts[i];
233        if (tc->status() == ThreadContext::Active && _status != Running) {
234            _status = Running;
235            tickEvent.schedule(nextCycle());
236            break;
237        }
238    }
239    if (_status != Running) {
240        _status = Idle;
241    }
242}
243
244
245void
246AtomicSimpleCPU::activateContext(int thread_num, int delay)
247{
248    assert(thread_num == 0);
249    assert(thread);
250
251    assert(_status == Idle);
252    assert(!tickEvent.scheduled());
253
254    notIdleFraction++;
255
256    //Make sure ticks are still on multiples of cycles
257    tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258    _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265    assert(thread_num == 0);
266    assert(thread);
267
268    assert(_status == Running);
269
270    // tick event may not be scheduled if this gets called from inside
271    // an instruction's execution, e.g. "quiesce"
272    if (tickEvent.scheduled())
273        tickEvent.deschedule();
274
275    notIdleFraction--;
276    _status = Idle;
277}
278
279
280template <class T>
281Fault
282AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
283{
284    // use the CPU's statically allocated read request and packet objects
285    Request *req = data_read_req;
286    PacketPtr pkt = data_read_pkt;
287
288    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290    if (traceData) {
291        traceData->setAddr(addr);
292    }
293
294    // translate to physical address
295    Fault fault = thread->translateDataReadReq(req);
296
297    // Now do the access.
298    if (fault == NoFault) {
299        pkt->reinitFromRequest();
300
301        if (req->isMmapedIpr())
302            dcache_latency = TheISA::handleIprRead(thread->getTC(),pkt);
303        else
304            dcache_latency = dcachePort.sendAtomic(pkt);
305        dcache_access = true;
306#if !defined(NDEBUG)
307        if (pkt->result != Packet::Success)
308            panic("Unable to find responder for address pa = %#X va = %#X\n",
309                    pkt->req->getPaddr(), pkt->req->getVaddr());
310#endif
311        data = pkt->get<T>();
312
313        if (req->isLocked()) {
314            TheISA::handleLockedRead(thread, req);
315        }
316    }
317
318    // This will need a new way to tell if it has a dcache attached.
319    if (req->isUncacheable())
320        recordEvent("Uncached Read");
321
322    return fault;
323}
324
325#ifndef DOXYGEN_SHOULD_SKIP_THIS
326
327template
328Fault
329AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
330
331template
332Fault
333AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
334
335template
336Fault
337AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
338
339template
340Fault
341AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
342
343template
344Fault
345AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
346
347template
348Fault
349AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
350
351#endif //DOXYGEN_SHOULD_SKIP_THIS
352
353template<>
354Fault
355AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
356{
357    return read(addr, *(uint64_t*)&data, flags);
358}
359
360template<>
361Fault
362AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
363{
364    return read(addr, *(uint32_t*)&data, flags);
365}
366
367
368template<>
369Fault
370AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
371{
372    return read(addr, (uint32_t&)data, flags);
373}
374
375
376template <class T>
377Fault
378AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
379{
380    // use the CPU's statically allocated write request and packet objects
381    Request *req = data_write_req;
382    PacketPtr pkt;
383
384    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
385
386    if (req->isSwap())
387        pkt = data_swap_pkt;
388    else
389        pkt = data_write_pkt;
390
391    if (traceData) {
392        traceData->setAddr(addr);
393    }
394
395    // translate to physical address
396    Fault fault = thread->translateDataWriteReq(req);
397
398    // Now do the access.
399    if (fault == NoFault) {
400        bool do_access = true;  // flag to suppress cache access
401
402        if (req->isLocked()) {
403            do_access = TheISA::handleLockedWrite(thread, req);
404        }
405        if (req->isCondSwap()) {
406             assert(res);
407             req->setExtraData(*res);
408        }
409
410
411        if (do_access) {
412            pkt->reinitFromRequest();
413            pkt->dataStatic(&data);
414
415            if (req->isMmapedIpr()) {
416                dcache_latency = TheISA::handleIprWrite(thread->getTC(), pkt);
417            } else {
418                data = htog(data);
419                dcache_latency = dcachePort.sendAtomic(pkt);
420            }
421            dcache_access = true;
422
423#if !defined(NDEBUG)
424            if (pkt->result != Packet::Success)
425                panic("Unable to find responder for address pa = %#X va = %#X\n",
426                        pkt->req->getPaddr(), pkt->req->getVaddr());
427#endif
428        }
429
430        if (req->isSwap()) {
431            assert(res);
432            *res = pkt->get<T>();
433        } else if (res) {
434            *res = req->getExtraData();
435        }
436    }
437
438    // This will need a new way to tell if it's hooked up to a cache or not.
439    if (req->isUncacheable())
440        recordEvent("Uncached Write");
441
442    // If the write needs to have a fault on the access, consider calling
443    // changeStatus() and changing it to "bad addr write" or something.
444    return fault;
445}
446
447
448#ifndef DOXYGEN_SHOULD_SKIP_THIS
449
450template
451Fault
452AtomicSimpleCPU::write(Twin32_t data, Addr addr,
453                       unsigned flags, uint64_t *res);
454
455template
456Fault
457AtomicSimpleCPU::write(Twin64_t data, Addr addr,
458                       unsigned flags, uint64_t *res);
459
460template
461Fault
462AtomicSimpleCPU::write(uint64_t data, Addr addr,
463                       unsigned flags, uint64_t *res);
464
465template
466Fault
467AtomicSimpleCPU::write(uint32_t data, Addr addr,
468                       unsigned flags, uint64_t *res);
469
470template
471Fault
472AtomicSimpleCPU::write(uint16_t data, Addr addr,
473                       unsigned flags, uint64_t *res);
474
475template
476Fault
477AtomicSimpleCPU::write(uint8_t data, Addr addr,
478                       unsigned flags, uint64_t *res);
479
480#endif //DOXYGEN_SHOULD_SKIP_THIS
481
482template<>
483Fault
484AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
485{
486    return write(*(uint64_t*)&data, addr, flags, res);
487}
488
489template<>
490Fault
491AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
492{
493    return write(*(uint32_t*)&data, addr, flags, res);
494}
495
496
497template<>
498Fault
499AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
500{
501    return write((uint32_t)data, addr, flags, res);
502}
503
504
505void
506AtomicSimpleCPU::tick()
507{
508    Tick latency = cycles(1); // instruction takes one cycle by default
509
510    for (int i = 0; i < width; ++i) {
511        numCycles++;
512
513        if (!curStaticInst || !curStaticInst->isDelayedCommit())
514            checkForInterrupts();
515
516        Fault fault = setupFetchRequest(ifetch_req);
517
518        if (fault == NoFault) {
519            Tick icache_latency = 0;
520            bool icache_access = false;
521            dcache_access = false; // assume no dcache access
522
523            //Fetch more instruction memory if necessary
524            if(predecoder.needMoreBytes())
525            {
526                icache_access = true;
527                ifetch_pkt->reinitFromRequest();
528
529                icache_latency = icachePort.sendAtomic(ifetch_pkt);
530                // ifetch_req is initialized to read the instruction directly
531                // into the CPU object's inst field.
532            }
533
534            preExecute();
535
536            if(curStaticInst)
537            {
538                fault = curStaticInst->execute(this, traceData);
539                postExecute();
540            }
541
542            // @todo remove me after debugging with legion done
543            if (curStaticInst && (!curStaticInst->isMicroOp() ||
544                        curStaticInst->isFirstMicroOp()))
545                instCnt++;
546
547            if (simulate_stalls) {
548                Tick icache_stall =
549                    icache_access ? icache_latency - cycles(1) : 0;
550                Tick dcache_stall =
551                    dcache_access ? dcache_latency - cycles(1) : 0;
552                Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
553                if (cycles(stall_cycles) < (icache_stall + dcache_stall))
554                    latency += cycles(stall_cycles+1);
555                else
556                    latency += cycles(stall_cycles);
557            }
558
559        }
560        if(predecoder.needMoreBytes())
561            advancePC(fault);
562    }
563
564    if (_status != Idle)
565        tickEvent.schedule(curTick + latency);
566}
567
568
569////////////////////////////////////////////////////////////////////////
570//
571//  AtomicSimpleCPU Simulation Object
572//
573BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
574
575    Param<Counter> max_insts_any_thread;
576    Param<Counter> max_insts_all_threads;
577    Param<Counter> max_loads_any_thread;
578    Param<Counter> max_loads_all_threads;
579    Param<Tick> progress_interval;
580    SimObjectParam<System *> system;
581    Param<int> cpu_id;
582
583#if FULL_SYSTEM
584    SimObjectParam<TheISA::ITB *> itb;
585    SimObjectParam<TheISA::DTB *> dtb;
586    Param<Tick> profile;
587
588    Param<bool> do_quiesce;
589    Param<bool> do_checkpoint_insts;
590    Param<bool> do_statistics_insts;
591#else
592    SimObjectParam<Process *> workload;
593#endif // FULL_SYSTEM
594
595    Param<int> clock;
596    Param<int> phase;
597
598    Param<bool> defer_registration;
599    Param<int> width;
600    Param<bool> function_trace;
601    Param<Tick> function_trace_start;
602    Param<bool> simulate_stalls;
603
604END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
605
606BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
607
608    INIT_PARAM(max_insts_any_thread,
609               "terminate when any thread reaches this inst count"),
610    INIT_PARAM(max_insts_all_threads,
611               "terminate when all threads have reached this inst count"),
612    INIT_PARAM(max_loads_any_thread,
613               "terminate when any thread reaches this load count"),
614    INIT_PARAM(max_loads_all_threads,
615               "terminate when all threads have reached this load count"),
616    INIT_PARAM(progress_interval, "Progress interval"),
617    INIT_PARAM(system, "system object"),
618    INIT_PARAM(cpu_id, "processor ID"),
619
620#if FULL_SYSTEM
621    INIT_PARAM(itb, "Instruction TLB"),
622    INIT_PARAM(dtb, "Data TLB"),
623    INIT_PARAM(profile, ""),
624    INIT_PARAM(do_quiesce, ""),
625    INIT_PARAM(do_checkpoint_insts, ""),
626    INIT_PARAM(do_statistics_insts, ""),
627#else
628    INIT_PARAM(workload, "processes to run"),
629#endif // FULL_SYSTEM
630
631    INIT_PARAM(clock, "clock speed"),
632    INIT_PARAM_DFLT(phase, "clock phase", 0),
633    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
634    INIT_PARAM(width, "cpu width"),
635    INIT_PARAM(function_trace, "Enable function trace"),
636    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
637    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
638
639END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
640
641
642CREATE_SIM_OBJECT(AtomicSimpleCPU)
643{
644    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
645    params->name = getInstanceName();
646    params->numberOfThreads = 1;
647    params->max_insts_any_thread = max_insts_any_thread;
648    params->max_insts_all_threads = max_insts_all_threads;
649    params->max_loads_any_thread = max_loads_any_thread;
650    params->max_loads_all_threads = max_loads_all_threads;
651    params->progress_interval = progress_interval;
652    params->deferRegistration = defer_registration;
653    params->phase = phase;
654    params->clock = clock;
655    params->functionTrace = function_trace;
656    params->functionTraceStart = function_trace_start;
657    params->width = width;
658    params->simulate_stalls = simulate_stalls;
659    params->system = system;
660    params->cpu_id = cpu_id;
661
662#if FULL_SYSTEM
663    params->itb = itb;
664    params->dtb = dtb;
665    params->profile = profile;
666    params->do_quiesce = do_quiesce;
667    params->do_checkpoint_insts = do_checkpoint_insts;
668    params->do_statistics_insts = do_statistics_insts;
669#else
670    params->process = workload;
671#endif
672
673    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
674    return cpu;
675}
676
677REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)
678
679