atomic.cc revision 3673
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/atomic.hh"
35#include "mem/packet.hh"
36#include "mem/packet_access.hh"
37#include "sim/builder.hh"
38#include "sim/system.hh"
39
40using namespace std;
41using namespace TheISA;
42
43AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
44    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
45{
46}
47
48
49void
50AtomicSimpleCPU::TickEvent::process()
51{
52    cpu->tick();
53}
54
55const char *
56AtomicSimpleCPU::TickEvent::description()
57{
58    return "AtomicSimpleCPU tick event";
59}
60
61Port *
62AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
63{
64    if (if_name == "dcache_port")
65        return &dcachePort;
66    else if (if_name == "icache_port")
67        return &icachePort;
68    else
69        panic("No Such Port\n");
70}
71
72void
73AtomicSimpleCPU::init()
74{
75    BaseCPU::init();
76#if FULL_SYSTEM
77    for (int i = 0; i < threadContexts.size(); ++i) {
78        ThreadContext *tc = threadContexts[i];
79
80        // initialize the mem pointers
81        tc->init();
82
83        // initialize CPU, including PC
84        TheISA::initCPU(tc, tc->readCpuId());
85    }
86#endif
87}
88
89bool
90AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
91{
92    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
93    return true;
94}
95
96Tick
97AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
98{
99    //Snooping a coherence request, just return
100    return 0;
101}
102
103void
104AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
105{
106    //No internal storage to update, just return
107    return;
108}
109
110void
111AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
112{
113    if (status == RangeChange) {
114        if (!snoopRangeSent) {
115            snoopRangeSent = true;
116            sendStatusChange(Port::RangeChange);
117        }
118        return;
119    }
120
121    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
122}
123
124void
125AtomicSimpleCPU::CpuPort::recvRetry()
126{
127    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
128}
129
130
131AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
132    : BaseSimpleCPU(p), tickEvent(this),
133      width(p->width), simulate_stalls(p->simulate_stalls),
134      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
135{
136    _status = Idle;
137
138    icachePort.snoopRangeSent = false;
139    dcachePort.snoopRangeSent = false;
140
141    ifetch_req = new Request();
142    ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
143    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
144    ifetch_pkt->dataStatic(&inst);
145
146    data_read_req = new Request();
147    data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
148    data_read_pkt = new Packet(data_read_req, Packet::ReadReq,
149                               Packet::Broadcast);
150    data_read_pkt->dataStatic(&dataReg);
151
152    data_write_req = new Request();
153    data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
154    data_write_pkt = new Packet(data_write_req, Packet::WriteReq,
155                                Packet::Broadcast);
156}
157
158
159AtomicSimpleCPU::~AtomicSimpleCPU()
160{
161}
162
163void
164AtomicSimpleCPU::serialize(ostream &os)
165{
166    SimObject::State so_state = SimObject::getState();
167    SERIALIZE_ENUM(so_state);
168    Status _status = status();
169    SERIALIZE_ENUM(_status);
170    BaseSimpleCPU::serialize(os);
171    nameOut(os, csprintf("%s.tickEvent", name()));
172    tickEvent.serialize(os);
173}
174
175void
176AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
177{
178    SimObject::State so_state;
179    UNSERIALIZE_ENUM(so_state);
180    UNSERIALIZE_ENUM(_status);
181    BaseSimpleCPU::unserialize(cp, section);
182    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
183}
184
185void
186AtomicSimpleCPU::resume()
187{
188    if (_status != SwitchedOut && _status != Idle) {
189        assert(system->getMemoryMode() == System::Atomic);
190
191        changeState(SimObject::Running);
192        if (thread->status() == ThreadContext::Active) {
193            if (!tickEvent.scheduled()) {
194                tickEvent.schedule(nextCycle());
195            }
196        }
197    }
198}
199
200void
201AtomicSimpleCPU::switchOut()
202{
203    assert(status() == Running || status() == Idle);
204    _status = SwitchedOut;
205
206    tickEvent.squash();
207}
208
209
210void
211AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
212{
213    BaseCPU::takeOverFrom(oldCPU);
214
215    assert(!tickEvent.scheduled());
216
217    // if any of this CPU's ThreadContexts are active, mark the CPU as
218    // running and schedule its tick event.
219    for (int i = 0; i < threadContexts.size(); ++i) {
220        ThreadContext *tc = threadContexts[i];
221        if (tc->status() == ThreadContext::Active && _status != Running) {
222            _status = Running;
223            tickEvent.schedule(nextCycle());
224            break;
225        }
226    }
227    if (_status != Running) {
228        _status = Idle;
229    }
230}
231
232
233void
234AtomicSimpleCPU::activateContext(int thread_num, int delay)
235{
236    assert(thread_num == 0);
237    assert(thread);
238
239    assert(_status == Idle);
240    assert(!tickEvent.scheduled());
241
242    notIdleFraction++;
243    //Make sure ticks are still on multiples of cycles
244    tickEvent.schedule(nextCycle(curTick + cycles(delay)));
245    _status = Running;
246}
247
248
249void
250AtomicSimpleCPU::suspendContext(int thread_num)
251{
252    assert(thread_num == 0);
253    assert(thread);
254
255    assert(_status == Running);
256
257    // tick event may not be scheduled if this gets called from inside
258    // an instruction's execution, e.g. "quiesce"
259    if (tickEvent.scheduled())
260        tickEvent.deschedule();
261
262    notIdleFraction--;
263    _status = Idle;
264}
265
266
267template <class T>
268Fault
269AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
270{
271    // use the CPU's statically allocated read request and packet objects
272    Request *req = data_read_req;
273    PacketPtr pkt = data_read_pkt;
274
275    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
276
277    if (traceData) {
278        traceData->setAddr(addr);
279    }
280
281    // translate to physical address
282    Fault fault = thread->translateDataReadReq(req);
283
284    // Now do the access.
285    if (fault == NoFault) {
286        pkt->reinitFromRequest();
287
288        dcache_latency = dcachePort.sendAtomic(pkt);
289        dcache_access = true;
290
291        assert(pkt->result == Packet::Success);
292        data = pkt->get<T>();
293
294        if (req->isLocked()) {
295            TheISA::handleLockedRead(thread, req);
296        }
297    }
298
299    // This will need a new way to tell if it has a dcache attached.
300    if (req->isUncacheable())
301        recordEvent("Uncached Read");
302
303    return fault;
304}
305
306#ifndef DOXYGEN_SHOULD_SKIP_THIS
307
308template
309Fault
310AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
311
312template
313Fault
314AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
315
316template
317Fault
318AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
319
320template
321Fault
322AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
323
324#endif //DOXYGEN_SHOULD_SKIP_THIS
325
326template<>
327Fault
328AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
329{
330    return read(addr, *(uint64_t*)&data, flags);
331}
332
333template<>
334Fault
335AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
336{
337    return read(addr, *(uint32_t*)&data, flags);
338}
339
340
341template<>
342Fault
343AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
344{
345    return read(addr, (uint32_t&)data, flags);
346}
347
348
349template <class T>
350Fault
351AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
352{
353    // use the CPU's statically allocated write request and packet objects
354    Request *req = data_write_req;
355    PacketPtr pkt = data_write_pkt;
356
357    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
358
359    if (traceData) {
360        traceData->setAddr(addr);
361    }
362
363    // translate to physical address
364    Fault fault = thread->translateDataWriteReq(req);
365
366    // Now do the access.
367    if (fault == NoFault) {
368        bool do_access = true;  // flag to suppress cache access
369
370        if (req->isLocked()) {
371            do_access = TheISA::handleLockedWrite(thread, req);
372        }
373
374        if (do_access) {
375            data = htog(data);
376            pkt->reinitFromRequest();
377            pkt->dataStatic(&data);
378
379            dcache_latency = dcachePort.sendAtomic(pkt);
380            dcache_access = true;
381
382            assert(pkt->result == Packet::Success);
383        }
384
385        if (req->isLocked()) {
386            uint64_t scResult = req->getScResult();
387            if (scResult != 0) {
388                // clear failure counter
389                thread->setStCondFailures(0);
390            }
391            if (res) {
392                *res = req->getScResult();
393            }
394        }
395    }
396
397    // This will need a new way to tell if it's hooked up to a cache or not.
398    if (req->isUncacheable())
399        recordEvent("Uncached Write");
400
401    // If the write needs to have a fault on the access, consider calling
402    // changeStatus() and changing it to "bad addr write" or something.
403    return fault;
404}
405
406
407#ifndef DOXYGEN_SHOULD_SKIP_THIS
408template
409Fault
410AtomicSimpleCPU::write(uint64_t data, Addr addr,
411                       unsigned flags, uint64_t *res);
412
413template
414Fault
415AtomicSimpleCPU::write(uint32_t data, Addr addr,
416                       unsigned flags, uint64_t *res);
417
418template
419Fault
420AtomicSimpleCPU::write(uint16_t data, Addr addr,
421                       unsigned flags, uint64_t *res);
422
423template
424Fault
425AtomicSimpleCPU::write(uint8_t data, Addr addr,
426                       unsigned flags, uint64_t *res);
427
428#endif //DOXYGEN_SHOULD_SKIP_THIS
429
430template<>
431Fault
432AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
433{
434    return write(*(uint64_t*)&data, addr, flags, res);
435}
436
437template<>
438Fault
439AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
440{
441    return write(*(uint32_t*)&data, addr, flags, res);
442}
443
444
445template<>
446Fault
447AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
448{
449    return write((uint32_t)data, addr, flags, res);
450}
451
452
453void
454AtomicSimpleCPU::tick()
455{
456    Tick latency = cycles(1); // instruction takes one cycle by default
457
458    for (int i = 0; i < width; ++i) {
459        numCycles++;
460
461        if (!curStaticInst || !curStaticInst->isDelayedCommit())
462            checkForInterrupts();
463
464        Fault fault = setupFetchRequest(ifetch_req);
465
466        if (fault == NoFault) {
467            ifetch_pkt->reinitFromRequest();
468
469            Tick icache_latency = icachePort.sendAtomic(ifetch_pkt);
470            // ifetch_req is initialized to read the instruction directly
471            // into the CPU object's inst field.
472
473            dcache_access = false; // assume no dcache access
474            preExecute();
475            fault = curStaticInst->execute(this, traceData);
476            postExecute();
477
478            if (simulate_stalls) {
479                Tick icache_stall = icache_latency - cycles(1);
480                Tick dcache_stall =
481                    dcache_access ? dcache_latency - cycles(1) : 0;
482                Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
483                if (cycles(stall_cycles) < (icache_stall + dcache_stall))
484                    latency += cycles(stall_cycles+1);
485                else
486                    latency += cycles(stall_cycles);
487            }
488
489        }
490
491        advancePC(fault);
492    }
493
494    if (_status != Idle)
495        tickEvent.schedule(curTick + latency);
496}
497
498
499////////////////////////////////////////////////////////////////////////
500//
501//  AtomicSimpleCPU Simulation Object
502//
503BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
504
505    Param<Counter> max_insts_any_thread;
506    Param<Counter> max_insts_all_threads;
507    Param<Counter> max_loads_any_thread;
508    Param<Counter> max_loads_all_threads;
509    Param<Tick> progress_interval;
510    SimObjectParam<System *> system;
511    Param<int> cpu_id;
512
513#if FULL_SYSTEM
514    SimObjectParam<TheISA::ITB *> itb;
515    SimObjectParam<TheISA::DTB *> dtb;
516    Param<Tick> profile;
517
518    Param<bool> do_quiesce;
519    Param<bool> do_checkpoint_insts;
520    Param<bool> do_statistics_insts;
521#else
522    SimObjectParam<Process *> workload;
523#endif // FULL_SYSTEM
524
525    Param<int> clock;
526    Param<int> phase;
527
528    Param<bool> defer_registration;
529    Param<int> width;
530    Param<bool> function_trace;
531    Param<Tick> function_trace_start;
532    Param<bool> simulate_stalls;
533
534END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
535
536BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
537
538    INIT_PARAM(max_insts_any_thread,
539               "terminate when any thread reaches this inst count"),
540    INIT_PARAM(max_insts_all_threads,
541               "terminate when all threads have reached this inst count"),
542    INIT_PARAM(max_loads_any_thread,
543               "terminate when any thread reaches this load count"),
544    INIT_PARAM(max_loads_all_threads,
545               "terminate when all threads have reached this load count"),
546    INIT_PARAM(progress_interval, "Progress interval"),
547    INIT_PARAM(system, "system object"),
548    INIT_PARAM(cpu_id, "processor ID"),
549
550#if FULL_SYSTEM
551    INIT_PARAM(itb, "Instruction TLB"),
552    INIT_PARAM(dtb, "Data TLB"),
553    INIT_PARAM(profile, ""),
554    INIT_PARAM(do_quiesce, ""),
555    INIT_PARAM(do_checkpoint_insts, ""),
556    INIT_PARAM(do_statistics_insts, ""),
557#else
558    INIT_PARAM(workload, "processes to run"),
559#endif // FULL_SYSTEM
560
561    INIT_PARAM(clock, "clock speed"),
562    INIT_PARAM_DFLT(phase, "clock phase", 0),
563    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
564    INIT_PARAM(width, "cpu width"),
565    INIT_PARAM(function_trace, "Enable function trace"),
566    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
567    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
568
569END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
570
571
572CREATE_SIM_OBJECT(AtomicSimpleCPU)
573{
574    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
575    params->name = getInstanceName();
576    params->numberOfThreads = 1;
577    params->max_insts_any_thread = max_insts_any_thread;
578    params->max_insts_all_threads = max_insts_all_threads;
579    params->max_loads_any_thread = max_loads_any_thread;
580    params->max_loads_all_threads = max_loads_all_threads;
581    params->progress_interval = progress_interval;
582    params->deferRegistration = defer_registration;
583    params->phase = phase;
584    params->clock = clock;
585    params->functionTrace = function_trace;
586    params->functionTraceStart = function_trace_start;
587    params->width = width;
588    params->simulate_stalls = simulate_stalls;
589    params->system = system;
590    params->cpu_id = cpu_id;
591
592#if FULL_SYSTEM
593    params->itb = itb;
594    params->dtb = dtb;
595    params->profile = profile;
596    params->do_quiesce = do_quiesce;
597    params->do_checkpoint_insts = do_checkpoint_insts;
598    params->do_statistics_insts = do_statistics_insts;
599#else
600    params->process = workload;
601#endif
602
603    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
604    return cpu;
605}
606
607REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)
608
609