atomic.cc revision 3453
1/* 2 * Copyright (c) 2002-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 */ 30 31#include "arch/locked_mem.hh" 32#include "arch/utility.hh" 33#include "cpu/exetrace.hh" 34#include "cpu/simple/atomic.hh" 35#include "mem/packet.hh" 36#include "mem/packet_access.hh" 37#include "sim/builder.hh" 38#include "sim/system.hh" 39 40using namespace std; 41using namespace TheISA; 42 43AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 44 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c) 45{ 46} 47 48 49void 50AtomicSimpleCPU::TickEvent::process() 51{ 52 cpu->tick(); 53} 54 55const char * 56AtomicSimpleCPU::TickEvent::description() 57{ 58 return "AtomicSimpleCPU tick event"; 59} 60 61Port * 62AtomicSimpleCPU::getPort(const std::string &if_name, int idx) 63{ 64 if (if_name == "dcache_port") 65 return &dcachePort; 66 else if (if_name == "icache_port") 67 return &icachePort; 68 else 69 panic("No Such Port\n"); 70} 71 72void 73AtomicSimpleCPU::init() 74{ 75 //Create Memory Ports (conect them up) 76// Port *mem_dport = mem->getPort(""); 77// dcachePort.setPeer(mem_dport); 78// mem_dport->setPeer(&dcachePort); 79 80// Port *mem_iport = mem->getPort(""); 81// icachePort.setPeer(mem_iport); 82// mem_iport->setPeer(&icachePort); 83 84 BaseCPU::init(); 85#if FULL_SYSTEM 86 for (int i = 0; i < threadContexts.size(); ++i) { 87 ThreadContext *tc = threadContexts[i]; 88 89 // initialize CPU, including PC 90 TheISA::initCPU(tc, tc->readCpuId()); 91 } 92#endif 93} 94 95bool 96AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt) 97{ 98 panic("AtomicSimpleCPU doesn't expect recvTiming callback!"); 99 return true; 100} 101 102Tick 103AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) 104{ 105 //Snooping a coherence request, just return 106 return curTick; 107} 108 109void 110AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) 111{ 112 //No internal storage to update, just return 113 return; 114} 115 116void 117AtomicSimpleCPU::CpuPort::recvStatusChange(Status status) 118{ 119 if (status == RangeChange) 120 return; 121 122 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!"); 123} 124 125void 126AtomicSimpleCPU::CpuPort::recvRetry() 127{ 128 panic("AtomicSimpleCPU doesn't expect recvRetry callback!"); 129} 130 131 132AtomicSimpleCPU::AtomicSimpleCPU(Params *p) 133 : BaseSimpleCPU(p), tickEvent(this), 134 width(p->width), simulate_stalls(p->simulate_stalls), 135 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this) 136{ 137 _status = Idle; 138 139 ifetch_req = new Request(); 140 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT 141 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast); 142 ifetch_pkt->dataStatic(&inst); 143 144 data_read_req = new Request(); 145 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too 146 data_read_pkt = new Packet(data_read_req, Packet::ReadReq, 147 Packet::Broadcast); 148 data_read_pkt->dataStatic(&dataReg); 149 150 data_write_req = new Request(); 151 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too 152 data_write_pkt = new Packet(data_write_req, Packet::WriteReq, 153 Packet::Broadcast); 154} 155 156 157AtomicSimpleCPU::~AtomicSimpleCPU() 158{ 159} 160 161void 162AtomicSimpleCPU::serialize(ostream &os) 163{ 164 SimObject::State so_state = SimObject::getState(); 165 SERIALIZE_ENUM(so_state); 166 Status _status = status(); 167 SERIALIZE_ENUM(_status); 168 BaseSimpleCPU::serialize(os); 169 nameOut(os, csprintf("%s.tickEvent", name())); 170 tickEvent.serialize(os); 171} 172 173void 174AtomicSimpleCPU::unserialize(Checkpoint *cp, const string §ion) 175{ 176 SimObject::State so_state; 177 UNSERIALIZE_ENUM(so_state); 178 UNSERIALIZE_ENUM(_status); 179 BaseSimpleCPU::unserialize(cp, section); 180 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); 181} 182 183void 184AtomicSimpleCPU::resume() 185{ 186 if (_status != SwitchedOut && _status != Idle) { 187 assert(system->getMemoryMode() == System::Atomic); 188 189 changeState(SimObject::Running); 190 if (thread->status() == ThreadContext::Active) { 191 if (!tickEvent.scheduled()) { 192 Tick nextTick = curTick + cycles(1) - 1; 193 nextTick -= (nextTick % (cycles(1))); 194 tickEvent.schedule(nextTick); 195 } 196 } 197 } 198} 199 200void 201AtomicSimpleCPU::switchOut() 202{ 203 assert(status() == Running || status() == Idle); 204 _status = SwitchedOut; 205 206 tickEvent.squash(); 207} 208 209 210void 211AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 212{ 213 BaseCPU::takeOverFrom(oldCPU); 214 215 assert(!tickEvent.scheduled()); 216 217 // if any of this CPU's ThreadContexts are active, mark the CPU as 218 // running and schedule its tick event. 219 for (int i = 0; i < threadContexts.size(); ++i) { 220 ThreadContext *tc = threadContexts[i]; 221 if (tc->status() == ThreadContext::Active && _status != Running) { 222 _status = Running; 223 Tick nextTick = curTick + cycles(1) - 1; 224 nextTick -= (nextTick % (cycles(1))); 225 tickEvent.schedule(nextTick); 226 break; 227 } 228 } 229} 230 231 232void 233AtomicSimpleCPU::activateContext(int thread_num, int delay) 234{ 235 assert(thread_num == 0); 236 assert(thread); 237 238 assert(_status == Idle); 239 assert(!tickEvent.scheduled()); 240 241 notIdleFraction++; 242 //Make sure ticks are still on multiples of cycles 243 Tick nextTick = curTick + cycles(delay + 1) - 1; 244 nextTick -= (nextTick % (cycles(1))); 245 tickEvent.schedule(nextTick); 246 _status = Running; 247} 248 249 250void 251AtomicSimpleCPU::suspendContext(int thread_num) 252{ 253 assert(thread_num == 0); 254 assert(thread); 255 256 assert(_status == Running); 257 258 // tick event may not be scheduled if this gets called from inside 259 // an instruction's execution, e.g. "quiesce" 260 if (tickEvent.scheduled()) 261 tickEvent.deschedule(); 262 263 notIdleFraction--; 264 _status = Idle; 265} 266 267 268template <class T> 269Fault 270AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags) 271{ 272 // use the CPU's statically allocated read request and packet objects 273 Request *req = data_read_req; 274 PacketPtr pkt = data_read_pkt; 275 276 req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); 277 278 if (traceData) { 279 traceData->setAddr(addr); 280 } 281 282 // translate to physical address 283 Fault fault = thread->translateDataReadReq(req); 284 285 // Now do the access. 286 if (fault == NoFault) { 287 pkt->reinitFromRequest(); 288 289 dcache_latency = dcachePort.sendAtomic(pkt); 290 dcache_access = true; 291 292 assert(pkt->result == Packet::Success); 293 data = pkt->get<T>(); 294 295 if (req->isLocked()) { 296 TheISA::handleLockedRead(thread, req); 297 } 298 } 299 300 // This will need a new way to tell if it has a dcache attached. 301 if (req->isUncacheable()) 302 recordEvent("Uncached Read"); 303 304 return fault; 305} 306 307#ifndef DOXYGEN_SHOULD_SKIP_THIS 308 309template 310Fault 311AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); 312 313template 314Fault 315AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); 316 317template 318Fault 319AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); 320 321template 322Fault 323AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); 324 325#endif //DOXYGEN_SHOULD_SKIP_THIS 326 327template<> 328Fault 329AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags) 330{ 331 return read(addr, *(uint64_t*)&data, flags); 332} 333 334template<> 335Fault 336AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags) 337{ 338 return read(addr, *(uint32_t*)&data, flags); 339} 340 341 342template<> 343Fault 344AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) 345{ 346 return read(addr, (uint32_t&)data, flags); 347} 348 349 350template <class T> 351Fault 352AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) 353{ 354 // use the CPU's statically allocated write request and packet objects 355 Request *req = data_write_req; 356 PacketPtr pkt = data_write_pkt; 357 358 req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); 359 360 if (traceData) { 361 traceData->setAddr(addr); 362 } 363 364 // translate to physical address 365 Fault fault = thread->translateDataWriteReq(req); 366 367 // Now do the access. 368 if (fault == NoFault) { 369 bool do_access = true; // flag to suppress cache access 370 371 if (req->isLocked()) { 372 do_access = TheISA::handleLockedWrite(thread, req); 373 } 374 375 if (do_access) { 376 data = htog(data); 377 pkt->reinitFromRequest(); 378 pkt->dataStatic(&data); 379 380 dcache_latency = dcachePort.sendAtomic(pkt); 381 dcache_access = true; 382 383 assert(pkt->result == Packet::Success); 384 } 385 386 if (req->isLocked()) { 387 uint64_t scResult = req->getScResult(); 388 if (scResult != 0) { 389 // clear failure counter 390 thread->setStCondFailures(0); 391 } 392 if (res) { 393 *res = req->getScResult(); 394 } 395 } 396 } 397 398 // This will need a new way to tell if it's hooked up to a cache or not. 399 if (req->isUncacheable()) 400 recordEvent("Uncached Write"); 401 402 // If the write needs to have a fault on the access, consider calling 403 // changeStatus() and changing it to "bad addr write" or something. 404 return fault; 405} 406 407 408#ifndef DOXYGEN_SHOULD_SKIP_THIS 409template 410Fault 411AtomicSimpleCPU::write(uint64_t data, Addr addr, 412 unsigned flags, uint64_t *res); 413 414template 415Fault 416AtomicSimpleCPU::write(uint32_t data, Addr addr, 417 unsigned flags, uint64_t *res); 418 419template 420Fault 421AtomicSimpleCPU::write(uint16_t data, Addr addr, 422 unsigned flags, uint64_t *res); 423 424template 425Fault 426AtomicSimpleCPU::write(uint8_t data, Addr addr, 427 unsigned flags, uint64_t *res); 428 429#endif //DOXYGEN_SHOULD_SKIP_THIS 430 431template<> 432Fault 433AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) 434{ 435 return write(*(uint64_t*)&data, addr, flags, res); 436} 437 438template<> 439Fault 440AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) 441{ 442 return write(*(uint32_t*)&data, addr, flags, res); 443} 444 445 446template<> 447Fault 448AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) 449{ 450 return write((uint32_t)data, addr, flags, res); 451} 452 453 454void 455AtomicSimpleCPU::tick() 456{ 457 Tick latency = cycles(1); // instruction takes one cycle by default 458 459 for (int i = 0; i < width; ++i) { 460 numCycles++; 461 462 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 463 checkForInterrupts(); 464 465 Fault fault = setupFetchRequest(ifetch_req); 466 467 if (fault == NoFault) { 468 ifetch_pkt->reinitFromRequest(); 469 470 Tick icache_latency = icachePort.sendAtomic(ifetch_pkt); 471 // ifetch_req is initialized to read the instruction directly 472 // into the CPU object's inst field. 473 474 dcache_access = false; // assume no dcache access 475 preExecute(); 476 fault = curStaticInst->execute(this, traceData); 477 postExecute(); 478 479 if (simulate_stalls) { 480 Tick icache_stall = icache_latency - cycles(1); 481 Tick dcache_stall = 482 dcache_access ? dcache_latency - cycles(1) : 0; 483 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1); 484 if (cycles(stall_cycles) < (icache_stall + dcache_stall)) 485 latency += cycles(stall_cycles+1); 486 else 487 latency += cycles(stall_cycles); 488 } 489 490 } 491 492 advancePC(fault); 493 } 494 495 if (_status != Idle) 496 tickEvent.schedule(curTick + latency); 497} 498 499 500//////////////////////////////////////////////////////////////////////// 501// 502// AtomicSimpleCPU Simulation Object 503// 504BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 505 506 Param<Counter> max_insts_any_thread; 507 Param<Counter> max_insts_all_threads; 508 Param<Counter> max_loads_any_thread; 509 Param<Counter> max_loads_all_threads; 510 Param<Tick> progress_interval; 511 SimObjectParam<MemObject *> mem; 512 SimObjectParam<System *> system; 513 Param<int> cpu_id; 514 515#if FULL_SYSTEM 516 SimObjectParam<TheISA::ITB *> itb; 517 SimObjectParam<TheISA::DTB *> dtb; 518 Param<Tick> profile; 519#else 520 SimObjectParam<Process *> workload; 521#endif // FULL_SYSTEM 522 523 Param<int> clock; 524 525 Param<bool> defer_registration; 526 Param<int> width; 527 Param<bool> function_trace; 528 Param<Tick> function_trace_start; 529 Param<bool> simulate_stalls; 530 531END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 532 533BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 534 535 INIT_PARAM(max_insts_any_thread, 536 "terminate when any thread reaches this inst count"), 537 INIT_PARAM(max_insts_all_threads, 538 "terminate when all threads have reached this inst count"), 539 INIT_PARAM(max_loads_any_thread, 540 "terminate when any thread reaches this load count"), 541 INIT_PARAM(max_loads_all_threads, 542 "terminate when all threads have reached this load count"), 543 INIT_PARAM(progress_interval, "Progress interval"), 544 INIT_PARAM(mem, "memory"), 545 INIT_PARAM(system, "system object"), 546 INIT_PARAM(cpu_id, "processor ID"), 547 548#if FULL_SYSTEM 549 INIT_PARAM(itb, "Instruction TLB"), 550 INIT_PARAM(dtb, "Data TLB"), 551 INIT_PARAM(profile, ""), 552#else 553 INIT_PARAM(workload, "processes to run"), 554#endif // FULL_SYSTEM 555 556 INIT_PARAM(clock, "clock speed"), 557 INIT_PARAM(defer_registration, "defer system registration (for sampling)"), 558 INIT_PARAM(width, "cpu width"), 559 INIT_PARAM(function_trace, "Enable function trace"), 560 INIT_PARAM(function_trace_start, "Cycle to start function trace"), 561 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles") 562 563END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 564 565 566CREATE_SIM_OBJECT(AtomicSimpleCPU) 567{ 568 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params(); 569 params->name = getInstanceName(); 570 params->numberOfThreads = 1; 571 params->max_insts_any_thread = max_insts_any_thread; 572 params->max_insts_all_threads = max_insts_all_threads; 573 params->max_loads_any_thread = max_loads_any_thread; 574 params->max_loads_all_threads = max_loads_all_threads; 575 params->progress_interval = progress_interval; 576 params->deferRegistration = defer_registration; 577 params->clock = clock; 578 params->functionTrace = function_trace; 579 params->functionTraceStart = function_trace_start; 580 params->width = width; 581 params->simulate_stalls = simulate_stalls; 582 params->mem = mem; 583 params->system = system; 584 params->cpu_id = cpu_id; 585 586#if FULL_SYSTEM 587 params->itb = itb; 588 params->dtb = dtb; 589 params->profile = profile; 590#else 591 params->process = workload; 592#endif 593 594 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params); 595 return cpu; 596} 597 598REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU) 599 600