atomic.cc revision 3387
1/* 2 * Copyright (c) 2002-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 */ 30 31#include "arch/locked_mem.hh" 32#include "arch/utility.hh" 33#include "cpu/exetrace.hh" 34#include "cpu/simple/atomic.hh" 35#include "mem/packet.hh" 36#include "mem/packet_access.hh" 37#include "sim/builder.hh" 38#include "sim/system.hh" 39 40using namespace std; 41using namespace TheISA; 42 43AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 44 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c) 45{ 46} 47 48 49void 50AtomicSimpleCPU::TickEvent::process() 51{ 52 cpu->tick(); 53} 54 55const char * 56AtomicSimpleCPU::TickEvent::description() 57{ 58 return "AtomicSimpleCPU tick event"; 59} 60 61Port * 62AtomicSimpleCPU::getPort(const std::string &if_name, int idx) 63{ 64 if (if_name == "dcache_port") 65 return &dcachePort; 66 else if (if_name == "icache_port") 67 return &icachePort; 68 else 69 panic("No Such Port\n"); 70} 71 72void 73AtomicSimpleCPU::init() 74{ 75 //Create Memory Ports (conect them up) 76// Port *mem_dport = mem->getPort(""); 77// dcachePort.setPeer(mem_dport); 78// mem_dport->setPeer(&dcachePort); 79 80// Port *mem_iport = mem->getPort(""); 81// icachePort.setPeer(mem_iport); 82// mem_iport->setPeer(&icachePort); 83 84 BaseCPU::init(); 85#if FULL_SYSTEM 86 for (int i = 0; i < threadContexts.size(); ++i) { 87 ThreadContext *tc = threadContexts[i]; 88 89 // initialize CPU, including PC 90 TheISA::initCPU(tc, tc->readCpuId()); 91 } 92#endif 93} 94 95bool 96AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt) 97{ 98 panic("AtomicSimpleCPU doesn't expect recvTiming callback!"); 99 return true; 100} 101 102Tick 103AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) 104{ 105 //Snooping a coherence request, just return 106 return curTick; 107} 108 109void 110AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) 111{ 112 //No internal storage to update, just return 113 return; 114} 115 116void 117AtomicSimpleCPU::CpuPort::recvStatusChange(Status status) 118{ 119 if (status == RangeChange) 120 return; 121 122 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!"); 123} 124 125void 126AtomicSimpleCPU::CpuPort::recvRetry() 127{ 128 panic("AtomicSimpleCPU doesn't expect recvRetry callback!"); 129} 130 131 132AtomicSimpleCPU::AtomicSimpleCPU(Params *p) 133 : BaseSimpleCPU(p), tickEvent(this), 134 width(p->width), simulate_stalls(p->simulate_stalls), 135 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this) 136{ 137 _status = Idle; 138 139 ifetch_req = new Request(); 140 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT 141 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast); 142 ifetch_pkt->dataStatic(&inst); 143 144 data_read_req = new Request(); 145 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too 146 data_read_pkt = new Packet(data_read_req, Packet::ReadReq, 147 Packet::Broadcast); 148 data_read_pkt->dataStatic(&dataReg); 149 150 data_write_req = new Request(); 151 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too 152 data_write_pkt = new Packet(data_write_req, Packet::WriteReq, 153 Packet::Broadcast); 154} 155 156 157AtomicSimpleCPU::~AtomicSimpleCPU() 158{ 159} 160 161void 162AtomicSimpleCPU::serialize(ostream &os) 163{ 164 SimObject::State so_state = SimObject::getState(); 165 SERIALIZE_ENUM(so_state); 166 Status _status = status(); 167 SERIALIZE_ENUM(_status); 168 BaseSimpleCPU::serialize(os); 169 nameOut(os, csprintf("%s.tickEvent", name())); 170 tickEvent.serialize(os); 171} 172 173void 174AtomicSimpleCPU::unserialize(Checkpoint *cp, const string §ion) 175{ 176 SimObject::State so_state; 177 UNSERIALIZE_ENUM(so_state); 178 UNSERIALIZE_ENUM(_status); 179 BaseSimpleCPU::unserialize(cp, section); 180 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); 181} 182 183void 184AtomicSimpleCPU::resume() 185{ 186 changeState(SimObject::Running); 187 if (thread->status() == ThreadContext::Active) { 188 assert(system->getMemoryMode() == System::Atomic); 189 if (!tickEvent.scheduled()) 190 tickEvent.schedule(curTick); 191 } 192} 193 194void 195AtomicSimpleCPU::switchOut() 196{ 197 assert(status() == Running || status() == Idle); 198 _status = SwitchedOut; 199 200 tickEvent.squash(); 201} 202 203 204void 205AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 206{ 207 BaseCPU::takeOverFrom(oldCPU); 208 209 assert(!tickEvent.scheduled()); 210 211 // if any of this CPU's ThreadContexts are active, mark the CPU as 212 // running and schedule its tick event. 213 for (int i = 0; i < threadContexts.size(); ++i) { 214 ThreadContext *tc = threadContexts[i]; 215 if (tc->status() == ThreadContext::Active && _status != Running) { 216 _status = Running; 217 tickEvent.schedule(curTick); 218 break; 219 } 220 } 221} 222 223 224void 225AtomicSimpleCPU::activateContext(int thread_num, int delay) 226{ 227 assert(thread_num == 0); 228 assert(thread); 229 230 assert(_status == Idle); 231 assert(!tickEvent.scheduled()); 232 233 notIdleFraction++; 234 tickEvent.schedule(curTick + cycles(delay)); 235 _status = Running; 236} 237 238 239void 240AtomicSimpleCPU::suspendContext(int thread_num) 241{ 242 assert(thread_num == 0); 243 assert(thread); 244 245 assert(_status == Running); 246 247 // tick event may not be scheduled if this gets called from inside 248 // an instruction's execution, e.g. "quiesce" 249 if (tickEvent.scheduled()) 250 tickEvent.deschedule(); 251 252 notIdleFraction--; 253 _status = Idle; 254} 255 256 257template <class T> 258Fault 259AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags) 260{ 261 // use the CPU's statically allocated read request and packet objects 262 Request *req = data_read_req; 263 PacketPtr pkt = data_read_pkt; 264 265 req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); 266 267 if (traceData) { 268 traceData->setAddr(addr); 269 } 270 271 // translate to physical address 272 Fault fault = thread->translateDataReadReq(req); 273 274 // Now do the access. 275 if (fault == NoFault) { 276 pkt->reinitFromRequest(); 277 278 dcache_latency = dcachePort.sendAtomic(pkt); 279 dcache_access = true; 280 281 assert(pkt->result == Packet::Success); 282 data = pkt->get<T>(); 283 284 if (req->isLocked()) { 285 TheISA::handleLockedRead(thread, req); 286 } 287 } 288 289 // This will need a new way to tell if it has a dcache attached. 290 if (req->isUncacheable()) 291 recordEvent("Uncached Read"); 292 293 return fault; 294} 295 296#ifndef DOXYGEN_SHOULD_SKIP_THIS 297 298template 299Fault 300AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); 301 302template 303Fault 304AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); 305 306template 307Fault 308AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); 309 310template 311Fault 312AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); 313 314#endif //DOXYGEN_SHOULD_SKIP_THIS 315 316template<> 317Fault 318AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags) 319{ 320 return read(addr, *(uint64_t*)&data, flags); 321} 322 323template<> 324Fault 325AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags) 326{ 327 return read(addr, *(uint32_t*)&data, flags); 328} 329 330 331template<> 332Fault 333AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) 334{ 335 return read(addr, (uint32_t&)data, flags); 336} 337 338 339template <class T> 340Fault 341AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) 342{ 343 // use the CPU's statically allocated write request and packet objects 344 Request *req = data_write_req; 345 PacketPtr pkt = data_write_pkt; 346 347 req->setVirt(0, addr, sizeof(T), flags, thread->readPC()); 348 349 if (traceData) { 350 traceData->setAddr(addr); 351 } 352 353 // translate to physical address 354 Fault fault = thread->translateDataWriteReq(req); 355 356 // Now do the access. 357 if (fault == NoFault) { 358 bool do_access = true; // flag to suppress cache access 359 360 if (req->isLocked()) { 361 do_access = TheISA::handleLockedWrite(thread, req); 362 } 363 364 if (do_access) { 365 data = htog(data); 366 pkt->reinitFromRequest(); 367 pkt->dataStatic(&data); 368 369 dcache_latency = dcachePort.sendAtomic(pkt); 370 dcache_access = true; 371 372 assert(pkt->result == Packet::Success); 373 } 374 375 if (req->isLocked()) { 376 uint64_t scResult = req->getScResult(); 377 if (scResult != 0) { 378 // clear failure counter 379 thread->setStCondFailures(0); 380 } 381 if (res) { 382 *res = req->getScResult(); 383 } 384 } 385 } 386 387 // This will need a new way to tell if it's hooked up to a cache or not. 388 if (req->isUncacheable()) 389 recordEvent("Uncached Write"); 390 391 // If the write needs to have a fault on the access, consider calling 392 // changeStatus() and changing it to "bad addr write" or something. 393 return fault; 394} 395 396 397#ifndef DOXYGEN_SHOULD_SKIP_THIS 398template 399Fault 400AtomicSimpleCPU::write(uint64_t data, Addr addr, 401 unsigned flags, uint64_t *res); 402 403template 404Fault 405AtomicSimpleCPU::write(uint32_t data, Addr addr, 406 unsigned flags, uint64_t *res); 407 408template 409Fault 410AtomicSimpleCPU::write(uint16_t data, Addr addr, 411 unsigned flags, uint64_t *res); 412 413template 414Fault 415AtomicSimpleCPU::write(uint8_t data, Addr addr, 416 unsigned flags, uint64_t *res); 417 418#endif //DOXYGEN_SHOULD_SKIP_THIS 419 420template<> 421Fault 422AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) 423{ 424 return write(*(uint64_t*)&data, addr, flags, res); 425} 426 427template<> 428Fault 429AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) 430{ 431 return write(*(uint32_t*)&data, addr, flags, res); 432} 433 434 435template<> 436Fault 437AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) 438{ 439 return write((uint32_t)data, addr, flags, res); 440} 441 442 443void 444AtomicSimpleCPU::tick() 445{ 446 Tick latency = cycles(1); // instruction takes one cycle by default 447 448 for (int i = 0; i < width; ++i) { 449 numCycles++; 450 451 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 452 checkForInterrupts(); 453 454 Fault fault = setupFetchRequest(ifetch_req); 455 456 if (fault == NoFault) { 457 ifetch_pkt->reinitFromRequest(); 458 459 Tick icache_latency = icachePort.sendAtomic(ifetch_pkt); 460 // ifetch_req is initialized to read the instruction directly 461 // into the CPU object's inst field. 462 463 dcache_access = false; // assume no dcache access 464 preExecute(); 465 fault = curStaticInst->execute(this, traceData); 466 postExecute(); 467 468 if (simulate_stalls) { 469 Tick icache_stall = icache_latency - cycles(1); 470 Tick dcache_stall = 471 dcache_access ? dcache_latency - cycles(1) : 0; 472 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1); 473 if (cycles(stall_cycles) < (icache_stall + dcache_stall)) 474 latency += cycles(stall_cycles+1); 475 else 476 latency += cycles(stall_cycles); 477 } 478 479 } 480 481 advancePC(fault); 482 } 483 484 if (_status != Idle) 485 tickEvent.schedule(curTick + latency); 486} 487 488 489//////////////////////////////////////////////////////////////////////// 490// 491// AtomicSimpleCPU Simulation Object 492// 493BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 494 495 Param<Counter> max_insts_any_thread; 496 Param<Counter> max_insts_all_threads; 497 Param<Counter> max_loads_any_thread; 498 Param<Counter> max_loads_all_threads; 499 Param<Tick> progress_interval; 500 SimObjectParam<MemObject *> mem; 501 SimObjectParam<System *> system; 502 Param<int> cpu_id; 503 504#if FULL_SYSTEM 505 SimObjectParam<AlphaITB *> itb; 506 SimObjectParam<AlphaDTB *> dtb; 507 Param<Tick> profile; 508#else 509 SimObjectParam<Process *> workload; 510#endif // FULL_SYSTEM 511 512 Param<int> clock; 513 514 Param<bool> defer_registration; 515 Param<int> width; 516 Param<bool> function_trace; 517 Param<Tick> function_trace_start; 518 Param<bool> simulate_stalls; 519 520END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 521 522BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 523 524 INIT_PARAM(max_insts_any_thread, 525 "terminate when any thread reaches this inst count"), 526 INIT_PARAM(max_insts_all_threads, 527 "terminate when all threads have reached this inst count"), 528 INIT_PARAM(max_loads_any_thread, 529 "terminate when any thread reaches this load count"), 530 INIT_PARAM(max_loads_all_threads, 531 "terminate when all threads have reached this load count"), 532 INIT_PARAM(progress_interval, "Progress interval"), 533 INIT_PARAM(mem, "memory"), 534 INIT_PARAM(system, "system object"), 535 INIT_PARAM(cpu_id, "processor ID"), 536 537#if FULL_SYSTEM 538 INIT_PARAM(itb, "Instruction TLB"), 539 INIT_PARAM(dtb, "Data TLB"), 540 INIT_PARAM(profile, ""), 541#else 542 INIT_PARAM(workload, "processes to run"), 543#endif // FULL_SYSTEM 544 545 INIT_PARAM(clock, "clock speed"), 546 INIT_PARAM(defer_registration, "defer system registration (for sampling)"), 547 INIT_PARAM(width, "cpu width"), 548 INIT_PARAM(function_trace, "Enable function trace"), 549 INIT_PARAM(function_trace_start, "Cycle to start function trace"), 550 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles") 551 552END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU) 553 554 555CREATE_SIM_OBJECT(AtomicSimpleCPU) 556{ 557 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params(); 558 params->name = getInstanceName(); 559 params->numberOfThreads = 1; 560 params->max_insts_any_thread = max_insts_any_thread; 561 params->max_insts_all_threads = max_insts_all_threads; 562 params->max_loads_any_thread = max_loads_any_thread; 563 params->max_loads_all_threads = max_loads_all_threads; 564 params->progress_interval = progress_interval; 565 params->deferRegistration = defer_registration; 566 params->clock = clock; 567 params->functionTrace = function_trace; 568 params->functionTraceStart = function_trace_start; 569 params->width = width; 570 params->simulate_stalls = simulate_stalls; 571 params->mem = mem; 572 params->system = system; 573 params->cpu_id = cpu_id; 574 575#if FULL_SYSTEM 576 params->itb = itb; 577 params->dtb = dtb; 578 params->profile = profile; 579#else 580 params->process = workload; 581#endif 582 583 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params); 584 return cpu; 585} 586 587REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU) 588 589