atomic.cc revision 13652
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015,2017-2018 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/output.hh"
50#include "config/the_isa.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67AtomicSimpleCPU::init()
68{
69    BaseSimpleCPU::init();
70
71    int cid = threadContexts[0]->contextId();
72    ifetch_req->setContext(cid);
73    data_read_req->setContext(cid);
74    data_write_req->setContext(cid);
75    data_amo_req->setContext(cid);
76}
77
78AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
79    : BaseSimpleCPU(p),
80      tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
81                false, Event::CPU_Tick_Pri),
82      width(p->width), locked(false),
83      simulate_data_stalls(p->simulate_data_stalls),
84      simulate_inst_stalls(p->simulate_inst_stalls),
85      icachePort(name() + ".icache_port", this),
86      dcachePort(name() + ".dcache_port", this),
87      dcache_access(false), dcache_latency(0),
88      ppCommit(nullptr)
89{
90    _status = Idle;
91    ifetch_req = std::make_shared<Request>();
92    data_read_req = std::make_shared<Request>();
93    data_write_req = std::make_shared<Request>();
94    data_amo_req = std::make_shared<Request>();
95}
96
97
98AtomicSimpleCPU::~AtomicSimpleCPU()
99{
100    if (tickEvent.scheduled()) {
101        deschedule(tickEvent);
102    }
103}
104
105DrainState
106AtomicSimpleCPU::drain()
107{
108    // Deschedule any power gating event (if any)
109    deschedulePowerGatingEvent();
110
111    if (switchedOut())
112        return DrainState::Drained;
113
114    if (!isDrained()) {
115        DPRINTF(Drain, "Requesting drain.\n");
116        return DrainState::Draining;
117    } else {
118        if (tickEvent.scheduled())
119            deschedule(tickEvent);
120
121        activeThreads.clear();
122        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
123        return DrainState::Drained;
124    }
125}
126
127void
128AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
129{
130    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
131            pkt->cmdString());
132
133    for (ThreadID tid = 0; tid < numThreads; tid++) {
134        if (tid != sender) {
135            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
136                wakeup(tid);
137            }
138
139            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
140                                      pkt, dcachePort.cacheBlockMask);
141        }
142    }
143}
144
145void
146AtomicSimpleCPU::drainResume()
147{
148    assert(!tickEvent.scheduled());
149    if (switchedOut())
150        return;
151
152    DPRINTF(SimpleCPU, "Resume\n");
153    verifyMemoryMode();
154
155    assert(!threadContexts.empty());
156
157    _status = BaseSimpleCPU::Idle;
158
159    for (ThreadID tid = 0; tid < numThreads; tid++) {
160        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
161            threadInfo[tid]->notIdleFraction = 1;
162            activeThreads.push_back(tid);
163            _status = BaseSimpleCPU::Running;
164
165            // Tick if any threads active
166            if (!tickEvent.scheduled()) {
167                schedule(tickEvent, nextCycle());
168            }
169        } else {
170            threadInfo[tid]->notIdleFraction = 0;
171        }
172    }
173
174    // Reschedule any power gating event (if any)
175    schedulePowerGatingEvent();
176}
177
178bool
179AtomicSimpleCPU::tryCompleteDrain()
180{
181    if (drainState() != DrainState::Draining)
182        return false;
183
184    DPRINTF(Drain, "tryCompleteDrain.\n");
185    if (!isDrained())
186        return false;
187
188    DPRINTF(Drain, "CPU done draining, processing drain event\n");
189    signalDrainDone();
190
191    return true;
192}
193
194
195void
196AtomicSimpleCPU::switchOut()
197{
198    BaseSimpleCPU::switchOut();
199
200    assert(!tickEvent.scheduled());
201    assert(_status == BaseSimpleCPU::Running || _status == Idle);
202    assert(isDrained());
203}
204
205
206void
207AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
208{
209    BaseSimpleCPU::takeOverFrom(oldCPU);
210
211    // The tick event should have been descheduled by drain()
212    assert(!tickEvent.scheduled());
213}
214
215void
216AtomicSimpleCPU::verifyMemoryMode() const
217{
218    if (!system->isAtomicMode()) {
219        fatal("The atomic CPU requires the memory system to be in "
220              "'atomic' mode.\n");
221    }
222}
223
224void
225AtomicSimpleCPU::activateContext(ThreadID thread_num)
226{
227    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
228
229    assert(thread_num < numThreads);
230
231    threadInfo[thread_num]->notIdleFraction = 1;
232    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
233                                 threadInfo[thread_num]->thread->lastSuspend);
234    numCycles += delta;
235
236    if (!tickEvent.scheduled()) {
237        //Make sure ticks are still on multiples of cycles
238        schedule(tickEvent, clockEdge(Cycles(0)));
239    }
240    _status = BaseSimpleCPU::Running;
241    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
242        == activeThreads.end()) {
243        activeThreads.push_back(thread_num);
244    }
245
246    BaseCPU::activateContext(thread_num);
247}
248
249
250void
251AtomicSimpleCPU::suspendContext(ThreadID thread_num)
252{
253    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
254
255    assert(thread_num < numThreads);
256    activeThreads.remove(thread_num);
257
258    if (_status == Idle)
259        return;
260
261    assert(_status == BaseSimpleCPU::Running);
262
263    threadInfo[thread_num]->notIdleFraction = 0;
264
265    if (activeThreads.empty()) {
266        _status = Idle;
267
268        if (tickEvent.scheduled()) {
269            deschedule(tickEvent);
270        }
271    }
272
273    BaseCPU::suspendContext(thread_num);
274}
275
276Tick
277AtomicSimpleCPU::sendPacket(MasterPort &port, const PacketPtr &pkt)
278{
279    return port.sendAtomic(pkt);
280}
281
282Tick
283AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
284{
285    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
286            pkt->cmdString());
287
288    // X86 ISA: Snooping an invalidation for monitor/mwait
289    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
290
291    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
292        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
293            cpu->wakeup(tid);
294        }
295    }
296
297    // if snoop invalidates, release any associated locks
298    // When run without caches, Invalidation packets will not be received
299    // hence we must check if the incoming packets are writes and wakeup
300    // the processor accordingly
301    if (pkt->isInvalidate() || pkt->isWrite()) {
302        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
303                pkt->getAddr());
304        for (auto &t_info : cpu->threadInfo) {
305            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
306        }
307    }
308
309    return 0;
310}
311
312void
313AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
314{
315    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
316            pkt->cmdString());
317
318    // X86 ISA: Snooping an invalidation for monitor/mwait
319    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
320    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
321        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
322            cpu->wakeup(tid);
323        }
324    }
325
326    // if snoop invalidates, release any associated locks
327    if (pkt->isInvalidate()) {
328        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
329                pkt->getAddr());
330        for (auto &t_info : cpu->threadInfo) {
331            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
332        }
333    }
334}
335
336Fault
337AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
338                         Request::Flags flags)
339{
340    SimpleExecContext& t_info = *threadInfo[curThread];
341    SimpleThread* thread = t_info.thread;
342
343    // use the CPU's statically allocated read request and packet objects
344    const RequestPtr &req = data_read_req;
345
346    if (traceData)
347        traceData->setMem(addr, size, flags);
348
349    //The size of the data we're trying to read.
350    int fullSize = size;
351
352    //The address of the second part of this access if it needs to be split
353    //across a cache line boundary.
354    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
355
356    if (secondAddr > addr)
357        size = secondAddr - addr;
358
359    dcache_latency = 0;
360
361    req->taskId(taskId());
362    while (1) {
363        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
364
365        // translate to physical address
366        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
367                                                          BaseTLB::Read);
368
369        // Now do the access.
370        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
371            Packet pkt(req, Packet::makeReadCmd(req));
372            pkt.dataStatic(data);
373
374            if (req->isMmappedIpr()) {
375                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
376            } else {
377                dcache_latency += sendPacket(dcachePort, &pkt);
378            }
379            dcache_access = true;
380
381            assert(!pkt.isError());
382
383            if (req->isLLSC()) {
384                TheISA::handleLockedRead(thread, req);
385            }
386        }
387
388        //If there's a fault, return it
389        if (fault != NoFault) {
390            if (req->isPrefetch()) {
391                return NoFault;
392            } else {
393                return fault;
394            }
395        }
396
397        //If we don't need to access a second cache line, stop now.
398        if (secondAddr <= addr)
399        {
400            if (req->isLockedRMW() && fault == NoFault) {
401                assert(!locked);
402                locked = true;
403            }
404
405            return fault;
406        }
407
408        /*
409         * Set up for accessing the second cache line.
410         */
411
412        //Move the pointer we're reading into to the correct location.
413        data += size;
414        //Adjust the size to get the remaining bytes.
415        size = addr + fullSize - secondAddr;
416        //And access the right address.
417        addr = secondAddr;
418    }
419}
420
421Fault
422AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
423                          Request::Flags flags, uint64_t *res)
424{
425    SimpleExecContext& t_info = *threadInfo[curThread];
426    SimpleThread* thread = t_info.thread;
427    static uint8_t zero_array[64] = {};
428
429    if (data == NULL) {
430        assert(size <= 64);
431        assert(flags & Request::STORE_NO_DATA);
432        // This must be a cache block cleaning request
433        data = zero_array;
434    }
435
436    // use the CPU's statically allocated write request and packet objects
437    const RequestPtr &req = data_write_req;
438
439    if (traceData)
440        traceData->setMem(addr, size, flags);
441
442    //The size of the data we're trying to read.
443    int fullSize = size;
444
445    //The address of the second part of this access if it needs to be split
446    //across a cache line boundary.
447    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
448
449    if (secondAddr > addr)
450        size = secondAddr - addr;
451
452    dcache_latency = 0;
453
454    req->taskId(taskId());
455    while (1) {
456        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
457
458        // translate to physical address
459        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
460
461        // Now do the access.
462        if (fault == NoFault) {
463            bool do_access = true;  // flag to suppress cache access
464
465            if (req->isLLSC()) {
466                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
467            } else if (req->isSwap()) {
468                if (req->isCondSwap()) {
469                    assert(res);
470                    req->setExtraData(*res);
471                }
472            }
473
474            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
475                Packet pkt(req, Packet::makeWriteCmd(req));
476                pkt.dataStatic(data);
477
478                if (req->isMmappedIpr()) {
479                    dcache_latency +=
480                        TheISA::handleIprWrite(thread->getTC(), &pkt);
481                } else {
482                    dcache_latency += sendPacket(dcachePort, &pkt);
483
484                    // Notify other threads on this CPU of write
485                    threadSnoop(&pkt, curThread);
486                }
487                dcache_access = true;
488                assert(!pkt.isError());
489
490                if (req->isSwap()) {
491                    assert(res);
492                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
493                }
494            }
495
496            if (res && !req->isSwap()) {
497                *res = req->getExtraData();
498            }
499        }
500
501        //If there's a fault or we don't need to access a second cache line,
502        //stop now.
503        if (fault != NoFault || secondAddr <= addr)
504        {
505            if (req->isLockedRMW() && fault == NoFault) {
506                assert(locked);
507                locked = false;
508            }
509
510
511            if (fault != NoFault && req->isPrefetch()) {
512                return NoFault;
513            } else {
514                return fault;
515            }
516        }
517
518        /*
519         * Set up for accessing the second cache line.
520         */
521
522        //Move the pointer we're reading into to the correct location.
523        data += size;
524        //Adjust the size to get the remaining bytes.
525        size = addr + fullSize - secondAddr;
526        //And access the right address.
527        addr = secondAddr;
528    }
529}
530
531Fault
532AtomicSimpleCPU::amoMem(Addr addr, uint8_t* data, unsigned size,
533                        Request::Flags flags, AtomicOpFunctor *amo_op)
534{
535    SimpleExecContext& t_info = *threadInfo[curThread];
536    SimpleThread* thread = t_info.thread;
537
538    // use the CPU's statically allocated amo request and packet objects
539    const RequestPtr &req = data_amo_req;
540
541    if (traceData)
542        traceData->setMem(addr, size, flags);
543
544    //The address of the second part of this access if it needs to be split
545    //across a cache line boundary.
546    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
547
548    // AMO requests that access across a cache line boundary are not
549    // allowed since the cache does not guarantee AMO ops to be executed
550    // atomically in two cache lines
551    // For ISAs such as x86 that requires AMO operations to work on
552    // accesses that cross cache-line boundaries, the cache needs to be
553    // modified to support locking both cache lines to guarantee the
554    // atomicity.
555    if (secondAddr > addr) {
556        panic("AMO request should not access across a cache line boundary\n");
557    }
558
559    dcache_latency = 0;
560
561    req->taskId(taskId());
562    req->setVirt(0, addr, size, flags, dataMasterId(),
563                 thread->pcState().instAddr(), amo_op);
564
565    // translate to physical address
566    Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
567                                                      BaseTLB::Write);
568
569    // Now do the access.
570    if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
571        // We treat AMO accesses as Write accesses with SwapReq command
572        // data will hold the return data of the AMO access
573        Packet pkt(req, Packet::makeWriteCmd(req));
574        pkt.dataStatic(data);
575
576        if (req->isMmappedIpr())
577            dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
578        else {
579            dcache_latency += sendPacket(dcachePort, &pkt);
580        }
581
582        dcache_access = true;
583
584        assert(!pkt.isError());
585        assert(!req->isLLSC());
586    }
587
588    if (fault != NoFault && req->isPrefetch()) {
589        return NoFault;
590    }
591
592    //If there's a fault and we're not doing prefetch, return it
593    return fault;
594}
595
596void
597AtomicSimpleCPU::tick()
598{
599    DPRINTF(SimpleCPU, "Tick\n");
600
601    // Change thread if multi-threaded
602    swapActiveThread();
603
604    // Set memroy request ids to current thread
605    if (numThreads > 1) {
606        ContextID cid = threadContexts[curThread]->contextId();
607
608        ifetch_req->setContext(cid);
609        data_read_req->setContext(cid);
610        data_write_req->setContext(cid);
611        data_amo_req->setContext(cid);
612    }
613
614    SimpleExecContext& t_info = *threadInfo[curThread];
615    SimpleThread* thread = t_info.thread;
616
617    Tick latency = 0;
618
619    for (int i = 0; i < width || locked; ++i) {
620        numCycles++;
621        updateCycleCounters(BaseCPU::CPU_STATE_ON);
622
623        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
624            checkForInterrupts();
625            checkPcEventQueue();
626        }
627
628        // We must have just got suspended by a PC event
629        if (_status == Idle) {
630            tryCompleteDrain();
631            return;
632        }
633
634        Fault fault = NoFault;
635
636        TheISA::PCState pcState = thread->pcState();
637
638        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
639                           !curMacroStaticInst;
640        if (needToFetch) {
641            ifetch_req->taskId(taskId());
642            setupFetchRequest(ifetch_req);
643            fault = thread->itb->translateAtomic(ifetch_req, thread->getTC(),
644                                                 BaseTLB::Execute);
645        }
646
647        if (fault == NoFault) {
648            Tick icache_latency = 0;
649            bool icache_access = false;
650            dcache_access = false; // assume no dcache access
651
652            if (needToFetch) {
653                // This is commented out because the decoder would act like
654                // a tiny cache otherwise. It wouldn't be flushed when needed
655                // like the I cache. It should be flushed, and when that works
656                // this code should be uncommented.
657                //Fetch more instruction memory if necessary
658                //if (decoder.needMoreBytes())
659                //{
660                    icache_access = true;
661                    Packet ifetch_pkt = Packet(ifetch_req, MemCmd::ReadReq);
662                    ifetch_pkt.dataStatic(&inst);
663
664                    icache_latency = sendPacket(icachePort, &ifetch_pkt);
665
666                    assert(!ifetch_pkt.isError());
667
668                    // ifetch_req is initialized to read the instruction directly
669                    // into the CPU object's inst field.
670                //}
671            }
672
673            preExecute();
674
675            Tick stall_ticks = 0;
676            if (curStaticInst) {
677                fault = curStaticInst->execute(&t_info, traceData);
678
679                // keep an instruction count
680                if (fault == NoFault) {
681                    countInst();
682                    ppCommit->notify(std::make_pair(thread, curStaticInst));
683                }
684                else if (traceData && !DTRACE(ExecFaulting)) {
685                    delete traceData;
686                    traceData = NULL;
687                }
688
689                if (fault != NoFault &&
690                    dynamic_pointer_cast<SyscallRetryFault>(fault)) {
691                    // Retry execution of system calls after a delay.
692                    // Prevents immediate re-execution since conditions which
693                    // caused the retry are unlikely to change every tick.
694                    stall_ticks += clockEdge(syscallRetryLatency) - curTick();
695                }
696
697                postExecute();
698            }
699
700            // @todo remove me after debugging with legion done
701            if (curStaticInst && (!curStaticInst->isMicroop() ||
702                        curStaticInst->isFirstMicroop()))
703                instCnt++;
704
705            if (simulate_inst_stalls && icache_access)
706                stall_ticks += icache_latency;
707
708            if (simulate_data_stalls && dcache_access)
709                stall_ticks += dcache_latency;
710
711            if (stall_ticks) {
712                // the atomic cpu does its accounting in ticks, so
713                // keep counting in ticks but round to the clock
714                // period
715                latency += divCeil(stall_ticks, clockPeriod()) *
716                    clockPeriod();
717            }
718
719        }
720        if (fault != NoFault || !t_info.stayAtPC)
721            advancePC(fault);
722    }
723
724    if (tryCompleteDrain())
725        return;
726
727    // instruction takes at least one cycle
728    if (latency < clockPeriod())
729        latency = clockPeriod();
730
731    if (_status != Idle)
732        reschedule(tickEvent, curTick() + latency, true);
733}
734
735void
736AtomicSimpleCPU::regProbePoints()
737{
738    BaseCPU::regProbePoints();
739
740    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
741                                (getProbeManager(), "Commit");
742}
743
744void
745AtomicSimpleCPU::printAddr(Addr a)
746{
747    dcachePort.printAddr(a);
748}
749
750////////////////////////////////////////////////////////////////////////
751//
752//  AtomicSimpleCPU Simulation Object
753//
754AtomicSimpleCPU *
755AtomicSimpleCPUParams::create()
756{
757    return new AtomicSimpleCPU(this);
758}
759