atomic.cc revision 12749
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015,2017 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/output.hh"
50#include "config/the_isa.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67AtomicSimpleCPU::init()
68{
69    BaseSimpleCPU::init();
70
71    int cid = threadContexts[0]->contextId();
72    ifetch_req->setContext(cid);
73    data_read_req->setContext(cid);
74    data_write_req->setContext(cid);
75}
76
77AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
78    : BaseSimpleCPU(p),
79      tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
80                false, Event::CPU_Tick_Pri),
81      width(p->width), locked(false),
82      simulate_data_stalls(p->simulate_data_stalls),
83      simulate_inst_stalls(p->simulate_inst_stalls),
84      icachePort(name() + ".icache_port", this),
85      dcachePort(name() + ".dcache_port", this),
86      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
87      ppCommit(nullptr)
88{
89    _status = Idle;
90    ifetch_req = std::make_shared<Request>();
91    data_read_req = std::make_shared<Request>();
92    data_write_req = std::make_shared<Request>();
93}
94
95
96AtomicSimpleCPU::~AtomicSimpleCPU()
97{
98    if (tickEvent.scheduled()) {
99        deschedule(tickEvent);
100    }
101}
102
103DrainState
104AtomicSimpleCPU::drain()
105{
106    // Deschedule any power gating event (if any)
107    deschedulePowerGatingEvent();
108
109    if (switchedOut())
110        return DrainState::Drained;
111
112    if (!isDrained()) {
113        DPRINTF(Drain, "Requesting drain.\n");
114        return DrainState::Draining;
115    } else {
116        if (tickEvent.scheduled())
117            deschedule(tickEvent);
118
119        activeThreads.clear();
120        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
121        return DrainState::Drained;
122    }
123}
124
125void
126AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
127{
128    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
129            pkt->cmdString());
130
131    for (ThreadID tid = 0; tid < numThreads; tid++) {
132        if (tid != sender) {
133            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
134                wakeup(tid);
135            }
136
137            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
138                                      pkt, dcachePort.cacheBlockMask);
139        }
140    }
141}
142
143void
144AtomicSimpleCPU::drainResume()
145{
146    assert(!tickEvent.scheduled());
147    if (switchedOut())
148        return;
149
150    DPRINTF(SimpleCPU, "Resume\n");
151    verifyMemoryMode();
152
153    assert(!threadContexts.empty());
154
155    _status = BaseSimpleCPU::Idle;
156
157    for (ThreadID tid = 0; tid < numThreads; tid++) {
158        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
159            threadInfo[tid]->notIdleFraction = 1;
160            activeThreads.push_back(tid);
161            _status = BaseSimpleCPU::Running;
162
163            // Tick if any threads active
164            if (!tickEvent.scheduled()) {
165                schedule(tickEvent, nextCycle());
166            }
167        } else {
168            threadInfo[tid]->notIdleFraction = 0;
169        }
170    }
171
172    // Reschedule any power gating event (if any)
173    schedulePowerGatingEvent();
174}
175
176bool
177AtomicSimpleCPU::tryCompleteDrain()
178{
179    if (drainState() != DrainState::Draining)
180        return false;
181
182    DPRINTF(Drain, "tryCompleteDrain.\n");
183    if (!isDrained())
184        return false;
185
186    DPRINTF(Drain, "CPU done draining, processing drain event\n");
187    signalDrainDone();
188
189    return true;
190}
191
192
193void
194AtomicSimpleCPU::switchOut()
195{
196    BaseSimpleCPU::switchOut();
197
198    assert(!tickEvent.scheduled());
199    assert(_status == BaseSimpleCPU::Running || _status == Idle);
200    assert(isDrained());
201}
202
203
204void
205AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
206{
207    BaseSimpleCPU::takeOverFrom(oldCPU);
208
209    // The tick event should have been descheduled by drain()
210    assert(!tickEvent.scheduled());
211}
212
213void
214AtomicSimpleCPU::verifyMemoryMode() const
215{
216    if (!system->isAtomicMode()) {
217        fatal("The atomic CPU requires the memory system to be in "
218              "'atomic' mode.\n");
219    }
220}
221
222void
223AtomicSimpleCPU::activateContext(ThreadID thread_num)
224{
225    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
226
227    assert(thread_num < numThreads);
228
229    threadInfo[thread_num]->notIdleFraction = 1;
230    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
231                                 threadInfo[thread_num]->thread->lastSuspend);
232    numCycles += delta;
233
234    if (!tickEvent.scheduled()) {
235        //Make sure ticks are still on multiples of cycles
236        schedule(tickEvent, clockEdge(Cycles(0)));
237    }
238    _status = BaseSimpleCPU::Running;
239    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
240        == activeThreads.end()) {
241        activeThreads.push_back(thread_num);
242    }
243
244    BaseCPU::activateContext(thread_num);
245}
246
247
248void
249AtomicSimpleCPU::suspendContext(ThreadID thread_num)
250{
251    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
252
253    assert(thread_num < numThreads);
254    activeThreads.remove(thread_num);
255
256    if (_status == Idle)
257        return;
258
259    assert(_status == BaseSimpleCPU::Running);
260
261    threadInfo[thread_num]->notIdleFraction = 0;
262
263    if (activeThreads.empty()) {
264        _status = Idle;
265
266        if (tickEvent.scheduled()) {
267            deschedule(tickEvent);
268        }
269    }
270
271    BaseCPU::suspendContext(thread_num);
272}
273
274
275Tick
276AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
277{
278    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
279            pkt->cmdString());
280
281    // X86 ISA: Snooping an invalidation for monitor/mwait
282    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
283
284    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
285        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
286            cpu->wakeup(tid);
287        }
288    }
289
290    // if snoop invalidates, release any associated locks
291    // When run without caches, Invalidation packets will not be received
292    // hence we must check if the incoming packets are writes and wakeup
293    // the processor accordingly
294    if (pkt->isInvalidate() || pkt->isWrite()) {
295        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
296                pkt->getAddr());
297        for (auto &t_info : cpu->threadInfo) {
298            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
299        }
300    }
301
302    return 0;
303}
304
305void
306AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
307{
308    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
309            pkt->cmdString());
310
311    // X86 ISA: Snooping an invalidation for monitor/mwait
312    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
313    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
314        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
315            cpu->wakeup(tid);
316        }
317    }
318
319    // if snoop invalidates, release any associated locks
320    if (pkt->isInvalidate()) {
321        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
322                pkt->getAddr());
323        for (auto &t_info : cpu->threadInfo) {
324            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
325        }
326    }
327}
328
329Fault
330AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
331                         Request::Flags flags)
332{
333    SimpleExecContext& t_info = *threadInfo[curThread];
334    SimpleThread* thread = t_info.thread;
335
336    // use the CPU's statically allocated read request and packet objects
337    const RequestPtr &req = data_read_req;
338
339    if (traceData)
340        traceData->setMem(addr, size, flags);
341
342    //The size of the data we're trying to read.
343    int fullSize = size;
344
345    //The address of the second part of this access if it needs to be split
346    //across a cache line boundary.
347    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
348
349    if (secondAddr > addr)
350        size = secondAddr - addr;
351
352    dcache_latency = 0;
353
354    req->taskId(taskId());
355    while (1) {
356        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
357
358        // translate to physical address
359        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
360                                                          BaseTLB::Read);
361
362        // Now do the access.
363        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
364            Packet pkt(req, Packet::makeReadCmd(req));
365            pkt.dataStatic(data);
366
367            if (req->isMmappedIpr())
368                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
369            else {
370                if (fastmem && system->isMemAddr(pkt.getAddr()))
371                    system->getPhysMem().access(&pkt);
372                else
373                    dcache_latency += dcachePort.sendAtomic(&pkt);
374            }
375            dcache_access = true;
376
377            assert(!pkt.isError());
378
379            if (req->isLLSC()) {
380                TheISA::handleLockedRead(thread, req);
381            }
382        }
383
384        //If there's a fault, return it
385        if (fault != NoFault) {
386            if (req->isPrefetch()) {
387                return NoFault;
388            } else {
389                return fault;
390            }
391        }
392
393        //If we don't need to access a second cache line, stop now.
394        if (secondAddr <= addr)
395        {
396            if (req->isLockedRMW() && fault == NoFault) {
397                assert(!locked);
398                locked = true;
399            }
400
401            return fault;
402        }
403
404        /*
405         * Set up for accessing the second cache line.
406         */
407
408        //Move the pointer we're reading into to the correct location.
409        data += size;
410        //Adjust the size to get the remaining bytes.
411        size = addr + fullSize - secondAddr;
412        //And access the right address.
413        addr = secondAddr;
414    }
415}
416
417Fault
418AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
419                                 Request::Flags flags)
420{
421    panic("initiateMemRead() is for timing accesses, and should "
422          "never be called on AtomicSimpleCPU.\n");
423}
424
425Fault
426AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
427                          Request::Flags flags, uint64_t *res)
428{
429    SimpleExecContext& t_info = *threadInfo[curThread];
430    SimpleThread* thread = t_info.thread;
431    static uint8_t zero_array[64] = {};
432
433    if (data == NULL) {
434        assert(size <= 64);
435        assert(flags & Request::STORE_NO_DATA);
436        // This must be a cache block cleaning request
437        data = zero_array;
438    }
439
440    // use the CPU's statically allocated write request and packet objects
441    const RequestPtr &req = data_write_req;
442
443    if (traceData)
444        traceData->setMem(addr, size, flags);
445
446    //The size of the data we're trying to read.
447    int fullSize = size;
448
449    //The address of the second part of this access if it needs to be split
450    //across a cache line boundary.
451    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
452
453    if (secondAddr > addr)
454        size = secondAddr - addr;
455
456    dcache_latency = 0;
457
458    req->taskId(taskId());
459    while (1) {
460        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
461
462        // translate to physical address
463        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
464
465        // Now do the access.
466        if (fault == NoFault) {
467            bool do_access = true;  // flag to suppress cache access
468
469            if (req->isLLSC()) {
470                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
471            } else if (req->isSwap()) {
472                if (req->isCondSwap()) {
473                    assert(res);
474                    req->setExtraData(*res);
475                }
476            }
477
478            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
479                Packet pkt(req, Packet::makeWriteCmd(req));
480                pkt.dataStatic(data);
481
482                if (req->isMmappedIpr()) {
483                    dcache_latency +=
484                        TheISA::handleIprWrite(thread->getTC(), &pkt);
485                } else {
486                    if (fastmem && system->isMemAddr(pkt.getAddr()))
487                        system->getPhysMem().access(&pkt);
488                    else
489                        dcache_latency += dcachePort.sendAtomic(&pkt);
490
491                    // Notify other threads on this CPU of write
492                    threadSnoop(&pkt, curThread);
493                }
494                dcache_access = true;
495                assert(!pkt.isError());
496
497                if (req->isSwap()) {
498                    assert(res);
499                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
500                }
501            }
502
503            if (res && !req->isSwap()) {
504                *res = req->getExtraData();
505            }
506        }
507
508        //If there's a fault or we don't need to access a second cache line,
509        //stop now.
510        if (fault != NoFault || secondAddr <= addr)
511        {
512            if (req->isLockedRMW() && fault == NoFault) {
513                assert(locked);
514                locked = false;
515            }
516
517
518            if (fault != NoFault && req->isPrefetch()) {
519                return NoFault;
520            } else {
521                return fault;
522            }
523        }
524
525        /*
526         * Set up for accessing the second cache line.
527         */
528
529        //Move the pointer we're reading into to the correct location.
530        data += size;
531        //Adjust the size to get the remaining bytes.
532        size = addr + fullSize - secondAddr;
533        //And access the right address.
534        addr = secondAddr;
535    }
536}
537
538
539void
540AtomicSimpleCPU::tick()
541{
542    DPRINTF(SimpleCPU, "Tick\n");
543
544    // Change thread if multi-threaded
545    swapActiveThread();
546
547    // Set memroy request ids to current thread
548    if (numThreads > 1) {
549        ContextID cid = threadContexts[curThread]->contextId();
550
551        ifetch_req->setContext(cid);
552        data_read_req->setContext(cid);
553        data_write_req->setContext(cid);
554    }
555
556    SimpleExecContext& t_info = *threadInfo[curThread];
557    SimpleThread* thread = t_info.thread;
558
559    Tick latency = 0;
560
561    for (int i = 0; i < width || locked; ++i) {
562        numCycles++;
563        updateCycleCounters(BaseCPU::CPU_STATE_ON);
564
565        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
566            checkForInterrupts();
567            checkPcEventQueue();
568        }
569
570        // We must have just got suspended by a PC event
571        if (_status == Idle) {
572            tryCompleteDrain();
573            return;
574        }
575
576        Fault fault = NoFault;
577
578        TheISA::PCState pcState = thread->pcState();
579
580        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
581                           !curMacroStaticInst;
582        if (needToFetch) {
583            ifetch_req->taskId(taskId());
584            setupFetchRequest(ifetch_req);
585            fault = thread->itb->translateAtomic(ifetch_req, thread->getTC(),
586                                                 BaseTLB::Execute);
587        }
588
589        if (fault == NoFault) {
590            Tick icache_latency = 0;
591            bool icache_access = false;
592            dcache_access = false; // assume no dcache access
593
594            if (needToFetch) {
595                // This is commented out because the decoder would act like
596                // a tiny cache otherwise. It wouldn't be flushed when needed
597                // like the I cache. It should be flushed, and when that works
598                // this code should be uncommented.
599                //Fetch more instruction memory if necessary
600                //if (decoder.needMoreBytes())
601                //{
602                    icache_access = true;
603                    Packet ifetch_pkt = Packet(ifetch_req, MemCmd::ReadReq);
604                    ifetch_pkt.dataStatic(&inst);
605
606                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
607                        system->getPhysMem().access(&ifetch_pkt);
608                    else
609                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
610
611                    assert(!ifetch_pkt.isError());
612
613                    // ifetch_req is initialized to read the instruction directly
614                    // into the CPU object's inst field.
615                //}
616            }
617
618            preExecute();
619
620            Tick stall_ticks = 0;
621            if (curStaticInst) {
622                fault = curStaticInst->execute(&t_info, traceData);
623
624                // keep an instruction count
625                if (fault == NoFault) {
626                    countInst();
627                    ppCommit->notify(std::make_pair(thread, curStaticInst));
628                }
629                else if (traceData && !DTRACE(ExecFaulting)) {
630                    delete traceData;
631                    traceData = NULL;
632                }
633
634                if (fault != NoFault &&
635                    dynamic_pointer_cast<SyscallRetryFault>(fault)) {
636                    // Retry execution of system calls after a delay.
637                    // Prevents immediate re-execution since conditions which
638                    // caused the retry are unlikely to change every tick.
639                    stall_ticks += clockEdge(syscallRetryLatency) - curTick();
640                }
641
642                postExecute();
643            }
644
645            // @todo remove me after debugging with legion done
646            if (curStaticInst && (!curStaticInst->isMicroop() ||
647                        curStaticInst->isFirstMicroop()))
648                instCnt++;
649
650            if (simulate_inst_stalls && icache_access)
651                stall_ticks += icache_latency;
652
653            if (simulate_data_stalls && dcache_access)
654                stall_ticks += dcache_latency;
655
656            if (stall_ticks) {
657                // the atomic cpu does its accounting in ticks, so
658                // keep counting in ticks but round to the clock
659                // period
660                latency += divCeil(stall_ticks, clockPeriod()) *
661                    clockPeriod();
662            }
663
664        }
665        if (fault != NoFault || !t_info.stayAtPC)
666            advancePC(fault);
667    }
668
669    if (tryCompleteDrain())
670        return;
671
672    // instruction takes at least one cycle
673    if (latency < clockPeriod())
674        latency = clockPeriod();
675
676    if (_status != Idle)
677        reschedule(tickEvent, curTick() + latency, true);
678}
679
680void
681AtomicSimpleCPU::regProbePoints()
682{
683    BaseCPU::regProbePoints();
684
685    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
686                                (getProbeManager(), "Commit");
687}
688
689void
690AtomicSimpleCPU::printAddr(Addr a)
691{
692    dcachePort.printAddr(a);
693}
694
695////////////////////////////////////////////////////////////////////////
696//
697//  AtomicSimpleCPU Simulation Object
698//
699AtomicSimpleCPU *
700AtomicSimpleCPUParams::create()
701{
702    return new AtomicSimpleCPU(this);
703}
704