atomic.cc revision 11793:ef606668d247
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/bigint.hh"
50#include "base/output.hh"
51#include "config/the_isa.hh"
52#include "cpu/exetrace.hh"
53#include "debug/Drain.hh"
54#include "debug/ExecFaulting.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "mem/physical.hh"
59#include "params/AtomicSimpleCPU.hh"
60#include "sim/faults.hh"
61#include "sim/full_system.hh"
62#include "sim/system.hh"
63
64using namespace std;
65using namespace TheISA;
66
67AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
68    : Event(CPU_Tick_Pri), cpu(c)
69{
70}
71
72
73void
74AtomicSimpleCPU::TickEvent::process()
75{
76    cpu->tick();
77}
78
79const char *
80AtomicSimpleCPU::TickEvent::description() const
81{
82    return "AtomicSimpleCPU tick";
83}
84
85void
86AtomicSimpleCPU::init()
87{
88    BaseSimpleCPU::init();
89
90    int cid = threadContexts[0]->contextId();
91    ifetch_req.setContext(cid);
92    data_read_req.setContext(cid);
93    data_write_req.setContext(cid);
94}
95
96AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
97    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
98      simulate_data_stalls(p->simulate_data_stalls),
99      simulate_inst_stalls(p->simulate_inst_stalls),
100      icachePort(name() + ".icache_port", this),
101      dcachePort(name() + ".dcache_port", this),
102      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
103      ppCommit(nullptr)
104{
105    _status = Idle;
106}
107
108
109AtomicSimpleCPU::~AtomicSimpleCPU()
110{
111    if (tickEvent.scheduled()) {
112        deschedule(tickEvent);
113    }
114}
115
116DrainState
117AtomicSimpleCPU::drain()
118{
119    if (switchedOut())
120        return DrainState::Drained;
121
122    if (!isDrained()) {
123        DPRINTF(Drain, "Requesting drain.\n");
124        return DrainState::Draining;
125    } else {
126        if (tickEvent.scheduled())
127            deschedule(tickEvent);
128
129        activeThreads.clear();
130        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
131        return DrainState::Drained;
132    }
133}
134
135void
136AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
137{
138    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
139            pkt->cmdString());
140
141    for (ThreadID tid = 0; tid < numThreads; tid++) {
142        if (tid != sender) {
143            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
144                wakeup(tid);
145            }
146
147            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
148                                      pkt, dcachePort.cacheBlockMask);
149        }
150    }
151}
152
153void
154AtomicSimpleCPU::drainResume()
155{
156    assert(!tickEvent.scheduled());
157    if (switchedOut())
158        return;
159
160    DPRINTF(SimpleCPU, "Resume\n");
161    verifyMemoryMode();
162
163    assert(!threadContexts.empty());
164
165    _status = BaseSimpleCPU::Idle;
166
167    for (ThreadID tid = 0; tid < numThreads; tid++) {
168        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
169            threadInfo[tid]->notIdleFraction = 1;
170            activeThreads.push_back(tid);
171            _status = BaseSimpleCPU::Running;
172
173            // Tick if any threads active
174            if (!tickEvent.scheduled()) {
175                schedule(tickEvent, nextCycle());
176            }
177        } else {
178            threadInfo[tid]->notIdleFraction = 0;
179        }
180    }
181}
182
183bool
184AtomicSimpleCPU::tryCompleteDrain()
185{
186    if (drainState() != DrainState::Draining)
187        return false;
188
189    DPRINTF(Drain, "tryCompleteDrain.\n");
190    if (!isDrained())
191        return false;
192
193    DPRINTF(Drain, "CPU done draining, processing drain event\n");
194    signalDrainDone();
195
196    return true;
197}
198
199
200void
201AtomicSimpleCPU::switchOut()
202{
203    BaseSimpleCPU::switchOut();
204
205    assert(!tickEvent.scheduled());
206    assert(_status == BaseSimpleCPU::Running || _status == Idle);
207    assert(isDrained());
208}
209
210
211void
212AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
213{
214    BaseSimpleCPU::takeOverFrom(oldCPU);
215
216    // The tick event should have been descheduled by drain()
217    assert(!tickEvent.scheduled());
218}
219
220void
221AtomicSimpleCPU::verifyMemoryMode() const
222{
223    if (!system->isAtomicMode()) {
224        fatal("The atomic CPU requires the memory system to be in "
225              "'atomic' mode.\n");
226    }
227}
228
229void
230AtomicSimpleCPU::activateContext(ThreadID thread_num)
231{
232    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
233
234    assert(thread_num < numThreads);
235
236    threadInfo[thread_num]->notIdleFraction = 1;
237    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
238                                 threadInfo[thread_num]->thread->lastSuspend);
239    numCycles += delta;
240    ppCycles->notify(delta);
241
242    if (!tickEvent.scheduled()) {
243        //Make sure ticks are still on multiples of cycles
244        schedule(tickEvent, clockEdge(Cycles(0)));
245    }
246    _status = BaseSimpleCPU::Running;
247    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
248        == activeThreads.end()) {
249        activeThreads.push_back(thread_num);
250    }
251
252    BaseCPU::activateContext(thread_num);
253}
254
255
256void
257AtomicSimpleCPU::suspendContext(ThreadID thread_num)
258{
259    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
260
261    assert(thread_num < numThreads);
262    activeThreads.remove(thread_num);
263
264    if (_status == Idle)
265        return;
266
267    assert(_status == BaseSimpleCPU::Running);
268
269    threadInfo[thread_num]->notIdleFraction = 0;
270
271    if (activeThreads.empty()) {
272        _status = Idle;
273
274        if (tickEvent.scheduled()) {
275            deschedule(tickEvent);
276        }
277    }
278
279    BaseCPU::suspendContext(thread_num);
280}
281
282
283Tick
284AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
285{
286    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
287            pkt->cmdString());
288
289    // X86 ISA: Snooping an invalidation for monitor/mwait
290    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
291
292    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
293        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
294            cpu->wakeup(tid);
295        }
296    }
297
298    // if snoop invalidates, release any associated locks
299    // When run without caches, Invalidation packets will not be received
300    // hence we must check if the incoming packets are writes and wakeup
301    // the processor accordingly
302    if (pkt->isInvalidate() || pkt->isWrite()) {
303        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
304                pkt->getAddr());
305        for (auto &t_info : cpu->threadInfo) {
306            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
307        }
308    }
309
310    return 0;
311}
312
313void
314AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
315{
316    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
317            pkt->cmdString());
318
319    // X86 ISA: Snooping an invalidation for monitor/mwait
320    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
321    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
322        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
323            cpu->wakeup(tid);
324        }
325    }
326
327    // if snoop invalidates, release any associated locks
328    if (pkt->isInvalidate()) {
329        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
330                pkt->getAddr());
331        for (auto &t_info : cpu->threadInfo) {
332            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
333        }
334    }
335}
336
337Fault
338AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
339                         Request::Flags flags)
340{
341    SimpleExecContext& t_info = *threadInfo[curThread];
342    SimpleThread* thread = t_info.thread;
343
344    // use the CPU's statically allocated read request and packet objects
345    Request *req = &data_read_req;
346
347    if (traceData)
348        traceData->setMem(addr, size, flags);
349
350    //The size of the data we're trying to read.
351    int fullSize = size;
352
353    //The address of the second part of this access if it needs to be split
354    //across a cache line boundary.
355    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
356
357    if (secondAddr > addr)
358        size = secondAddr - addr;
359
360    dcache_latency = 0;
361
362    req->taskId(taskId());
363    while (1) {
364        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
365
366        // translate to physical address
367        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
368                                                          BaseTLB::Read);
369
370        // Now do the access.
371        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
372            Packet pkt(req, Packet::makeReadCmd(req));
373            pkt.dataStatic(data);
374
375            if (req->isMmappedIpr())
376                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
377            else {
378                if (fastmem && system->isMemAddr(pkt.getAddr()))
379                    system->getPhysMem().access(&pkt);
380                else
381                    dcache_latency += dcachePort.sendAtomic(&pkt);
382            }
383            dcache_access = true;
384
385            assert(!pkt.isError());
386
387            if (req->isLLSC()) {
388                TheISA::handleLockedRead(thread, req);
389            }
390        }
391
392        //If there's a fault, return it
393        if (fault != NoFault) {
394            if (req->isPrefetch()) {
395                return NoFault;
396            } else {
397                return fault;
398            }
399        }
400
401        //If we don't need to access a second cache line, stop now.
402        if (secondAddr <= addr)
403        {
404            if (req->isLockedRMW() && fault == NoFault) {
405                assert(!locked);
406                locked = true;
407            }
408
409            return fault;
410        }
411
412        /*
413         * Set up for accessing the second cache line.
414         */
415
416        //Move the pointer we're reading into to the correct location.
417        data += size;
418        //Adjust the size to get the remaining bytes.
419        size = addr + fullSize - secondAddr;
420        //And access the right address.
421        addr = secondAddr;
422    }
423}
424
425Fault
426AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
427                                 Request::Flags flags)
428{
429    panic("initiateMemRead() is for timing accesses, and should "
430          "never be called on AtomicSimpleCPU.\n");
431}
432
433Fault
434AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
435                          Request::Flags flags, uint64_t *res)
436{
437    SimpleExecContext& t_info = *threadInfo[curThread];
438    SimpleThread* thread = t_info.thread;
439    static uint8_t zero_array[64] = {};
440
441    if (data == NULL) {
442        assert(size <= 64);
443        assert(flags & Request::CACHE_BLOCK_ZERO);
444        // This must be a cache block cleaning request
445        data = zero_array;
446    }
447
448    // use the CPU's statically allocated write request and packet objects
449    Request *req = &data_write_req;
450
451    if (traceData)
452        traceData->setMem(addr, size, flags);
453
454    //The size of the data we're trying to read.
455    int fullSize = size;
456
457    //The address of the second part of this access if it needs to be split
458    //across a cache line boundary.
459    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
460
461    if (secondAddr > addr)
462        size = secondAddr - addr;
463
464    dcache_latency = 0;
465
466    req->taskId(taskId());
467    while (1) {
468        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
469
470        // translate to physical address
471        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
472
473        // Now do the access.
474        if (fault == NoFault) {
475            MemCmd cmd = MemCmd::WriteReq; // default
476            bool do_access = true;  // flag to suppress cache access
477
478            if (req->isLLSC()) {
479                cmd = MemCmd::StoreCondReq;
480                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
481            } else if (req->isSwap()) {
482                cmd = MemCmd::SwapReq;
483                if (req->isCondSwap()) {
484                    assert(res);
485                    req->setExtraData(*res);
486                }
487            }
488
489            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
490                Packet pkt = Packet(req, cmd);
491                pkt.dataStatic(data);
492
493                if (req->isMmappedIpr()) {
494                    dcache_latency +=
495                        TheISA::handleIprWrite(thread->getTC(), &pkt);
496                } else {
497                    if (fastmem && system->isMemAddr(pkt.getAddr()))
498                        system->getPhysMem().access(&pkt);
499                    else
500                        dcache_latency += dcachePort.sendAtomic(&pkt);
501
502                    // Notify other threads on this CPU of write
503                    threadSnoop(&pkt, curThread);
504                }
505                dcache_access = true;
506                assert(!pkt.isError());
507
508                if (req->isSwap()) {
509                    assert(res);
510                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
511                }
512            }
513
514            if (res && !req->isSwap()) {
515                *res = req->getExtraData();
516            }
517        }
518
519        //If there's a fault or we don't need to access a second cache line,
520        //stop now.
521        if (fault != NoFault || secondAddr <= addr)
522        {
523            if (req->isLockedRMW() && fault == NoFault) {
524                assert(locked);
525                locked = false;
526            }
527
528
529            if (fault != NoFault && req->isPrefetch()) {
530                return NoFault;
531            } else {
532                return fault;
533            }
534        }
535
536        /*
537         * Set up for accessing the second cache line.
538         */
539
540        //Move the pointer we're reading into to the correct location.
541        data += size;
542        //Adjust the size to get the remaining bytes.
543        size = addr + fullSize - secondAddr;
544        //And access the right address.
545        addr = secondAddr;
546    }
547}
548
549
550void
551AtomicSimpleCPU::tick()
552{
553    DPRINTF(SimpleCPU, "Tick\n");
554
555    // Change thread if multi-threaded
556    swapActiveThread();
557
558    // Set memroy request ids to current thread
559    if (numThreads > 1) {
560        ContextID cid = threadContexts[curThread]->contextId();
561
562        ifetch_req.setContext(cid);
563        data_read_req.setContext(cid);
564        data_write_req.setContext(cid);
565    }
566
567    SimpleExecContext& t_info = *threadInfo[curThread];
568    SimpleThread* thread = t_info.thread;
569
570    Tick latency = 0;
571
572    for (int i = 0; i < width || locked; ++i) {
573        numCycles++;
574        ppCycles->notify(1);
575
576        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
577            checkForInterrupts();
578            checkPcEventQueue();
579        }
580
581        // We must have just got suspended by a PC event
582        if (_status == Idle) {
583            tryCompleteDrain();
584            return;
585        }
586
587        Fault fault = NoFault;
588
589        TheISA::PCState pcState = thread->pcState();
590
591        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
592                           !curMacroStaticInst;
593        if (needToFetch) {
594            ifetch_req.taskId(taskId());
595            setupFetchRequest(&ifetch_req);
596            fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
597                                                 BaseTLB::Execute);
598        }
599
600        if (fault == NoFault) {
601            Tick icache_latency = 0;
602            bool icache_access = false;
603            dcache_access = false; // assume no dcache access
604
605            if (needToFetch) {
606                // This is commented out because the decoder would act like
607                // a tiny cache otherwise. It wouldn't be flushed when needed
608                // like the I cache. It should be flushed, and when that works
609                // this code should be uncommented.
610                //Fetch more instruction memory if necessary
611                //if (decoder.needMoreBytes())
612                //{
613                    icache_access = true;
614                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
615                    ifetch_pkt.dataStatic(&inst);
616
617                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
618                        system->getPhysMem().access(&ifetch_pkt);
619                    else
620                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
621
622                    assert(!ifetch_pkt.isError());
623
624                    // ifetch_req is initialized to read the instruction directly
625                    // into the CPU object's inst field.
626                //}
627            }
628
629            preExecute();
630
631            if (curStaticInst) {
632                fault = curStaticInst->execute(&t_info, traceData);
633
634                // keep an instruction count
635                if (fault == NoFault) {
636                    countInst();
637                    ppCommit->notify(std::make_pair(thread, curStaticInst));
638                }
639                else if (traceData && !DTRACE(ExecFaulting)) {
640                    delete traceData;
641                    traceData = NULL;
642                }
643
644                postExecute();
645            }
646
647            // @todo remove me after debugging with legion done
648            if (curStaticInst && (!curStaticInst->isMicroop() ||
649                        curStaticInst->isFirstMicroop()))
650                instCnt++;
651
652            Tick stall_ticks = 0;
653            if (simulate_inst_stalls && icache_access)
654                stall_ticks += icache_latency;
655
656            if (simulate_data_stalls && dcache_access)
657                stall_ticks += dcache_latency;
658
659            if (stall_ticks) {
660                // the atomic cpu does its accounting in ticks, so
661                // keep counting in ticks but round to the clock
662                // period
663                latency += divCeil(stall_ticks, clockPeriod()) *
664                    clockPeriod();
665            }
666
667        }
668        if (fault != NoFault || !t_info.stayAtPC)
669            advancePC(fault);
670    }
671
672    if (tryCompleteDrain())
673        return;
674
675    // instruction takes at least one cycle
676    if (latency < clockPeriod())
677        latency = clockPeriod();
678
679    if (_status != Idle)
680        reschedule(tickEvent, curTick() + latency, true);
681}
682
683void
684AtomicSimpleCPU::regProbePoints()
685{
686    BaseCPU::regProbePoints();
687
688    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
689                                (getProbeManager(), "Commit");
690}
691
692void
693AtomicSimpleCPU::printAddr(Addr a)
694{
695    dcachePort.printAddr(a);
696}
697
698////////////////////////////////////////////////////////////////////////
699//
700//  AtomicSimpleCPU Simulation Object
701//
702AtomicSimpleCPU *
703AtomicSimpleCPUParams::create()
704{
705    return new AtomicSimpleCPU(this);
706}
707