atomic.cc revision 11608
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "base/output.hh"
49#include "config/the_isa.hh"
50#include "cpu/simple/atomic.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/system.hh"
61#include "sim/full_system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67    : Event(CPU_Tick_Pri), cpu(c)
68{
69}
70
71
72void
73AtomicSimpleCPU::TickEvent::process()
74{
75    cpu->tick();
76}
77
78const char *
79AtomicSimpleCPU::TickEvent::description() const
80{
81    return "AtomicSimpleCPU tick";
82}
83
84void
85AtomicSimpleCPU::init()
86{
87    BaseSimpleCPU::init();
88
89    int cid = threadContexts[0]->contextId();
90    ifetch_req.setContext(cid);
91    data_read_req.setContext(cid);
92    data_write_req.setContext(cid);
93}
94
95AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
96    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
97      simulate_data_stalls(p->simulate_data_stalls),
98      simulate_inst_stalls(p->simulate_inst_stalls),
99      icachePort(name() + ".icache_port", this),
100      dcachePort(name() + ".dcache_port", this),
101      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
102      ppCommit(nullptr)
103{
104    _status = Idle;
105}
106
107
108AtomicSimpleCPU::~AtomicSimpleCPU()
109{
110    if (tickEvent.scheduled()) {
111        deschedule(tickEvent);
112    }
113}
114
115DrainState
116AtomicSimpleCPU::drain()
117{
118    if (switchedOut())
119        return DrainState::Drained;
120
121    if (!isDrained()) {
122        DPRINTF(Drain, "Requesting drain.\n");
123        return DrainState::Draining;
124    } else {
125        if (tickEvent.scheduled())
126            deschedule(tickEvent);
127
128        activeThreads.clear();
129        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
130        return DrainState::Drained;
131    }
132}
133
134void
135AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
136{
137    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
138            pkt->cmdString());
139
140    for (ThreadID tid = 0; tid < numThreads; tid++) {
141        if (tid != sender) {
142            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
143                wakeup(tid);
144            }
145
146            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
147                                      pkt, dcachePort.cacheBlockMask);
148        }
149    }
150}
151
152void
153AtomicSimpleCPU::drainResume()
154{
155    assert(!tickEvent.scheduled());
156    if (switchedOut())
157        return;
158
159    DPRINTF(SimpleCPU, "Resume\n");
160    verifyMemoryMode();
161
162    assert(!threadContexts.empty());
163
164    _status = BaseSimpleCPU::Idle;
165
166    for (ThreadID tid = 0; tid < numThreads; tid++) {
167        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
168            threadInfo[tid]->notIdleFraction = 1;
169            activeThreads.push_back(tid);
170            _status = BaseSimpleCPU::Running;
171
172            // Tick if any threads active
173            if (!tickEvent.scheduled()) {
174                schedule(tickEvent, nextCycle());
175            }
176        } else {
177            threadInfo[tid]->notIdleFraction = 0;
178        }
179    }
180}
181
182bool
183AtomicSimpleCPU::tryCompleteDrain()
184{
185    if (drainState() != DrainState::Draining)
186        return false;
187
188    DPRINTF(Drain, "tryCompleteDrain.\n");
189    if (!isDrained())
190        return false;
191
192    DPRINTF(Drain, "CPU done draining, processing drain event\n");
193    signalDrainDone();
194
195    return true;
196}
197
198
199void
200AtomicSimpleCPU::switchOut()
201{
202    BaseSimpleCPU::switchOut();
203
204    assert(!tickEvent.scheduled());
205    assert(_status == BaseSimpleCPU::Running || _status == Idle);
206    assert(isDrained());
207}
208
209
210void
211AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
212{
213    BaseSimpleCPU::takeOverFrom(oldCPU);
214
215    // The tick event should have been descheduled by drain()
216    assert(!tickEvent.scheduled());
217}
218
219void
220AtomicSimpleCPU::verifyMemoryMode() const
221{
222    if (!system->isAtomicMode()) {
223        fatal("The atomic CPU requires the memory system to be in "
224              "'atomic' mode.\n");
225    }
226}
227
228void
229AtomicSimpleCPU::activateContext(ThreadID thread_num)
230{
231    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
232
233    assert(thread_num < numThreads);
234
235    threadInfo[thread_num]->notIdleFraction = 1;
236    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
237                                 threadInfo[thread_num]->thread->lastSuspend);
238    numCycles += delta;
239    ppCycles->notify(delta);
240
241    if (!tickEvent.scheduled()) {
242        //Make sure ticks are still on multiples of cycles
243        schedule(tickEvent, clockEdge(Cycles(0)));
244    }
245    _status = BaseSimpleCPU::Running;
246    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
247        == activeThreads.end()) {
248        activeThreads.push_back(thread_num);
249    }
250
251    BaseCPU::activateContext(thread_num);
252}
253
254
255void
256AtomicSimpleCPU::suspendContext(ThreadID thread_num)
257{
258    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
259
260    assert(thread_num < numThreads);
261    activeThreads.remove(thread_num);
262
263    if (_status == Idle)
264        return;
265
266    assert(_status == BaseSimpleCPU::Running);
267
268    threadInfo[thread_num]->notIdleFraction = 0;
269
270    if (activeThreads.empty()) {
271        _status = Idle;
272
273        if (tickEvent.scheduled()) {
274            deschedule(tickEvent);
275        }
276    }
277
278    BaseCPU::suspendContext(thread_num);
279}
280
281
282Tick
283AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
284{
285    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
286            pkt->cmdString());
287
288    // X86 ISA: Snooping an invalidation for monitor/mwait
289    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
290
291    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
292        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
293            cpu->wakeup(tid);
294        }
295    }
296
297    // if snoop invalidates, release any associated locks
298    // When run without caches, Invalidation packets will not be received
299    // hence we must check if the incoming packets are writes and wakeup
300    // the processor accordingly
301    if (pkt->isInvalidate() || pkt->isWrite()) {
302        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
303                pkt->getAddr());
304        for (auto &t_info : cpu->threadInfo) {
305            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
306        }
307    }
308
309    return 0;
310}
311
312void
313AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
314{
315    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
316            pkt->cmdString());
317
318    // X86 ISA: Snooping an invalidation for monitor/mwait
319    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
320    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
321        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
322            cpu->wakeup(tid);
323        }
324    }
325
326    // if snoop invalidates, release any associated locks
327    if (pkt->isInvalidate()) {
328        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
329                pkt->getAddr());
330        for (auto &t_info : cpu->threadInfo) {
331            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
332        }
333    }
334}
335
336Fault
337AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
338                         Request::Flags flags)
339{
340    SimpleExecContext& t_info = *threadInfo[curThread];
341    SimpleThread* thread = t_info.thread;
342
343    // use the CPU's statically allocated read request and packet objects
344    Request *req = &data_read_req;
345
346    if (traceData)
347        traceData->setMem(addr, size, flags);
348
349    //The size of the data we're trying to read.
350    int fullSize = size;
351
352    //The address of the second part of this access if it needs to be split
353    //across a cache line boundary.
354    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
355
356    if (secondAddr > addr)
357        size = secondAddr - addr;
358
359    dcache_latency = 0;
360
361    req->taskId(taskId());
362    while (1) {
363        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
364
365        // translate to physical address
366        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
367                                                          BaseTLB::Read);
368
369        // Now do the access.
370        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
371            Packet pkt(req, Packet::makeReadCmd(req));
372            pkt.dataStatic(data);
373
374            if (req->isMmappedIpr())
375                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
376            else {
377                if (fastmem && system->isMemAddr(pkt.getAddr()))
378                    system->getPhysMem().access(&pkt);
379                else
380                    dcache_latency += dcachePort.sendAtomic(&pkt);
381            }
382            dcache_access = true;
383
384            assert(!pkt.isError());
385
386            if (req->isLLSC()) {
387                TheISA::handleLockedRead(thread, req);
388            }
389        }
390
391        //If there's a fault, return it
392        if (fault != NoFault) {
393            if (req->isPrefetch()) {
394                return NoFault;
395            } else {
396                return fault;
397            }
398        }
399
400        //If we don't need to access a second cache line, stop now.
401        if (secondAddr <= addr)
402        {
403            if (req->isLockedRMW() && fault == NoFault) {
404                assert(!locked);
405                locked = true;
406            }
407
408            return fault;
409        }
410
411        /*
412         * Set up for accessing the second cache line.
413         */
414
415        //Move the pointer we're reading into to the correct location.
416        data += size;
417        //Adjust the size to get the remaining bytes.
418        size = addr + fullSize - secondAddr;
419        //And access the right address.
420        addr = secondAddr;
421    }
422}
423
424Fault
425AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
426                                 Request::Flags flags)
427{
428    panic("initiateMemRead() is for timing accesses, and should "
429          "never be called on AtomicSimpleCPU.\n");
430}
431
432Fault
433AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
434                          Request::Flags flags, uint64_t *res)
435{
436    SimpleExecContext& t_info = *threadInfo[curThread];
437    SimpleThread* thread = t_info.thread;
438    static uint8_t zero_array[64] = {};
439
440    if (data == NULL) {
441        assert(size <= 64);
442        assert(flags & Request::CACHE_BLOCK_ZERO);
443        // This must be a cache block cleaning request
444        data = zero_array;
445    }
446
447    // use the CPU's statically allocated write request and packet objects
448    Request *req = &data_write_req;
449
450    if (traceData)
451        traceData->setMem(addr, size, flags);
452
453    //The size of the data we're trying to read.
454    int fullSize = size;
455
456    //The address of the second part of this access if it needs to be split
457    //across a cache line boundary.
458    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
459
460    if (secondAddr > addr)
461        size = secondAddr - addr;
462
463    dcache_latency = 0;
464
465    req->taskId(taskId());
466    while (1) {
467        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
468
469        // translate to physical address
470        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
471
472        // Now do the access.
473        if (fault == NoFault) {
474            MemCmd cmd = MemCmd::WriteReq; // default
475            bool do_access = true;  // flag to suppress cache access
476
477            if (req->isLLSC()) {
478                cmd = MemCmd::StoreCondReq;
479                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
480            } else if (req->isSwap()) {
481                cmd = MemCmd::SwapReq;
482                if (req->isCondSwap()) {
483                    assert(res);
484                    req->setExtraData(*res);
485                }
486            }
487
488            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
489                Packet pkt = Packet(req, cmd);
490                pkt.dataStatic(data);
491
492                if (req->isMmappedIpr()) {
493                    dcache_latency +=
494                        TheISA::handleIprWrite(thread->getTC(), &pkt);
495                } else {
496                    if (fastmem && system->isMemAddr(pkt.getAddr()))
497                        system->getPhysMem().access(&pkt);
498                    else
499                        dcache_latency += dcachePort.sendAtomic(&pkt);
500
501                    // Notify other threads on this CPU of write
502                    threadSnoop(&pkt, curThread);
503                }
504                dcache_access = true;
505                assert(!pkt.isError());
506
507                if (req->isSwap()) {
508                    assert(res);
509                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
510                }
511            }
512
513            if (res && !req->isSwap()) {
514                *res = req->getExtraData();
515            }
516        }
517
518        //If there's a fault or we don't need to access a second cache line,
519        //stop now.
520        if (fault != NoFault || secondAddr <= addr)
521        {
522            if (req->isLockedRMW() && fault == NoFault) {
523                assert(locked);
524                locked = false;
525            }
526
527
528            if (fault != NoFault && req->isPrefetch()) {
529                return NoFault;
530            } else {
531                return fault;
532            }
533        }
534
535        /*
536         * Set up for accessing the second cache line.
537         */
538
539        //Move the pointer we're reading into to the correct location.
540        data += size;
541        //Adjust the size to get the remaining bytes.
542        size = addr + fullSize - secondAddr;
543        //And access the right address.
544        addr = secondAddr;
545    }
546}
547
548
549void
550AtomicSimpleCPU::tick()
551{
552    DPRINTF(SimpleCPU, "Tick\n");
553
554    // Change thread if multi-threaded
555    swapActiveThread();
556
557    // Set memroy request ids to current thread
558    if (numThreads > 1) {
559        ContextID cid = threadContexts[curThread]->contextId();
560
561        ifetch_req.setContext(cid);
562        data_read_req.setContext(cid);
563        data_write_req.setContext(cid);
564    }
565
566    SimpleExecContext& t_info = *threadInfo[curThread];
567    SimpleThread* thread = t_info.thread;
568
569    Tick latency = 0;
570
571    for (int i = 0; i < width || locked; ++i) {
572        numCycles++;
573        ppCycles->notify(1);
574
575        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
576            checkForInterrupts();
577            checkPcEventQueue();
578        }
579
580        // We must have just got suspended by a PC event
581        if (_status == Idle) {
582            tryCompleteDrain();
583            return;
584        }
585
586        Fault fault = NoFault;
587
588        TheISA::PCState pcState = thread->pcState();
589
590        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
591                           !curMacroStaticInst;
592        if (needToFetch) {
593            ifetch_req.taskId(taskId());
594            setupFetchRequest(&ifetch_req);
595            fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
596                                                 BaseTLB::Execute);
597        }
598
599        if (fault == NoFault) {
600            Tick icache_latency = 0;
601            bool icache_access = false;
602            dcache_access = false; // assume no dcache access
603
604            if (needToFetch) {
605                // This is commented out because the decoder would act like
606                // a tiny cache otherwise. It wouldn't be flushed when needed
607                // like the I cache. It should be flushed, and when that works
608                // this code should be uncommented.
609                //Fetch more instruction memory if necessary
610                //if (decoder.needMoreBytes())
611                //{
612                    icache_access = true;
613                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
614                    ifetch_pkt.dataStatic(&inst);
615
616                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
617                        system->getPhysMem().access(&ifetch_pkt);
618                    else
619                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
620
621                    assert(!ifetch_pkt.isError());
622
623                    // ifetch_req is initialized to read the instruction directly
624                    // into the CPU object's inst field.
625                //}
626            }
627
628            preExecute();
629
630            if (curStaticInst) {
631                fault = curStaticInst->execute(&t_info, traceData);
632
633                // keep an instruction count
634                if (fault == NoFault) {
635                    countInst();
636                    ppCommit->notify(std::make_pair(thread, curStaticInst));
637                }
638                else if (traceData && !DTRACE(ExecFaulting)) {
639                    delete traceData;
640                    traceData = NULL;
641                }
642
643                postExecute();
644            }
645
646            // @todo remove me after debugging with legion done
647            if (curStaticInst && (!curStaticInst->isMicroop() ||
648                        curStaticInst->isFirstMicroop()))
649                instCnt++;
650
651            Tick stall_ticks = 0;
652            if (simulate_inst_stalls && icache_access)
653                stall_ticks += icache_latency;
654
655            if (simulate_data_stalls && dcache_access)
656                stall_ticks += dcache_latency;
657
658            if (stall_ticks) {
659                // the atomic cpu does its accounting in ticks, so
660                // keep counting in ticks but round to the clock
661                // period
662                latency += divCeil(stall_ticks, clockPeriod()) *
663                    clockPeriod();
664            }
665
666        }
667        if (fault != NoFault || !t_info.stayAtPC)
668            advancePC(fault);
669    }
670
671    if (tryCompleteDrain())
672        return;
673
674    // instruction takes at least one cycle
675    if (latency < clockPeriod())
676        latency = clockPeriod();
677
678    if (_status != Idle)
679        reschedule(tickEvent, curTick() + latency, true);
680}
681
682void
683AtomicSimpleCPU::regProbePoints()
684{
685    BaseCPU::regProbePoints();
686
687    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
688                                (getProbeManager(), "Commit");
689}
690
691void
692AtomicSimpleCPU::printAddr(Addr a)
693{
694    dcachePort.printAddr(a);
695}
696
697////////////////////////////////////////////////////////////////////////
698//
699//  AtomicSimpleCPU Simulation Object
700//
701AtomicSimpleCPU *
702AtomicSimpleCPUParams::create()
703{
704    return new AtomicSimpleCPU(this);
705}
706