atomic.cc revision 11147
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "base/output.hh"
49#include "config/the_isa.hh"
50#include "cpu/simple/atomic.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/system.hh"
61#include "sim/full_system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67    : Event(CPU_Tick_Pri), cpu(c)
68{
69}
70
71
72void
73AtomicSimpleCPU::TickEvent::process()
74{
75    cpu->tick();
76}
77
78const char *
79AtomicSimpleCPU::TickEvent::description() const
80{
81    return "AtomicSimpleCPU tick";
82}
83
84void
85AtomicSimpleCPU::init()
86{
87    BaseSimpleCPU::init();
88
89    ifetch_req.setThreadContext(_cpuId, 0);
90    data_read_req.setThreadContext(_cpuId, 0);
91    data_write_req.setThreadContext(_cpuId, 0);
92}
93
94AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
95    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
96      simulate_data_stalls(p->simulate_data_stalls),
97      simulate_inst_stalls(p->simulate_inst_stalls),
98      icachePort(name() + ".icache_port", this),
99      dcachePort(name() + ".dcache_port", this),
100      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
101      ppCommit(nullptr)
102{
103    _status = Idle;
104}
105
106
107AtomicSimpleCPU::~AtomicSimpleCPU()
108{
109    if (tickEvent.scheduled()) {
110        deschedule(tickEvent);
111    }
112}
113
114DrainState
115AtomicSimpleCPU::drain()
116{
117    if (switchedOut())
118        return DrainState::Drained;
119
120    if (!isDrained()) {
121        DPRINTF(Drain, "Requesting drain.\n");
122        return DrainState::Draining;
123    } else {
124        if (tickEvent.scheduled())
125            deschedule(tickEvent);
126
127        activeThreads.clear();
128        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
129        return DrainState::Drained;
130    }
131}
132
133void
134AtomicSimpleCPU::drainResume()
135{
136    assert(!tickEvent.scheduled());
137    if (switchedOut())
138        return;
139
140    DPRINTF(SimpleCPU, "Resume\n");
141    verifyMemoryMode();
142
143    assert(!threadContexts.empty());
144
145    _status = BaseSimpleCPU::Idle;
146
147    for (ThreadID tid = 0; tid < numThreads; tid++) {
148        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
149            threadInfo[tid]->notIdleFraction = 1;
150            activeThreads.push_back(tid);
151            _status = BaseSimpleCPU::Running;
152
153            // Tick if any threads active
154            if (!tickEvent.scheduled()) {
155                schedule(tickEvent, nextCycle());
156            }
157        } else {
158            threadInfo[tid]->notIdleFraction = 0;
159        }
160    }
161}
162
163bool
164AtomicSimpleCPU::tryCompleteDrain()
165{
166    if (drainState() != DrainState::Draining)
167        return false;
168
169    DPRINTF(Drain, "tryCompleteDrain.\n");
170    if (!isDrained())
171        return false;
172
173    DPRINTF(Drain, "CPU done draining, processing drain event\n");
174    signalDrainDone();
175
176    return true;
177}
178
179
180void
181AtomicSimpleCPU::switchOut()
182{
183    BaseSimpleCPU::switchOut();
184
185    assert(!tickEvent.scheduled());
186    assert(_status == BaseSimpleCPU::Running || _status == Idle);
187    assert(isDrained());
188}
189
190
191void
192AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194    BaseSimpleCPU::takeOverFrom(oldCPU);
195
196    // The tick event should have been descheduled by drain()
197    assert(!tickEvent.scheduled());
198}
199
200void
201AtomicSimpleCPU::verifyMemoryMode() const
202{
203    if (!system->isAtomicMode()) {
204        fatal("The atomic CPU requires the memory system to be in "
205              "'atomic' mode.\n");
206    }
207}
208
209void
210AtomicSimpleCPU::activateContext(ThreadID thread_num)
211{
212    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
213
214    assert(thread_num < numThreads);
215
216    threadInfo[thread_num]->notIdleFraction = 1;
217    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
218                                 threadInfo[thread_num]->thread->lastSuspend);
219    numCycles += delta;
220    ppCycles->notify(delta);
221
222    if (!tickEvent.scheduled()) {
223        //Make sure ticks are still on multiples of cycles
224        schedule(tickEvent, clockEdge(Cycles(0)));
225    }
226    _status = BaseSimpleCPU::Running;
227    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
228        == activeThreads.end()) {
229        activeThreads.push_back(thread_num);
230    }
231}
232
233
234void
235AtomicSimpleCPU::suspendContext(ThreadID thread_num)
236{
237    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
238
239    assert(thread_num < numThreads);
240    activeThreads.remove(thread_num);
241
242    if (_status == Idle)
243        return;
244
245    assert(_status == BaseSimpleCPU::Running);
246
247    threadInfo[thread_num]->notIdleFraction = 0;
248
249    if (activeThreads.empty()) {
250        _status = Idle;
251
252        if (tickEvent.scheduled()) {
253            deschedule(tickEvent);
254        }
255    }
256
257}
258
259
260Tick
261AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
262{
263    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
264            pkt->cmdString());
265
266    // X86 ISA: Snooping an invalidation for monitor/mwait
267    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
268    if(cpu->getCpuAddrMonitor()->doMonitor(pkt)) {
269        cpu->wakeup();
270    }
271
272    // if snoop invalidates, release any associated locks
273    if (pkt->isInvalidate()) {
274        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
275                pkt->getAddr());
276        for (auto &t_info : cpu->threadInfo) {
277            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
278        }
279    }
280
281    return 0;
282}
283
284void
285AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
286{
287    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
288            pkt->cmdString());
289
290    // X86 ISA: Snooping an invalidation for monitor/mwait
291    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
292    if(cpu->getCpuAddrMonitor()->doMonitor(pkt)) {
293        cpu->wakeup();
294    }
295
296    // if snoop invalidates, release any associated locks
297    if (pkt->isInvalidate()) {
298        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
299                pkt->getAddr());
300        for (auto &t_info : cpu->threadInfo) {
301            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
302        }
303    }
304}
305
306Fault
307AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
308                         unsigned size, unsigned flags)
309{
310    SimpleExecContext& t_info = *threadInfo[curThread];
311    SimpleThread* thread = t_info.thread;
312
313    // use the CPU's statically allocated read request and packet objects
314    Request *req = &data_read_req;
315
316    if (traceData)
317        traceData->setMem(addr, size, flags);
318
319    //The size of the data we're trying to read.
320    int fullSize = size;
321
322    //The address of the second part of this access if it needs to be split
323    //across a cache line boundary.
324    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
325
326    if (secondAddr > addr)
327        size = secondAddr - addr;
328
329    dcache_latency = 0;
330
331    req->taskId(taskId());
332    while (1) {
333        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
334
335        // translate to physical address
336        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
337                                                          BaseTLB::Read);
338
339        // Now do the access.
340        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
341            Packet pkt(req, Packet::makeReadCmd(req));
342            pkt.dataStatic(data);
343
344            if (req->isMmappedIpr())
345                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
346            else {
347                if (fastmem && system->isMemAddr(pkt.getAddr()))
348                    system->getPhysMem().access(&pkt);
349                else
350                    dcache_latency += dcachePort.sendAtomic(&pkt);
351            }
352            dcache_access = true;
353
354            assert(!pkt.isError());
355
356            if (req->isLLSC()) {
357                TheISA::handleLockedRead(thread, req);
358            }
359        }
360
361        //If there's a fault, return it
362        if (fault != NoFault) {
363            if (req->isPrefetch()) {
364                return NoFault;
365            } else {
366                return fault;
367            }
368        }
369
370        //If we don't need to access a second cache line, stop now.
371        if (secondAddr <= addr)
372        {
373            if (req->isLockedRMW() && fault == NoFault) {
374                assert(!locked);
375                locked = true;
376            }
377
378            return fault;
379        }
380
381        /*
382         * Set up for accessing the second cache line.
383         */
384
385        //Move the pointer we're reading into to the correct location.
386        data += size;
387        //Adjust the size to get the remaining bytes.
388        size = addr + fullSize - secondAddr;
389        //And access the right address.
390        addr = secondAddr;
391    }
392}
393
394
395Fault
396AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
397                          Addr addr, unsigned flags, uint64_t *res)
398{
399    SimpleExecContext& t_info = *threadInfo[curThread];
400    SimpleThread* thread = t_info.thread;
401    static uint8_t zero_array[64] = {};
402
403    if (data == NULL) {
404        assert(size <= 64);
405        assert(flags & Request::CACHE_BLOCK_ZERO);
406        // This must be a cache block cleaning request
407        data = zero_array;
408    }
409
410    // use the CPU's statically allocated write request and packet objects
411    Request *req = &data_write_req;
412
413    if (traceData)
414        traceData->setMem(addr, size, flags);
415
416    //The size of the data we're trying to read.
417    int fullSize = size;
418
419    //The address of the second part of this access if it needs to be split
420    //across a cache line boundary.
421    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
422
423    if(secondAddr > addr)
424        size = secondAddr - addr;
425
426    dcache_latency = 0;
427
428    req->taskId(taskId());
429    while(1) {
430        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
431
432        // translate to physical address
433        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
434
435        // Now do the access.
436        if (fault == NoFault) {
437            MemCmd cmd = MemCmd::WriteReq; // default
438            bool do_access = true;  // flag to suppress cache access
439
440            if (req->isLLSC()) {
441                cmd = MemCmd::StoreCondReq;
442                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
443            } else if (req->isSwap()) {
444                cmd = MemCmd::SwapReq;
445                if (req->isCondSwap()) {
446                    assert(res);
447                    req->setExtraData(*res);
448                }
449            }
450
451            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
452                Packet pkt = Packet(req, cmd);
453                pkt.dataStatic(data);
454
455                if (req->isMmappedIpr()) {
456                    dcache_latency +=
457                        TheISA::handleIprWrite(thread->getTC(), &pkt);
458                } else {
459                    if (fastmem && system->isMemAddr(pkt.getAddr()))
460                        system->getPhysMem().access(&pkt);
461                    else
462                        dcache_latency += dcachePort.sendAtomic(&pkt);
463                }
464                dcache_access = true;
465                assert(!pkt.isError());
466
467                if (req->isSwap()) {
468                    assert(res);
469                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
470                }
471            }
472
473            if (res && !req->isSwap()) {
474                *res = req->getExtraData();
475            }
476        }
477
478        //If there's a fault or we don't need to access a second cache line,
479        //stop now.
480        if (fault != NoFault || secondAddr <= addr)
481        {
482            if (req->isLockedRMW() && fault == NoFault) {
483                assert(locked);
484                locked = false;
485            }
486
487
488            if (fault != NoFault && req->isPrefetch()) {
489                return NoFault;
490            } else {
491                return fault;
492            }
493        }
494
495        /*
496         * Set up for accessing the second cache line.
497         */
498
499        //Move the pointer we're reading into to the correct location.
500        data += size;
501        //Adjust the size to get the remaining bytes.
502        size = addr + fullSize - secondAddr;
503        //And access the right address.
504        addr = secondAddr;
505    }
506}
507
508
509void
510AtomicSimpleCPU::tick()
511{
512    DPRINTF(SimpleCPU, "Tick\n");
513
514    // Change thread if multi-threaded
515    swapActiveThread();
516
517    // Set memroy request ids to current thread
518    if (numThreads > 1) {
519        ifetch_req.setThreadContext(_cpuId, curThread);
520        data_read_req.setThreadContext(_cpuId, curThread);
521        data_write_req.setThreadContext(_cpuId, curThread);
522    }
523
524    SimpleExecContext& t_info = *threadInfo[curThread];
525    SimpleThread* thread = t_info.thread;
526
527    Tick latency = 0;
528
529    for (int i = 0; i < width || locked; ++i) {
530        numCycles++;
531        ppCycles->notify(1);
532
533        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
534            checkForInterrupts();
535            checkPcEventQueue();
536        }
537
538        // We must have just got suspended by a PC event
539        if (_status == Idle) {
540            tryCompleteDrain();
541            return;
542        }
543
544        Fault fault = NoFault;
545
546        TheISA::PCState pcState = thread->pcState();
547
548        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
549                           !curMacroStaticInst;
550        if (needToFetch) {
551            ifetch_req.taskId(taskId());
552            setupFetchRequest(&ifetch_req);
553            fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
554                                                 BaseTLB::Execute);
555        }
556
557        if (fault == NoFault) {
558            Tick icache_latency = 0;
559            bool icache_access = false;
560            dcache_access = false; // assume no dcache access
561
562            if (needToFetch) {
563                // This is commented out because the decoder would act like
564                // a tiny cache otherwise. It wouldn't be flushed when needed
565                // like the I cache. It should be flushed, and when that works
566                // this code should be uncommented.
567                //Fetch more instruction memory if necessary
568                //if(decoder.needMoreBytes())
569                //{
570                    icache_access = true;
571                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
572                    ifetch_pkt.dataStatic(&inst);
573
574                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
575                        system->getPhysMem().access(&ifetch_pkt);
576                    else
577                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
578
579                    assert(!ifetch_pkt.isError());
580
581                    // ifetch_req is initialized to read the instruction directly
582                    // into the CPU object's inst field.
583                //}
584            }
585
586            preExecute();
587
588            if (curStaticInst) {
589                fault = curStaticInst->execute(&t_info, traceData);
590
591                // keep an instruction count
592                if (fault == NoFault) {
593                    countInst();
594                    ppCommit->notify(std::make_pair(thread, curStaticInst));
595                }
596                else if (traceData && !DTRACE(ExecFaulting)) {
597                    delete traceData;
598                    traceData = NULL;
599                }
600
601                postExecute();
602            }
603
604            // @todo remove me after debugging with legion done
605            if (curStaticInst && (!curStaticInst->isMicroop() ||
606                        curStaticInst->isFirstMicroop()))
607                instCnt++;
608
609            Tick stall_ticks = 0;
610            if (simulate_inst_stalls && icache_access)
611                stall_ticks += icache_latency;
612
613            if (simulate_data_stalls && dcache_access)
614                stall_ticks += dcache_latency;
615
616            if (stall_ticks) {
617                // the atomic cpu does its accounting in ticks, so
618                // keep counting in ticks but round to the clock
619                // period
620                latency += divCeil(stall_ticks, clockPeriod()) *
621                    clockPeriod();
622            }
623
624        }
625        if(fault != NoFault || !t_info.stayAtPC)
626            advancePC(fault);
627    }
628
629    if (tryCompleteDrain())
630        return;
631
632    // instruction takes at least one cycle
633    if (latency < clockPeriod())
634        latency = clockPeriod();
635
636    if (_status != Idle)
637        reschedule(tickEvent, curTick() + latency, true);
638}
639
640void
641AtomicSimpleCPU::regProbePoints()
642{
643    BaseCPU::regProbePoints();
644
645    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
646                                (getProbeManager(), "Commit");
647}
648
649void
650AtomicSimpleCPU::printAddr(Addr a)
651{
652    dcachePort.printAddr(a);
653}
654
655////////////////////////////////////////////////////////////////////////
656//
657//  AtomicSimpleCPU Simulation Object
658//
659AtomicSimpleCPU *
660AtomicSimpleCPUParams::create()
661{
662    return new AtomicSimpleCPU(this);
663}
664