atomic.cc revision 10665:aef704eaedd2
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "base/output.hh"
49#include "config/the_isa.hh"
50#include "cpu/simple/atomic.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/system.hh"
61#include "sim/full_system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67    : Event(CPU_Tick_Pri), cpu(c)
68{
69}
70
71
72void
73AtomicSimpleCPU::TickEvent::process()
74{
75    cpu->tick();
76}
77
78const char *
79AtomicSimpleCPU::TickEvent::description() const
80{
81    return "AtomicSimpleCPU tick";
82}
83
84void
85AtomicSimpleCPU::init()
86{
87    BaseCPU::init();
88
89    // Initialise the ThreadContext's memory proxies
90    tcBase()->initMemProxies(tcBase());
91
92    if (FullSystem && !params()->switched_out) {
93        ThreadID size = threadContexts.size();
94        for (ThreadID i = 0; i < size; ++i) {
95            ThreadContext *tc = threadContexts[i];
96            // initialize CPU, including PC
97            TheISA::initCPU(tc, tc->contextId());
98        }
99    }
100
101    // Atomic doesn't do MT right now, so contextId == threadId
102    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
103    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
105}
106
107AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
108    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
109      simulate_data_stalls(p->simulate_data_stalls),
110      simulate_inst_stalls(p->simulate_inst_stalls),
111      drain_manager(NULL),
112      icachePort(name() + ".icache_port", this),
113      dcachePort(name() + ".dcache_port", this),
114      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
115      ppCommit(nullptr)
116{
117    _status = Idle;
118}
119
120
121AtomicSimpleCPU::~AtomicSimpleCPU()
122{
123    if (tickEvent.scheduled()) {
124        deschedule(tickEvent);
125    }
126}
127
128unsigned int
129AtomicSimpleCPU::drain(DrainManager *dm)
130{
131    assert(!drain_manager);
132    if (switchedOut())
133        return 0;
134
135    if (!isDrained()) {
136        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
137        drain_manager = dm;
138        return 1;
139    } else {
140        if (tickEvent.scheduled())
141            deschedule(tickEvent);
142
143        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
144        return 0;
145    }
146}
147
148void
149AtomicSimpleCPU::drainResume()
150{
151    assert(!tickEvent.scheduled());
152    assert(!drain_manager);
153    if (switchedOut())
154        return;
155
156    DPRINTF(SimpleCPU, "Resume\n");
157    verifyMemoryMode();
158
159    assert(!threadContexts.empty());
160    if (threadContexts.size() > 1)
161        fatal("The atomic CPU only supports one thread.\n");
162
163    if (thread->status() == ThreadContext::Active) {
164        schedule(tickEvent, nextCycle());
165        _status = BaseSimpleCPU::Running;
166        notIdleFraction = 1;
167    } else {
168        _status = BaseSimpleCPU::Idle;
169        notIdleFraction = 0;
170    }
171
172    system->totalNumInsts = 0;
173}
174
175bool
176AtomicSimpleCPU::tryCompleteDrain()
177{
178    if (!drain_manager)
179        return false;
180
181    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
182    if (!isDrained())
183        return false;
184
185    DPRINTF(Drain, "CPU done draining, processing drain event\n");
186    drain_manager->signalDrainDone();
187    drain_manager = NULL;
188
189    return true;
190}
191
192
193void
194AtomicSimpleCPU::switchOut()
195{
196    BaseSimpleCPU::switchOut();
197
198    assert(!tickEvent.scheduled());
199    assert(_status == BaseSimpleCPU::Running || _status == Idle);
200    assert(isDrained());
201}
202
203
204void
205AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
206{
207    BaseSimpleCPU::takeOverFrom(oldCPU);
208
209    // The tick event should have been descheduled by drain()
210    assert(!tickEvent.scheduled());
211
212    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
213    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
214    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
215}
216
217void
218AtomicSimpleCPU::verifyMemoryMode() const
219{
220    if (!system->isAtomicMode()) {
221        fatal("The atomic CPU requires the memory system to be in "
222              "'atomic' mode.\n");
223    }
224}
225
226void
227AtomicSimpleCPU::activateContext(ThreadID thread_num)
228{
229    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
230
231    assert(thread_num == 0);
232    assert(thread);
233
234    assert(_status == Idle);
235    assert(!tickEvent.scheduled());
236
237    notIdleFraction = 1;
238    Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend);
239    numCycles += delta;
240    ppCycles->notify(delta);
241
242    //Make sure ticks are still on multiples of cycles
243    schedule(tickEvent, clockEdge(Cycles(0)));
244    _status = BaseSimpleCPU::Running;
245}
246
247
248void
249AtomicSimpleCPU::suspendContext(ThreadID thread_num)
250{
251    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
252
253    assert(thread_num == 0);
254    assert(thread);
255
256    if (_status == Idle)
257        return;
258
259    assert(_status == BaseSimpleCPU::Running);
260
261    // tick event may not be scheduled if this gets called from inside
262    // an instruction's execution, e.g. "quiesce"
263    if (tickEvent.scheduled())
264        deschedule(tickEvent);
265
266    notIdleFraction = 0;
267    _status = Idle;
268}
269
270
271Tick
272AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
273{
274    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
275            pkt->cmdString());
276
277    // X86 ISA: Snooping an invalidation for monitor/mwait
278    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
279    if(cpu->getAddrMonitor()->doMonitor(pkt)) {
280        cpu->wakeup();
281    }
282
283    // if snoop invalidates, release any associated locks
284    if (pkt->isInvalidate()) {
285        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
286                pkt->getAddr());
287        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
288    }
289
290    return 0;
291}
292
293void
294AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
295{
296    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
297            pkt->cmdString());
298
299    // X86 ISA: Snooping an invalidation for monitor/mwait
300    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
301    if(cpu->getAddrMonitor()->doMonitor(pkt)) {
302        cpu->wakeup();
303    }
304
305    // if snoop invalidates, release any associated locks
306    if (pkt->isInvalidate()) {
307        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
308                pkt->getAddr());
309        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
310    }
311}
312
313Fault
314AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
315                         unsigned size, unsigned flags)
316{
317    // use the CPU's statically allocated read request and packet objects
318    Request *req = &data_read_req;
319
320    if (traceData)
321        traceData->setMem(addr, size, flags);
322
323    //The size of the data we're trying to read.
324    int fullSize = size;
325
326    //The address of the second part of this access if it needs to be split
327    //across a cache line boundary.
328    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
329
330    if (secondAddr > addr)
331        size = secondAddr - addr;
332
333    dcache_latency = 0;
334
335    req->taskId(taskId());
336    while (1) {
337        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
338
339        // translate to physical address
340        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
341
342        // Now do the access.
343        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
344            Packet pkt(req, MemCmd::ReadReq);
345            pkt.refineCommand();
346            pkt.dataStatic(data);
347
348            if (req->isMmappedIpr())
349                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
350            else {
351                if (fastmem && system->isMemAddr(pkt.getAddr()))
352                    system->getPhysMem().access(&pkt);
353                else
354                    dcache_latency += dcachePort.sendAtomic(&pkt);
355            }
356            dcache_access = true;
357
358            assert(!pkt.isError());
359
360            if (req->isLLSC()) {
361                TheISA::handleLockedRead(thread, req);
362            }
363        }
364
365        //If there's a fault, return it
366        if (fault != NoFault) {
367            if (req->isPrefetch()) {
368                return NoFault;
369            } else {
370                return fault;
371            }
372        }
373
374        //If we don't need to access a second cache line, stop now.
375        if (secondAddr <= addr)
376        {
377            if (req->isLocked() && fault == NoFault) {
378                assert(!locked);
379                locked = true;
380            }
381            return fault;
382        }
383
384        /*
385         * Set up for accessing the second cache line.
386         */
387
388        //Move the pointer we're reading into to the correct location.
389        data += size;
390        //Adjust the size to get the remaining bytes.
391        size = addr + fullSize - secondAddr;
392        //And access the right address.
393        addr = secondAddr;
394    }
395}
396
397
398Fault
399AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
400                          Addr addr, unsigned flags, uint64_t *res)
401{
402
403    static uint8_t zero_array[64] = {};
404
405    if (data == NULL) {
406        assert(size <= 64);
407        assert(flags & Request::CACHE_BLOCK_ZERO);
408        // This must be a cache block cleaning request
409        data = zero_array;
410    }
411
412    // use the CPU's statically allocated write request and packet objects
413    Request *req = &data_write_req;
414
415    if (traceData)
416        traceData->setMem(addr, size, flags);
417
418    //The size of the data we're trying to read.
419    int fullSize = size;
420
421    //The address of the second part of this access if it needs to be split
422    //across a cache line boundary.
423    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
424
425    if(secondAddr > addr)
426        size = secondAddr - addr;
427
428    dcache_latency = 0;
429
430    req->taskId(taskId());
431    while(1) {
432        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
433
434        // translate to physical address
435        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
436
437        // Now do the access.
438        if (fault == NoFault) {
439            MemCmd cmd = MemCmd::WriteReq; // default
440            bool do_access = true;  // flag to suppress cache access
441
442            if (req->isLLSC()) {
443                cmd = MemCmd::StoreCondReq;
444                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
445            } else if (req->isSwap()) {
446                cmd = MemCmd::SwapReq;
447                if (req->isCondSwap()) {
448                    assert(res);
449                    req->setExtraData(*res);
450                }
451            }
452
453            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
454                Packet pkt = Packet(req, cmd);
455                pkt.dataStatic(data);
456
457                if (req->isMmappedIpr()) {
458                    dcache_latency +=
459                        TheISA::handleIprWrite(thread->getTC(), &pkt);
460                } else {
461                    if (fastmem && system->isMemAddr(pkt.getAddr()))
462                        system->getPhysMem().access(&pkt);
463                    else
464                        dcache_latency += dcachePort.sendAtomic(&pkt);
465                }
466                dcache_access = true;
467                assert(!pkt.isError());
468
469                if (req->isSwap()) {
470                    assert(res);
471                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
472                }
473            }
474
475            if (res && !req->isSwap()) {
476                *res = req->getExtraData();
477            }
478        }
479
480        //If there's a fault or we don't need to access a second cache line,
481        //stop now.
482        if (fault != NoFault || secondAddr <= addr)
483        {
484            if (req->isLocked() && fault == NoFault) {
485                assert(locked);
486                locked = false;
487            }
488            if (fault != NoFault && req->isPrefetch()) {
489                return NoFault;
490            } else {
491                return fault;
492            }
493        }
494
495        /*
496         * Set up for accessing the second cache line.
497         */
498
499        //Move the pointer we're reading into to the correct location.
500        data += size;
501        //Adjust the size to get the remaining bytes.
502        size = addr + fullSize - secondAddr;
503        //And access the right address.
504        addr = secondAddr;
505    }
506}
507
508
509void
510AtomicSimpleCPU::tick()
511{
512    DPRINTF(SimpleCPU, "Tick\n");
513
514    Tick latency = 0;
515
516    for (int i = 0; i < width || locked; ++i) {
517        numCycles++;
518        ppCycles->notify(1);
519
520        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
521            checkForInterrupts();
522            checkPcEventQueue();
523        }
524
525        // We must have just got suspended by a PC event
526        if (_status == Idle) {
527            tryCompleteDrain();
528            return;
529        }
530
531        Fault fault = NoFault;
532
533        TheISA::PCState pcState = thread->pcState();
534
535        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
536                           !curMacroStaticInst;
537        if (needToFetch) {
538            ifetch_req.taskId(taskId());
539            setupFetchRequest(&ifetch_req);
540            fault = thread->itb->translateAtomic(&ifetch_req, tc,
541                                                 BaseTLB::Execute);
542        }
543
544        if (fault == NoFault) {
545            Tick icache_latency = 0;
546            bool icache_access = false;
547            dcache_access = false; // assume no dcache access
548
549            if (needToFetch) {
550                // This is commented out because the decoder would act like
551                // a tiny cache otherwise. It wouldn't be flushed when needed
552                // like the I cache. It should be flushed, and when that works
553                // this code should be uncommented.
554                //Fetch more instruction memory if necessary
555                //if(decoder.needMoreBytes())
556                //{
557                    icache_access = true;
558                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
559                    ifetch_pkt.dataStatic(&inst);
560
561                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
562                        system->getPhysMem().access(&ifetch_pkt);
563                    else
564                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
565
566                    assert(!ifetch_pkt.isError());
567
568                    // ifetch_req is initialized to read the instruction directly
569                    // into the CPU object's inst field.
570                //}
571            }
572
573            preExecute();
574
575            if (curStaticInst) {
576                fault = curStaticInst->execute(this, traceData);
577
578                // keep an instruction count
579                if (fault == NoFault) {
580                    countInst();
581                    ppCommit->notify(std::make_pair(thread, curStaticInst));
582                }
583                else if (traceData && !DTRACE(ExecFaulting)) {
584                    delete traceData;
585                    traceData = NULL;
586                }
587
588                postExecute();
589            }
590
591            // @todo remove me after debugging with legion done
592            if (curStaticInst && (!curStaticInst->isMicroop() ||
593                        curStaticInst->isFirstMicroop()))
594                instCnt++;
595
596            Tick stall_ticks = 0;
597            if (simulate_inst_stalls && icache_access)
598                stall_ticks += icache_latency;
599
600            if (simulate_data_stalls && dcache_access)
601                stall_ticks += dcache_latency;
602
603            if (stall_ticks) {
604                // the atomic cpu does its accounting in ticks, so
605                // keep counting in ticks but round to the clock
606                // period
607                latency += divCeil(stall_ticks, clockPeriod()) *
608                    clockPeriod();
609            }
610
611        }
612        if(fault != NoFault || !stayAtPC)
613            advancePC(fault);
614    }
615
616    if (tryCompleteDrain())
617        return;
618
619    // instruction takes at least one cycle
620    if (latency < clockPeriod())
621        latency = clockPeriod();
622
623    if (_status != Idle)
624        schedule(tickEvent, curTick() + latency);
625}
626
627void
628AtomicSimpleCPU::regProbePoints()
629{
630    BaseCPU::regProbePoints();
631
632    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
633                                (getProbeManager(), "Commit");
634}
635
636void
637AtomicSimpleCPU::printAddr(Addr a)
638{
639    dcachePort.printAddr(a);
640}
641
642////////////////////////////////////////////////////////////////////////
643//
644//  AtomicSimpleCPU Simulation Object
645//
646AtomicSimpleCPU *
647AtomicSimpleCPUParams::create()
648{
649    numThreads = 1;
650    if (!FullSystem && workload.size() != 1)
651        panic("only one workload allowed");
652    return new AtomicSimpleCPU(this);
653}
654