atomic.cc revision 10381
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Steve Reinhardt 41 */ 42 43#include "arch/locked_mem.hh" 44#include "arch/mmapped_ipr.hh" 45#include "arch/utility.hh" 46#include "base/bigint.hh" 47#include "base/output.hh" 48#include "config/the_isa.hh" 49#include "cpu/simple/atomic.hh" 50#include "cpu/exetrace.hh" 51#include "debug/Drain.hh" 52#include "debug/ExecFaulting.hh" 53#include "debug/SimpleCPU.hh" 54#include "mem/packet.hh" 55#include "mem/packet_access.hh" 56#include "mem/physical.hh" 57#include "params/AtomicSimpleCPU.hh" 58#include "sim/faults.hh" 59#include "sim/system.hh" 60#include "sim/full_system.hh" 61 62using namespace std; 63using namespace TheISA; 64 65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 66 : Event(CPU_Tick_Pri), cpu(c) 67{ 68} 69 70 71void 72AtomicSimpleCPU::TickEvent::process() 73{ 74 cpu->tick(); 75} 76 77const char * 78AtomicSimpleCPU::TickEvent::description() const 79{ 80 return "AtomicSimpleCPU tick"; 81} 82 83void 84AtomicSimpleCPU::init() 85{ 86 BaseCPU::init(); 87 88 // Initialise the ThreadContext's memory proxies 89 tcBase()->initMemProxies(tcBase()); 90 91 if (FullSystem && !params()->switched_out) { 92 ThreadID size = threadContexts.size(); 93 for (ThreadID i = 0; i < size; ++i) { 94 ThreadContext *tc = threadContexts[i]; 95 // initialize CPU, including PC 96 TheISA::initCPU(tc, tc->contextId()); 97 } 98 } 99 100 // Atomic doesn't do MT right now, so contextId == threadId 101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 104} 105 106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) 107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), 108 simulate_data_stalls(p->simulate_data_stalls), 109 simulate_inst_stalls(p->simulate_inst_stalls), 110 drain_manager(NULL), 111 icachePort(name() + ".icache_port", this), 112 dcachePort(name() + ".dcache_port", this), 113 fastmem(p->fastmem) 114{ 115 _status = Idle; 116} 117 118 119AtomicSimpleCPU::~AtomicSimpleCPU() 120{ 121 if (tickEvent.scheduled()) { 122 deschedule(tickEvent); 123 } 124} 125 126unsigned int 127AtomicSimpleCPU::drain(DrainManager *dm) 128{ 129 assert(!drain_manager); 130 if (switchedOut()) 131 return 0; 132 133 if (!isDrained()) { 134 DPRINTF(Drain, "Requesting drain: %s\n", pcState()); 135 drain_manager = dm; 136 return 1; 137 } else { 138 if (tickEvent.scheduled()) 139 deschedule(tickEvent); 140 141 DPRINTF(Drain, "Not executing microcode, no need to drain.\n"); 142 return 0; 143 } 144} 145 146void 147AtomicSimpleCPU::drainResume() 148{ 149 assert(!tickEvent.scheduled()); 150 assert(!drain_manager); 151 if (switchedOut()) 152 return; 153 154 DPRINTF(SimpleCPU, "Resume\n"); 155 verifyMemoryMode(); 156 157 assert(!threadContexts.empty()); 158 if (threadContexts.size() > 1) 159 fatal("The atomic CPU only supports one thread.\n"); 160 161 if (thread->status() == ThreadContext::Active) { 162 schedule(tickEvent, nextCycle()); 163 _status = BaseSimpleCPU::Running; 164 notIdleFraction = 1; 165 } else { 166 _status = BaseSimpleCPU::Idle; 167 notIdleFraction = 0; 168 } 169 170 system->totalNumInsts = 0; 171} 172 173bool 174AtomicSimpleCPU::tryCompleteDrain() 175{ 176 if (!drain_manager) 177 return false; 178 179 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState()); 180 if (!isDrained()) 181 return false; 182 183 DPRINTF(Drain, "CPU done draining, processing drain event\n"); 184 drain_manager->signalDrainDone(); 185 drain_manager = NULL; 186 187 return true; 188} 189 190 191void 192AtomicSimpleCPU::switchOut() 193{ 194 BaseSimpleCPU::switchOut(); 195 196 assert(!tickEvent.scheduled()); 197 assert(_status == BaseSimpleCPU::Running || _status == Idle); 198 assert(isDrained()); 199} 200 201 202void 203AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 204{ 205 BaseSimpleCPU::takeOverFrom(oldCPU); 206 207 // The tick event should have been descheduled by drain() 208 assert(!tickEvent.scheduled()); 209 210 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 211 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 212 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 213} 214 215void 216AtomicSimpleCPU::verifyMemoryMode() const 217{ 218 if (!system->isAtomicMode()) { 219 fatal("The atomic CPU requires the memory system to be in " 220 "'atomic' mode.\n"); 221 } 222} 223 224void 225AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay) 226{ 227 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay); 228 229 assert(thread_num == 0); 230 assert(thread); 231 232 assert(_status == Idle); 233 assert(!tickEvent.scheduled()); 234 235 notIdleFraction = 1; 236 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 237 238 //Make sure ticks are still on multiples of cycles 239 schedule(tickEvent, clockEdge(delay)); 240 _status = BaseSimpleCPU::Running; 241} 242 243 244void 245AtomicSimpleCPU::suspendContext(ThreadID thread_num) 246{ 247 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 248 249 assert(thread_num == 0); 250 assert(thread); 251 252 if (_status == Idle) 253 return; 254 255 assert(_status == BaseSimpleCPU::Running); 256 257 // tick event may not be scheduled if this gets called from inside 258 // an instruction's execution, e.g. "quiesce" 259 if (tickEvent.scheduled()) 260 deschedule(tickEvent); 261 262 notIdleFraction = 0; 263 _status = Idle; 264} 265 266 267Tick 268AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt) 269{ 270 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 271 pkt->cmdString()); 272 273 // if snoop invalidates, release any associated locks 274 if (pkt->isInvalidate()) { 275 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 276 pkt->getAddr()); 277 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 278 } 279 280 return 0; 281} 282 283void 284AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt) 285{ 286 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 287 pkt->cmdString()); 288 289 // if snoop invalidates, release any associated locks 290 if (pkt->isInvalidate()) { 291 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 292 pkt->getAddr()); 293 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 294 } 295} 296 297Fault 298AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, 299 unsigned size, unsigned flags) 300{ 301 // use the CPU's statically allocated read request and packet objects 302 Request *req = &data_read_req; 303 304 if (traceData) { 305 traceData->setAddr(addr); 306 } 307 308 //The size of the data we're trying to read. 309 int fullSize = size; 310 311 //The address of the second part of this access if it needs to be split 312 //across a cache line boundary. 313 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 314 315 if (secondAddr > addr) 316 size = secondAddr - addr; 317 318 dcache_latency = 0; 319 320 req->taskId(taskId()); 321 while (1) { 322 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 323 324 // translate to physical address 325 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read); 326 327 // Now do the access. 328 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { 329 Packet pkt(req, MemCmd::ReadReq); 330 pkt.refineCommand(); 331 pkt.dataStatic(data); 332 333 if (req->isMmappedIpr()) 334 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 335 else { 336 if (fastmem && system->isMemAddr(pkt.getAddr())) 337 system->getPhysMem().access(&pkt); 338 else 339 dcache_latency += dcachePort.sendAtomic(&pkt); 340 } 341 dcache_access = true; 342 343 assert(!pkt.isError()); 344 345 if (req->isLLSC()) { 346 TheISA::handleLockedRead(thread, req); 347 } 348 } 349 350 //If there's a fault, return it 351 if (fault != NoFault) { 352 if (req->isPrefetch()) { 353 return NoFault; 354 } else { 355 return fault; 356 } 357 } 358 359 //If we don't need to access a second cache line, stop now. 360 if (secondAddr <= addr) 361 { 362 if (req->isLocked() && fault == NoFault) { 363 assert(!locked); 364 locked = true; 365 } 366 return fault; 367 } 368 369 /* 370 * Set up for accessing the second cache line. 371 */ 372 373 //Move the pointer we're reading into to the correct location. 374 data += size; 375 //Adjust the size to get the remaining bytes. 376 size = addr + fullSize - secondAddr; 377 //And access the right address. 378 addr = secondAddr; 379 } 380} 381 382 383Fault 384AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, 385 Addr addr, unsigned flags, uint64_t *res) 386{ 387 388 static uint8_t zero_array[64] = {}; 389 390 if (data == NULL) { 391 assert(size <= 64); 392 assert(flags & Request::CACHE_BLOCK_ZERO); 393 // This must be a cache block cleaning request 394 data = zero_array; 395 } 396 397 // use the CPU's statically allocated write request and packet objects 398 Request *req = &data_write_req; 399 400 if (traceData) { 401 traceData->setAddr(addr); 402 } 403 404 //The size of the data we're trying to read. 405 int fullSize = size; 406 407 //The address of the second part of this access if it needs to be split 408 //across a cache line boundary. 409 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 410 411 if(secondAddr > addr) 412 size = secondAddr - addr; 413 414 dcache_latency = 0; 415 416 req->taskId(taskId()); 417 while(1) { 418 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 419 420 // translate to physical address 421 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write); 422 423 // Now do the access. 424 if (fault == NoFault) { 425 MemCmd cmd = MemCmd::WriteReq; // default 426 bool do_access = true; // flag to suppress cache access 427 428 if (req->isLLSC()) { 429 cmd = MemCmd::StoreCondReq; 430 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask); 431 } else if (req->isSwap()) { 432 cmd = MemCmd::SwapReq; 433 if (req->isCondSwap()) { 434 assert(res); 435 req->setExtraData(*res); 436 } 437 } 438 439 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { 440 Packet pkt = Packet(req, cmd); 441 pkt.dataStatic(data); 442 443 if (req->isMmappedIpr()) { 444 dcache_latency += 445 TheISA::handleIprWrite(thread->getTC(), &pkt); 446 } else { 447 if (fastmem && system->isMemAddr(pkt.getAddr())) 448 system->getPhysMem().access(&pkt); 449 else 450 dcache_latency += dcachePort.sendAtomic(&pkt); 451 } 452 dcache_access = true; 453 assert(!pkt.isError()); 454 455 if (req->isSwap()) { 456 assert(res); 457 memcpy(res, pkt.getPtr<uint8_t>(), fullSize); 458 } 459 } 460 461 if (res && !req->isSwap()) { 462 *res = req->getExtraData(); 463 } 464 } 465 466 //If there's a fault or we don't need to access a second cache line, 467 //stop now. 468 if (fault != NoFault || secondAddr <= addr) 469 { 470 if (req->isLocked() && fault == NoFault) { 471 assert(locked); 472 locked = false; 473 } 474 if (fault != NoFault && req->isPrefetch()) { 475 return NoFault; 476 } else { 477 return fault; 478 } 479 } 480 481 /* 482 * Set up for accessing the second cache line. 483 */ 484 485 //Move the pointer we're reading into to the correct location. 486 data += size; 487 //Adjust the size to get the remaining bytes. 488 size = addr + fullSize - secondAddr; 489 //And access the right address. 490 addr = secondAddr; 491 } 492} 493 494 495void 496AtomicSimpleCPU::tick() 497{ 498 DPRINTF(SimpleCPU, "Tick\n"); 499 500 Tick latency = 0; 501 502 for (int i = 0; i < width || locked; ++i) { 503 numCycles++; 504 505 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 506 checkForInterrupts(); 507 508 checkPcEventQueue(); 509 // We must have just got suspended by a PC event 510 if (_status == Idle) { 511 tryCompleteDrain(); 512 return; 513 } 514 515 Fault fault = NoFault; 516 517 TheISA::PCState pcState = thread->pcState(); 518 519 bool needToFetch = !isRomMicroPC(pcState.microPC()) && 520 !curMacroStaticInst; 521 if (needToFetch) { 522 ifetch_req.taskId(taskId()); 523 setupFetchRequest(&ifetch_req); 524 fault = thread->itb->translateAtomic(&ifetch_req, tc, 525 BaseTLB::Execute); 526 } 527 528 if (fault == NoFault) { 529 Tick icache_latency = 0; 530 bool icache_access = false; 531 dcache_access = false; // assume no dcache access 532 533 if (needToFetch) { 534 // This is commented out because the decoder would act like 535 // a tiny cache otherwise. It wouldn't be flushed when needed 536 // like the I cache. It should be flushed, and when that works 537 // this code should be uncommented. 538 //Fetch more instruction memory if necessary 539 //if(decoder.needMoreBytes()) 540 //{ 541 icache_access = true; 542 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq); 543 ifetch_pkt.dataStatic(&inst); 544 545 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr())) 546 system->getPhysMem().access(&ifetch_pkt); 547 else 548 icache_latency = icachePort.sendAtomic(&ifetch_pkt); 549 550 assert(!ifetch_pkt.isError()); 551 552 // ifetch_req is initialized to read the instruction directly 553 // into the CPU object's inst field. 554 //} 555 } 556 557 preExecute(); 558 559 if (curStaticInst) { 560 fault = curStaticInst->execute(this, traceData); 561 562 // keep an instruction count 563 if (fault == NoFault) { 564 countInst(); 565 if (!curStaticInst->isMicroop() || 566 curStaticInst->isLastMicroop()) { 567 ppCommit->notify(std::make_pair(thread, curStaticInst)); 568 } 569 } 570 else if (traceData && !DTRACE(ExecFaulting)) { 571 delete traceData; 572 traceData = NULL; 573 } 574 575 postExecute(); 576 } 577 578 // @todo remove me after debugging with legion done 579 if (curStaticInst && (!curStaticInst->isMicroop() || 580 curStaticInst->isFirstMicroop())) 581 instCnt++; 582 583 Tick stall_ticks = 0; 584 if (simulate_inst_stalls && icache_access) 585 stall_ticks += icache_latency; 586 587 if (simulate_data_stalls && dcache_access) 588 stall_ticks += dcache_latency; 589 590 if (stall_ticks) { 591 // the atomic cpu does its accounting in ticks, so 592 // keep counting in ticks but round to the clock 593 // period 594 latency += divCeil(stall_ticks, clockPeriod()) * 595 clockPeriod(); 596 } 597 598 } 599 if(fault != NoFault || !stayAtPC) 600 advancePC(fault); 601 } 602 603 if (tryCompleteDrain()) 604 return; 605 606 // instruction takes at least one cycle 607 if (latency < clockPeriod()) 608 latency = clockPeriod(); 609 610 if (_status != Idle) 611 schedule(tickEvent, curTick() + latency); 612} 613 614void 615AtomicSimpleCPU::regProbePoints() 616{ 617 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>> 618 (getProbeManager(), "Commit"); 619} 620 621void 622AtomicSimpleCPU::printAddr(Addr a) 623{ 624 dcachePort.printAddr(a); 625} 626 627//////////////////////////////////////////////////////////////////////// 628// 629// AtomicSimpleCPU Simulation Object 630// 631AtomicSimpleCPU * 632AtomicSimpleCPUParams::create() 633{ 634 numThreads = 1; 635 if (!FullSystem && workload.size() != 1) 636 panic("only one workload allowed"); 637 return new AtomicSimpleCPU(this); 638} 639