atomic.cc revision 10342
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Steve Reinhardt 41 */ 42 43#include "arch/locked_mem.hh" 44#include "arch/mmapped_ipr.hh" 45#include "arch/utility.hh" 46#include "base/bigint.hh" 47#include "base/output.hh" 48#include "config/the_isa.hh" 49#include "cpu/simple/atomic.hh" 50#include "cpu/exetrace.hh" 51#include "debug/Drain.hh" 52#include "debug/ExecFaulting.hh" 53#include "debug/SimpleCPU.hh" 54#include "mem/packet.hh" 55#include "mem/packet_access.hh" 56#include "mem/physical.hh" 57#include "params/AtomicSimpleCPU.hh" 58#include "sim/faults.hh" 59#include "sim/system.hh" 60#include "sim/full_system.hh" 61 62using namespace std; 63using namespace TheISA; 64 65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 66 : Event(CPU_Tick_Pri), cpu(c) 67{ 68} 69 70 71void 72AtomicSimpleCPU::TickEvent::process() 73{ 74 cpu->tick(); 75} 76 77const char * 78AtomicSimpleCPU::TickEvent::description() const 79{ 80 return "AtomicSimpleCPU tick"; 81} 82 83void 84AtomicSimpleCPU::init() 85{ 86 BaseCPU::init(); 87 88 // Initialise the ThreadContext's memory proxies 89 tcBase()->initMemProxies(tcBase()); 90 91 if (FullSystem && !params()->switched_out) { 92 ThreadID size = threadContexts.size(); 93 for (ThreadID i = 0; i < size; ++i) { 94 ThreadContext *tc = threadContexts[i]; 95 // initialize CPU, including PC 96 TheISA::initCPU(tc, tc->contextId()); 97 } 98 } 99 100 // Atomic doesn't do MT right now, so contextId == threadId 101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 104} 105 106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) 107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), 108 simulate_data_stalls(p->simulate_data_stalls), 109 simulate_inst_stalls(p->simulate_inst_stalls), 110 drain_manager(NULL), 111 icachePort(name() + ".icache_port", this), 112 dcachePort(name() + ".dcache_port", this), 113 fastmem(p->fastmem), 114 simpoint(p->simpoint_profile), 115 intervalSize(p->simpoint_interval), 116 intervalCount(0), 117 intervalDrift(0), 118 simpointStream(NULL), 119 currentBBV(0, 0), 120 currentBBVInstCount(0) 121{ 122 _status = Idle; 123 124 if (simpoint) { 125 simpointStream = simout.create(p->simpoint_profile_file, false); 126 } 127} 128 129 130AtomicSimpleCPU::~AtomicSimpleCPU() 131{ 132 if (tickEvent.scheduled()) { 133 deschedule(tickEvent); 134 } 135 if (simpointStream) { 136 simout.close(simpointStream); 137 } 138} 139 140unsigned int 141AtomicSimpleCPU::drain(DrainManager *dm) 142{ 143 assert(!drain_manager); 144 if (switchedOut()) 145 return 0; 146 147 if (!isDrained()) { 148 DPRINTF(Drain, "Requesting drain: %s\n", pcState()); 149 drain_manager = dm; 150 return 1; 151 } else { 152 if (tickEvent.scheduled()) 153 deschedule(tickEvent); 154 155 DPRINTF(Drain, "Not executing microcode, no need to drain.\n"); 156 return 0; 157 } 158} 159 160void 161AtomicSimpleCPU::drainResume() 162{ 163 assert(!tickEvent.scheduled()); 164 assert(!drain_manager); 165 if (switchedOut()) 166 return; 167 168 DPRINTF(SimpleCPU, "Resume\n"); 169 verifyMemoryMode(); 170 171 assert(!threadContexts.empty()); 172 if (threadContexts.size() > 1) 173 fatal("The atomic CPU only supports one thread.\n"); 174 175 if (thread->status() == ThreadContext::Active) { 176 schedule(tickEvent, nextCycle()); 177 _status = BaseSimpleCPU::Running; 178 notIdleFraction = 1; 179 } else { 180 _status = BaseSimpleCPU::Idle; 181 notIdleFraction = 0; 182 } 183 184 system->totalNumInsts = 0; 185} 186 187bool 188AtomicSimpleCPU::tryCompleteDrain() 189{ 190 if (!drain_manager) 191 return false; 192 193 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState()); 194 if (!isDrained()) 195 return false; 196 197 DPRINTF(Drain, "CPU done draining, processing drain event\n"); 198 drain_manager->signalDrainDone(); 199 drain_manager = NULL; 200 201 return true; 202} 203 204 205void 206AtomicSimpleCPU::switchOut() 207{ 208 BaseSimpleCPU::switchOut(); 209 210 assert(!tickEvent.scheduled()); 211 assert(_status == BaseSimpleCPU::Running || _status == Idle); 212 assert(isDrained()); 213} 214 215 216void 217AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 218{ 219 BaseSimpleCPU::takeOverFrom(oldCPU); 220 221 // The tick event should have been descheduled by drain() 222 assert(!tickEvent.scheduled()); 223 224 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 225 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 226 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 227} 228 229void 230AtomicSimpleCPU::verifyMemoryMode() const 231{ 232 if (!system->isAtomicMode()) { 233 fatal("The atomic CPU requires the memory system to be in " 234 "'atomic' mode.\n"); 235 } 236} 237 238void 239AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay) 240{ 241 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay); 242 243 assert(thread_num == 0); 244 assert(thread); 245 246 assert(_status == Idle); 247 assert(!tickEvent.scheduled()); 248 249 notIdleFraction = 1; 250 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 251 252 //Make sure ticks are still on multiples of cycles 253 schedule(tickEvent, clockEdge(delay)); 254 _status = BaseSimpleCPU::Running; 255} 256 257 258void 259AtomicSimpleCPU::suspendContext(ThreadID thread_num) 260{ 261 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 262 263 assert(thread_num == 0); 264 assert(thread); 265 266 if (_status == Idle) 267 return; 268 269 assert(_status == BaseSimpleCPU::Running); 270 271 // tick event may not be scheduled if this gets called from inside 272 // an instruction's execution, e.g. "quiesce" 273 if (tickEvent.scheduled()) 274 deschedule(tickEvent); 275 276 notIdleFraction = 0; 277 _status = Idle; 278} 279 280 281Tick 282AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt) 283{ 284 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 285 pkt->cmdString()); 286 287 // if snoop invalidates, release any associated locks 288 if (pkt->isInvalidate()) { 289 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 290 pkt->getAddr()); 291 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 292 } 293 294 return 0; 295} 296 297void 298AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt) 299{ 300 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 301 pkt->cmdString()); 302 303 // if snoop invalidates, release any associated locks 304 if (pkt->isInvalidate()) { 305 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 306 pkt->getAddr()); 307 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 308 } 309} 310 311Fault 312AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, 313 unsigned size, unsigned flags) 314{ 315 // use the CPU's statically allocated read request and packet objects 316 Request *req = &data_read_req; 317 318 if (traceData) { 319 traceData->setAddr(addr); 320 } 321 322 //The size of the data we're trying to read. 323 int fullSize = size; 324 325 //The address of the second part of this access if it needs to be split 326 //across a cache line boundary. 327 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 328 329 if (secondAddr > addr) 330 size = secondAddr - addr; 331 332 dcache_latency = 0; 333 334 req->taskId(taskId()); 335 while (1) { 336 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 337 338 // translate to physical address 339 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read); 340 341 // Now do the access. 342 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { 343 Packet pkt(req, MemCmd::ReadReq); 344 pkt.refineCommand(); 345 pkt.dataStatic(data); 346 347 if (req->isMmappedIpr()) 348 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 349 else { 350 if (fastmem && system->isMemAddr(pkt.getAddr())) 351 system->getPhysMem().access(&pkt); 352 else 353 dcache_latency += dcachePort.sendAtomic(&pkt); 354 } 355 dcache_access = true; 356 357 assert(!pkt.isError()); 358 359 if (req->isLLSC()) { 360 TheISA::handleLockedRead(thread, req); 361 } 362 } 363 364 //If there's a fault, return it 365 if (fault != NoFault) { 366 if (req->isPrefetch()) { 367 return NoFault; 368 } else { 369 return fault; 370 } 371 } 372 373 //If we don't need to access a second cache line, stop now. 374 if (secondAddr <= addr) 375 { 376 if (req->isLocked() && fault == NoFault) { 377 assert(!locked); 378 locked = true; 379 } 380 return fault; 381 } 382 383 /* 384 * Set up for accessing the second cache line. 385 */ 386 387 //Move the pointer we're reading into to the correct location. 388 data += size; 389 //Adjust the size to get the remaining bytes. 390 size = addr + fullSize - secondAddr; 391 //And access the right address. 392 addr = secondAddr; 393 } 394} 395 396 397Fault 398AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, 399 Addr addr, unsigned flags, uint64_t *res) 400{ 401 402 static uint8_t zero_array[64] = {}; 403 404 if (data == NULL) { 405 assert(size <= 64); 406 assert(flags & Request::CACHE_BLOCK_ZERO); 407 // This must be a cache block cleaning request 408 data = zero_array; 409 } 410 411 // use the CPU's statically allocated write request and packet objects 412 Request *req = &data_write_req; 413 414 if (traceData) { 415 traceData->setAddr(addr); 416 } 417 418 //The size of the data we're trying to read. 419 int fullSize = size; 420 421 //The address of the second part of this access if it needs to be split 422 //across a cache line boundary. 423 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 424 425 if(secondAddr > addr) 426 size = secondAddr - addr; 427 428 dcache_latency = 0; 429 430 req->taskId(taskId()); 431 while(1) { 432 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 433 434 // translate to physical address 435 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write); 436 437 // Now do the access. 438 if (fault == NoFault) { 439 MemCmd cmd = MemCmd::WriteReq; // default 440 bool do_access = true; // flag to suppress cache access 441 442 if (req->isLLSC()) { 443 cmd = MemCmd::StoreCondReq; 444 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask); 445 } else if (req->isSwap()) { 446 cmd = MemCmd::SwapReq; 447 if (req->isCondSwap()) { 448 assert(res); 449 req->setExtraData(*res); 450 } 451 } 452 453 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { 454 Packet pkt = Packet(req, cmd); 455 pkt.dataStatic(data); 456 457 if (req->isMmappedIpr()) { 458 dcache_latency += 459 TheISA::handleIprWrite(thread->getTC(), &pkt); 460 } else { 461 if (fastmem && system->isMemAddr(pkt.getAddr())) 462 system->getPhysMem().access(&pkt); 463 else 464 dcache_latency += dcachePort.sendAtomic(&pkt); 465 } 466 dcache_access = true; 467 assert(!pkt.isError()); 468 469 if (req->isSwap()) { 470 assert(res); 471 memcpy(res, pkt.getPtr<uint8_t>(), fullSize); 472 } 473 } 474 475 if (res && !req->isSwap()) { 476 *res = req->getExtraData(); 477 } 478 } 479 480 //If there's a fault or we don't need to access a second cache line, 481 //stop now. 482 if (fault != NoFault || secondAddr <= addr) 483 { 484 if (req->isLocked() && fault == NoFault) { 485 assert(locked); 486 locked = false; 487 } 488 if (fault != NoFault && req->isPrefetch()) { 489 return NoFault; 490 } else { 491 return fault; 492 } 493 } 494 495 /* 496 * Set up for accessing the second cache line. 497 */ 498 499 //Move the pointer we're reading into to the correct location. 500 data += size; 501 //Adjust the size to get the remaining bytes. 502 size = addr + fullSize - secondAddr; 503 //And access the right address. 504 addr = secondAddr; 505 } 506} 507 508 509void 510AtomicSimpleCPU::tick() 511{ 512 DPRINTF(SimpleCPU, "Tick\n"); 513 514 Tick latency = 0; 515 516 for (int i = 0; i < width || locked; ++i) { 517 numCycles++; 518 519 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 520 checkForInterrupts(); 521 522 checkPcEventQueue(); 523 // We must have just got suspended by a PC event 524 if (_status == Idle) { 525 tryCompleteDrain(); 526 return; 527 } 528 529 Fault fault = NoFault; 530 531 TheISA::PCState pcState = thread->pcState(); 532 533 bool needToFetch = !isRomMicroPC(pcState.microPC()) && 534 !curMacroStaticInst; 535 if (needToFetch) { 536 ifetch_req.taskId(taskId()); 537 setupFetchRequest(&ifetch_req); 538 fault = thread->itb->translateAtomic(&ifetch_req, tc, 539 BaseTLB::Execute); 540 } 541 542 if (fault == NoFault) { 543 Tick icache_latency = 0; 544 bool icache_access = false; 545 dcache_access = false; // assume no dcache access 546 547 if (needToFetch) { 548 // This is commented out because the decoder would act like 549 // a tiny cache otherwise. It wouldn't be flushed when needed 550 // like the I cache. It should be flushed, and when that works 551 // this code should be uncommented. 552 //Fetch more instruction memory if necessary 553 //if(decoder.needMoreBytes()) 554 //{ 555 icache_access = true; 556 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq); 557 ifetch_pkt.dataStatic(&inst); 558 559 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr())) 560 system->getPhysMem().access(&ifetch_pkt); 561 else 562 icache_latency = icachePort.sendAtomic(&ifetch_pkt); 563 564 assert(!ifetch_pkt.isError()); 565 566 // ifetch_req is initialized to read the instruction directly 567 // into the CPU object's inst field. 568 //} 569 } 570 571 preExecute(); 572 573 if (curStaticInst) { 574 fault = curStaticInst->execute(this, traceData); 575 576 // keep an instruction count 577 if (fault == NoFault) 578 countInst(); 579 else if (traceData && !DTRACE(ExecFaulting)) { 580 delete traceData; 581 traceData = NULL; 582 } 583 584 postExecute(); 585 } 586 587 // @todo remove me after debugging with legion done 588 if (curStaticInst && (!curStaticInst->isMicroop() || 589 curStaticInst->isFirstMicroop())) 590 instCnt++; 591 592 // profile for SimPoints if enabled and macro inst is finished 593 if (simpoint && curStaticInst && (fault == NoFault) && 594 (!curStaticInst->isMicroop() || 595 curStaticInst->isLastMicroop())) { 596 profileSimPoint(); 597 } 598 599 Tick stall_ticks = 0; 600 if (simulate_inst_stalls && icache_access) 601 stall_ticks += icache_latency; 602 603 if (simulate_data_stalls && dcache_access) 604 stall_ticks += dcache_latency; 605 606 if (stall_ticks) { 607 // the atomic cpu does its accounting in ticks, so 608 // keep counting in ticks but round to the clock 609 // period 610 latency += divCeil(stall_ticks, clockPeriod()) * 611 clockPeriod(); 612 } 613 614 } 615 if(fault != NoFault || !stayAtPC) 616 advancePC(fault); 617 } 618 619 if (tryCompleteDrain()) 620 return; 621 622 // instruction takes at least one cycle 623 if (latency < clockPeriod()) 624 latency = clockPeriod(); 625 626 if (_status != Idle) 627 schedule(tickEvent, curTick() + latency); 628} 629 630 631void 632AtomicSimpleCPU::printAddr(Addr a) 633{ 634 dcachePort.printAddr(a); 635} 636 637void 638AtomicSimpleCPU::profileSimPoint() 639{ 640 if (!currentBBVInstCount) 641 currentBBV.first = thread->pcState().instAddr(); 642 643 ++intervalCount; 644 ++currentBBVInstCount; 645 646 // If inst is control inst, assume end of basic block. 647 if (curStaticInst->isControl()) { 648 currentBBV.second = thread->pcState().instAddr(); 649 650 auto map_itr = bbMap.find(currentBBV); 651 if (map_itr == bbMap.end()){ 652 // If a new (previously unseen) basic block is found, 653 // add a new unique id, record num of insts and insert into bbMap. 654 BBInfo info; 655 info.id = bbMap.size() + 1; 656 info.insts = currentBBVInstCount; 657 info.count = currentBBVInstCount; 658 bbMap.insert(std::make_pair(currentBBV, info)); 659 } else { 660 // If basic block is seen before, just increment the count by the 661 // number of insts in basic block. 662 BBInfo& info = map_itr->second; 663 info.count += currentBBVInstCount; 664 } 665 currentBBVInstCount = 0; 666 667 // Reached end of interval if the sum of the current inst count 668 // (intervalCount) and the excessive inst count from the previous 669 // interval (intervalDrift) is greater than/equal to the interval size. 670 if (intervalCount + intervalDrift >= intervalSize) { 671 // summarize interval and display BBV info 672 std::vector<pair<uint64_t, uint64_t> > counts; 673 for (auto map_itr = bbMap.begin(); map_itr != bbMap.end(); 674 ++map_itr) { 675 BBInfo& info = map_itr->second; 676 if (info.count != 0) { 677 counts.push_back(std::make_pair(info.id, info.count)); 678 info.count = 0; 679 } 680 } 681 std::sort(counts.begin(), counts.end()); 682 683 // Print output BBV info 684 *simpointStream << "T"; 685 for (auto cnt_itr = counts.begin(); cnt_itr != counts.end(); 686 ++cnt_itr) { 687 *simpointStream << ":" << cnt_itr->first 688 << ":" << cnt_itr->second << " "; 689 } 690 *simpointStream << "\n"; 691 692 intervalDrift = (intervalCount + intervalDrift) - intervalSize; 693 intervalCount = 0; 694 } 695 } 696} 697 698//////////////////////////////////////////////////////////////////////// 699// 700// AtomicSimpleCPU Simulation Object 701// 702AtomicSimpleCPU * 703AtomicSimpleCPUParams::create() 704{ 705 numThreads = 1; 706 if (!FullSystem && workload.size() != 1) 707 panic("only one workload allowed"); 708 return new AtomicSimpleCPU(this); 709} 710