atomic.cc revision 7823
11060SN/A/*
22702SN/A * Copyright (c) 2002-2005 The Regents of The University of Michigan
31060SN/A * All rights reserved.
41060SN/A *
51060SN/A * Redistribution and use in source and binary forms, with or without
61060SN/A * modification, are permitted provided that the following conditions are
71060SN/A * met: redistributions of source code must retain the above copyright
81060SN/A * notice, this list of conditions and the following disclaimer;
91060SN/A * redistributions in binary form must reproduce the above copyright
101060SN/A * notice, this list of conditions and the following disclaimer in the
111060SN/A * documentation and/or other materials provided with the distribution;
121060SN/A * neither the name of the copyright holders nor the names of its
131060SN/A * contributors may be used to endorse or promote products derived from
141060SN/A * this software without specific prior written permission.
151060SN/A *
161060SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
171060SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
181060SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
191060SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
201060SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
211060SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
221060SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
231060SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
241060SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
251060SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
261060SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
272665SN/A *
282665SN/A * Authors: Steve Reinhardt
291060SN/A */
301060SN/A
311060SN/A#include "arch/locked_mem.hh"
322292SN/A#include "arch/mmaped_ipr.hh"
331060SN/A#include "arch/utility.hh"
341060SN/A#include "base/bigint.hh"
351060SN/A#include "config/the_isa.hh"
361060SN/A#include "cpu/exetrace.hh"
371061SN/A#include "cpu/simple/atomic.hh"
381060SN/A#include "mem/packet.hh"
392980Sgblack@eecs.umich.edu#include "mem/packet_access.hh"
401060SN/A#include "params/AtomicSimpleCPU.hh"
412669SN/A#include "sim/faults.hh"
421060SN/A#include "sim/system.hh"
431060SN/A
441060SN/Ausing namespace std;
451060SN/Ausing namespace TheISA;
461060SN/A
471060SN/AAtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
481060SN/A    : Event(CPU_Tick_Pri), cpu(c)
491060SN/A{
501060SN/A}
511060SN/A
522292SN/A
532292SN/Avoid
541060SN/AAtomicSimpleCPU::TickEvent::process()
552292SN/A{
561060SN/A    cpu->tick();
571060SN/A}
582292SN/A
592292SN/Aconst char *
602292SN/AAtomicSimpleCPU::TickEvent::description() const
611060SN/A{
621060SN/A    return "AtomicSimpleCPU tick";
631060SN/A}
641061SN/A
652980Sgblack@eecs.umich.eduPort *
661060SN/AAtomicSimpleCPU::getPort(const string &if_name, int idx)
672733SN/A{
682733SN/A    if (if_name == "dcache_port")
691060SN/A        return &dcachePort;
701464SN/A    else if (if_name == "icache_port")
711061SN/A        return &icachePort;
721464SN/A    else if (if_name == "physmem_port") {
732980Sgblack@eecs.umich.edu        hasPhysMemPort = true;
742980Sgblack@eecs.umich.edu        return &physmemPort;
751464SN/A    }
761464SN/A    else
771464SN/A        panic("No Such Port\n");
781464SN/A}
791464SN/A
801464SN/Avoid
812107SN/AAtomicSimpleCPU::init()
821464SN/A{
831464SN/A    BaseCPU::init();
842292SN/A#if FULL_SYSTEM
851464SN/A    ThreadID size = threadContexts.size();
861464SN/A    for (ThreadID i = 0; i < size; ++i) {
871464SN/A        ThreadContext *tc = threadContexts[i];
881464SN/A
891464SN/A        // initialize CPU, including PC
901464SN/A        TheISA::initCPU(tc, tc->contextId());
911464SN/A    }
922292SN/A#endif
932678SN/A    if (hasPhysMemPort) {
942669SN/A        bool snoop = false;
952669SN/A        AddrRangeList pmAddrList;
961060SN/A        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
971060SN/A        physMemAddr = *pmAddrList.begin();
981060SN/A    }
992702SN/A    // Atomic doesn't do MT right now, so contextId == threadId
1002702SN/A    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
1012731SN/A    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
1022731SN/A    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
1031464SN/A}
1042292SN/A
1052731SN/Abool
1062292SN/AAtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
1072292SN/A{
1082292SN/A    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
1091060SN/A    return true;
1101060SN/A}
1111464SN/A
1121060SN/ATick
1131060SN/AAtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
1141060SN/A{
1152698SN/A    //Snooping a coherence request, just return
1162292SN/A    return 0;
1171060SN/A}
1181060SN/A
1191060SN/Avoid
1202292SN/AAtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
1212292SN/A{
1222292SN/A    //No internal storage to update, just return
1232292SN/A    return;
1242292SN/A}
1252292SN/A
1262292SN/Avoid
1272292SN/AAtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
1282292SN/A{
1292292SN/A    if (status == RangeChange) {
1302292SN/A        if (!snoopRangeSent) {
1312292SN/A            snoopRangeSent = true;
1322292SN/A            sendStatusChange(Port::RangeChange);
1332292SN/A        }
1341060SN/A        return;
1351060SN/A    }
1361061SN/A
1371060SN/A    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
1381060SN/A}
1392292SN/A
1402678SN/Avoid
1412678SN/AAtomicSimpleCPU::CpuPort::recvRetry()
1422678SN/A{
1432678SN/A    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
1442678SN/A}
1452292SN/A
1462292SN/Avoid
1472292SN/AAtomicSimpleCPU::DcachePort::setPeer(Port *port)
1482292SN/A{
1492292SN/A    Port::setPeer(port);
1502292SN/A
1512348SN/A#if FULL_SYSTEM
1522348SN/A    // Update the ThreadContext's memory ports (Functional/Virtual
1531060SN/A    // Ports)
1542292SN/A    cpu->tcBase()->connectMemPorts(cpu->tcBase());
1552292SN/A#endif
1562292SN/A}
1572292SN/A
1582292SN/AAtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
1592292SN/A    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
1601060SN/A      simulate_data_stalls(p->simulate_data_stalls),
1611464SN/A      simulate_inst_stalls(p->simulate_inst_stalls),
1622292SN/A      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
1632292SN/A      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
1642292SN/A{
1652292SN/A    _status = Idle;
1662292SN/A
1672292SN/A    icachePort.snoopRangeSent = false;
1682292SN/A    dcachePort.snoopRangeSent = false;
1692292SN/A
1702292SN/A}
1712292SN/A
1722292SN/A
1732292SN/AAtomicSimpleCPU::~AtomicSimpleCPU()
1742292SN/A{
1752292SN/A    if (tickEvent.scheduled()) {
1762292SN/A        deschedule(tickEvent);
1772292SN/A    }
1781061SN/A}
1791060SN/A
1801060SN/Avoid
1811060SN/AAtomicSimpleCPU::serialize(ostream &os)
1821060SN/A{
1831060SN/A    SimObject::State so_state = SimObject::getState();
1841060SN/A    SERIALIZE_ENUM(so_state);
1852669SN/A    SERIALIZE_SCALAR(locked);
1861060SN/A    BaseSimpleCPU::serialize(os);
1872292SN/A    nameOut(os, csprintf("%s.tickEvent", name()));
1881060SN/A    tickEvent.serialize(os);
1891060SN/A}
1901060SN/A
1912090SN/Avoid
1921060SN/AAtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
1931060SN/A{
1942292SN/A    SimObject::State so_state;
1951060SN/A    UNSERIALIZE_ENUM(so_state);
1962090SN/A    UNSERIALIZE_SCALAR(locked);
1971060SN/A    BaseSimpleCPU::unserialize(cp, section);
1981060SN/A    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
1991060SN/A}
2001060SN/A
2011060SN/Avoid
2021060SN/AAtomicSimpleCPU::resume()
2031060SN/A{
2041060SN/A    if (_status == Idle || _status == SwitchedOut)
2051060SN/A        return;
2061060SN/A
2071060SN/A    DPRINTF(SimpleCPU, "Resume\n");
2081060SN/A    assert(system->getMemoryMode() == Enums::atomic);
2091060SN/A
2101060SN/A    changeState(SimObject::Running);
2111060SN/A    if (thread->status() == ThreadContext::Active) {
2121060SN/A        if (!tickEvent.scheduled())
2132669SN/A            schedule(tickEvent, nextCycle());
2141060SN/A    }
2151060SN/A}
2161061SN/A
2171060SN/Avoid
2181060SN/AAtomicSimpleCPU::switchOut()
2191060SN/A{
2202702SN/A    assert(_status == Running || _status == Idle);
2211060SN/A    _status = SwitchedOut;
2221060SN/A
2231060SN/A    tickEvent.squash();
2241060SN/A}
2251060SN/A
2261061SN/A
2272132SN/Avoid
2281060SN/AAtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
2291060SN/A{
2302702SN/A    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
2312669SN/A
2321060SN/A    assert(!tickEvent.scheduled());
2331060SN/A
2341060SN/A    // if any of this CPU's ThreadContexts are active, mark the CPU as
2351060SN/A    // running and schedule its tick event.
2361060SN/A    ThreadID size = threadContexts.size();
2371061SN/A    for (ThreadID i = 0; i < size; ++i) {
2382132SN/A        ThreadContext *tc = threadContexts[i];
2391060SN/A        if (tc->status() == ThreadContext::Active && _status != Running) {
2401060SN/A            _status = Running;
2412702SN/A            schedule(tickEvent, nextCycle());
2422669SN/A            break;
2431060SN/A        }
2441060SN/A    }
2451061SN/A    if (_status != Running) {
2461060SN/A        _status = Idle;
2471060SN/A    }
2481060SN/A    assert(threadContexts.size() == 1);
2491060SN/A    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
2502980Sgblack@eecs.umich.edu    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
2511060SN/A    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
2521060SN/A}
2531060SN/A
2541061SN/A
2551060SN/Avoid
2561060SN/AAtomicSimpleCPU::activateContext(int thread_num, int delay)
2571060SN/A{
2581060SN/A    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
2591060SN/A
2601060SN/A    assert(thread_num == 0);
2611060SN/A    assert(thread);
2621060SN/A
2631060SN/A    assert(_status == Idle);
2641060SN/A    assert(!tickEvent.scheduled());
2651464SN/A
2662292SN/A    notIdleFraction++;
2672292SN/A    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
2682292SN/A
2692292SN/A    //Make sure ticks are still on multiples of cycles
2702731SN/A    schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
2712292SN/A    _status = Running;
2722292SN/A}
2732292SN/A
2742292SN/A
2752292SN/Avoid
2762292SN/AAtomicSimpleCPU::suspendContext(int thread_num)
2772292SN/A{
2782292SN/A    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
2792292SN/A
2802731SN/A    assert(thread_num == 0);
2812292SN/A    assert(thread);
2822292SN/A
2832292SN/A    if (_status == Idle)
2841464SN/A        return;
2851464SN/A
2861464SN/A    assert(_status == Running);
2871464SN/A
2881464SN/A    // tick event may not be scheduled if this gets called from inside
2891464SN/A    // an instruction's execution, e.g. "quiesce"
2901464SN/A    if (tickEvent.scheduled())
2912292SN/A        deschedule(tickEvent);
2921464SN/A
2931464SN/A    notIdleFraction--;
2941464SN/A    _status = Idle;
2951464SN/A}
2961464SN/A
2971464SN/A
298Fault
299AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
300                           unsigned size, unsigned flags)
301{
302    // use the CPU's statically allocated read request and packet objects
303    Request *req = &data_read_req;
304
305    if (traceData) {
306        traceData->setAddr(addr);
307    }
308
309    //The block size of our peer.
310    unsigned blockSize = dcachePort.peerBlockSize();
311    //The size of the data we're trying to read.
312    int fullSize = size;
313
314    //The address of the second part of this access if it needs to be split
315    //across a cache line boundary.
316    Addr secondAddr = roundDown(addr + size - 1, blockSize);
317
318    if (secondAddr > addr)
319        size = secondAddr - addr;
320
321    dcache_latency = 0;
322
323    while (1) {
324        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
325
326        // translate to physical address
327        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
328
329        // Now do the access.
330        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
331            Packet pkt = Packet(req,
332                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
333                    Packet::Broadcast);
334            pkt.dataStatic(data);
335
336            if (req->isMmapedIpr())
337                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
338            else {
339                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
340                    dcache_latency += physmemPort.sendAtomic(&pkt);
341                else
342                    dcache_latency += dcachePort.sendAtomic(&pkt);
343            }
344            dcache_access = true;
345
346            assert(!pkt.isError());
347
348            if (req->isLLSC()) {
349                TheISA::handleLockedRead(thread, req);
350            }
351        }
352
353        //If there's a fault, return it
354        if (fault != NoFault) {
355            if (req->isPrefetch()) {
356                return NoFault;
357            } else {
358                return fault;
359            }
360        }
361
362        //If we don't need to access a second cache line, stop now.
363        if (secondAddr <= addr)
364        {
365            if (req->isLocked() && fault == NoFault) {
366                assert(!locked);
367                locked = true;
368            }
369            return fault;
370        }
371
372        /*
373         * Set up for accessing the second cache line.
374         */
375
376        //Move the pointer we're reading into to the correct location.
377        data += size;
378        //Adjust the size to get the remaining bytes.
379        size = addr + fullSize - secondAddr;
380        //And access the right address.
381        addr = secondAddr;
382    }
383}
384
385
386template <class T>
387Fault
388AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
389{
390    uint8_t *dataPtr = (uint8_t *)&data;
391    memset(dataPtr, 0, sizeof(data));
392    Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
393    if (fault == NoFault) {
394        data = gtoh(data);
395        if (traceData)
396            traceData->setData(data);
397    }
398    return fault;
399}
400
401#ifndef DOXYGEN_SHOULD_SKIP_THIS
402
403template
404Fault
405AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
406
407template
408Fault
409AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
410
411template
412Fault
413AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
414
415template
416Fault
417AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
418
419template
420Fault
421AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
422
423template
424Fault
425AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
426
427#endif //DOXYGEN_SHOULD_SKIP_THIS
428
429template<>
430Fault
431AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
432{
433    return read(addr, *(uint64_t*)&data, flags);
434}
435
436template<>
437Fault
438AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
439{
440    return read(addr, *(uint32_t*)&data, flags);
441}
442
443
444template<>
445Fault
446AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
447{
448    return read(addr, (uint32_t&)data, flags);
449}
450
451
452Fault
453AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
454                            Addr addr, unsigned flags, uint64_t *res)
455{
456    // use the CPU's statically allocated write request and packet objects
457    Request *req = &data_write_req;
458
459    if (traceData) {
460        traceData->setAddr(addr);
461    }
462
463    //The block size of our peer.
464    unsigned blockSize = dcachePort.peerBlockSize();
465    //The size of the data we're trying to read.
466    int fullSize = size;
467
468    //The address of the second part of this access if it needs to be split
469    //across a cache line boundary.
470    Addr secondAddr = roundDown(addr + size - 1, blockSize);
471
472    if(secondAddr > addr)
473        size = secondAddr - addr;
474
475    dcache_latency = 0;
476
477    while(1) {
478        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
479
480        // translate to physical address
481        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
482
483        // Now do the access.
484        if (fault == NoFault) {
485            MemCmd cmd = MemCmd::WriteReq; // default
486            bool do_access = true;  // flag to suppress cache access
487
488            if (req->isLLSC()) {
489                cmd = MemCmd::StoreCondReq;
490                do_access = TheISA::handleLockedWrite(thread, req);
491            } else if (req->isSwap()) {
492                cmd = MemCmd::SwapReq;
493                if (req->isCondSwap()) {
494                    assert(res);
495                    req->setExtraData(*res);
496                }
497            }
498
499            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
500                Packet pkt = Packet(req, cmd, Packet::Broadcast);
501                pkt.dataStatic(data);
502
503                if (req->isMmapedIpr()) {
504                    dcache_latency +=
505                        TheISA::handleIprWrite(thread->getTC(), &pkt);
506                } else {
507                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
508                        dcache_latency += physmemPort.sendAtomic(&pkt);
509                    else
510                        dcache_latency += dcachePort.sendAtomic(&pkt);
511                }
512                dcache_access = true;
513                assert(!pkt.isError());
514
515                if (req->isSwap()) {
516                    assert(res);
517                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
518                }
519            }
520
521            if (res && !req->isSwap()) {
522                *res = req->getExtraData();
523            }
524        }
525
526        //If there's a fault or we don't need to access a second cache line,
527        //stop now.
528        if (fault != NoFault || secondAddr <= addr)
529        {
530            if (req->isLocked() && fault == NoFault) {
531                assert(locked);
532                locked = false;
533            }
534            if (fault != NoFault && req->isPrefetch()) {
535                return NoFault;
536            } else {
537                return fault;
538            }
539        }
540
541        /*
542         * Set up for accessing the second cache line.
543         */
544
545        //Move the pointer we're reading into to the correct location.
546        data += size;
547        //Adjust the size to get the remaining bytes.
548        size = addr + fullSize - secondAddr;
549        //And access the right address.
550        addr = secondAddr;
551    }
552}
553
554
555template <class T>
556Fault
557AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
558{
559    uint8_t *dataPtr = (uint8_t *)&data;
560    if (traceData)
561        traceData->setData(data);
562    data = htog(data);
563
564    Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
565    if (fault == NoFault && data_write_req.isSwap()) {
566        *res = gtoh((T)*res);
567    }
568    return fault;
569}
570
571
572#ifndef DOXYGEN_SHOULD_SKIP_THIS
573
574template
575Fault
576AtomicSimpleCPU::write(Twin32_t data, Addr addr,
577                       unsigned flags, uint64_t *res);
578
579template
580Fault
581AtomicSimpleCPU::write(Twin64_t data, Addr addr,
582                       unsigned flags, uint64_t *res);
583
584template
585Fault
586AtomicSimpleCPU::write(uint64_t data, Addr addr,
587                       unsigned flags, uint64_t *res);
588
589template
590Fault
591AtomicSimpleCPU::write(uint32_t data, Addr addr,
592                       unsigned flags, uint64_t *res);
593
594template
595Fault
596AtomicSimpleCPU::write(uint16_t data, Addr addr,
597                       unsigned flags, uint64_t *res);
598
599template
600Fault
601AtomicSimpleCPU::write(uint8_t data, Addr addr,
602                       unsigned flags, uint64_t *res);
603
604#endif //DOXYGEN_SHOULD_SKIP_THIS
605
606template<>
607Fault
608AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
609{
610    return write(*(uint64_t*)&data, addr, flags, res);
611}
612
613template<>
614Fault
615AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
616{
617    return write(*(uint32_t*)&data, addr, flags, res);
618}
619
620
621template<>
622Fault
623AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
624{
625    return write((uint32_t)data, addr, flags, res);
626}
627
628
629void
630AtomicSimpleCPU::tick()
631{
632    DPRINTF(SimpleCPU, "Tick\n");
633
634    Tick latency = 0;
635
636    for (int i = 0; i < width || locked; ++i) {
637        numCycles++;
638
639        if (!curStaticInst || !curStaticInst->isDelayedCommit())
640            checkForInterrupts();
641
642        checkPcEventQueue();
643
644        Fault fault = NoFault;
645
646        TheISA::PCState pcState = thread->pcState();
647
648        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
649                           !curMacroStaticInst;
650        if (needToFetch) {
651            setupFetchRequest(&ifetch_req);
652            fault = thread->itb->translateAtomic(&ifetch_req, tc,
653                                                 BaseTLB::Execute);
654        }
655
656        if (fault == NoFault) {
657            Tick icache_latency = 0;
658            bool icache_access = false;
659            dcache_access = false; // assume no dcache access
660
661            if (needToFetch) {
662                // This is commented out because the predecoder would act like
663                // a tiny cache otherwise. It wouldn't be flushed when needed
664                // like the I cache. It should be flushed, and when that works
665                // this code should be uncommented.
666                //Fetch more instruction memory if necessary
667                //if(predecoder.needMoreBytes())
668                //{
669                    icache_access = true;
670                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
671                                               Packet::Broadcast);
672                    ifetch_pkt.dataStatic(&inst);
673
674                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
675                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
676                    else
677                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
678
679                    assert(!ifetch_pkt.isError());
680
681                    // ifetch_req is initialized to read the instruction directly
682                    // into the CPU object's inst field.
683                //}
684            }
685
686            preExecute();
687
688            if (curStaticInst) {
689                fault = curStaticInst->execute(this, traceData);
690
691                // keep an instruction count
692                if (fault == NoFault)
693                    countInst();
694                else if (traceData && !DTRACE(ExecFaulting)) {
695                    delete traceData;
696                    traceData = NULL;
697                }
698
699                postExecute();
700            }
701
702            // @todo remove me after debugging with legion done
703            if (curStaticInst && (!curStaticInst->isMicroop() ||
704                        curStaticInst->isFirstMicroop()))
705                instCnt++;
706
707            Tick stall_ticks = 0;
708            if (simulate_inst_stalls && icache_access)
709                stall_ticks += icache_latency;
710
711            if (simulate_data_stalls && dcache_access)
712                stall_ticks += dcache_latency;
713
714            if (stall_ticks) {
715                Tick stall_cycles = stall_ticks / ticks(1);
716                Tick aligned_stall_ticks = ticks(stall_cycles);
717
718                if (aligned_stall_ticks < stall_ticks)
719                    aligned_stall_ticks += 1;
720
721                latency += aligned_stall_ticks;
722            }
723
724        }
725        if(fault != NoFault || !stayAtPC)
726            advancePC(fault);
727    }
728
729    // instruction takes at least one cycle
730    if (latency < ticks(1))
731        latency = ticks(1);
732
733    if (_status != Idle)
734        schedule(tickEvent, curTick() + latency);
735}
736
737
738void
739AtomicSimpleCPU::printAddr(Addr a)
740{
741    dcachePort.printAddr(a);
742}
743
744
745////////////////////////////////////////////////////////////////////////
746//
747//  AtomicSimpleCPU Simulation Object
748//
749AtomicSimpleCPU *
750AtomicSimpleCPUParams::create()
751{
752    numThreads = 1;
753#if !FULL_SYSTEM
754    if (workload.size() != 1)
755        panic("only one workload allowed");
756#endif
757    return new AtomicSimpleCPU(this);
758}
759