rename_impl.hh revision 8795:0909f8ed7aa0
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <list>
45
46#include "arch/isa_traits.hh"
47#include "arch/registers.hh"
48#include "config/the_isa.hh"
49#include "cpu/o3/rename.hh"
50#include "debug/Activity.hh"
51#include "debug/Rename.hh"
52#include "params/DerivO3CPU.hh"
53
54using namespace std;
55
56template <class Impl>
57DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, DerivO3CPUParams *params)
58    : cpu(_cpu),
59      iewToRenameDelay(params->iewToRenameDelay),
60      decodeToRenameDelay(params->decodeToRenameDelay),
61      commitToRenameDelay(params->commitToRenameDelay),
62      renameWidth(params->renameWidth),
63      commitWidth(params->commitWidth),
64      resumeSerialize(false),
65      resumeUnblocking(false),
66      numThreads(params->numThreads),
67      maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
68{
69    _status = Inactive;
70
71    for (ThreadID tid = 0; tid < numThreads; tid++) {
72        renameStatus[tid] = Idle;
73
74        freeEntries[tid].iqEntries = 0;
75        freeEntries[tid].lsqEntries = 0;
76        freeEntries[tid].robEntries = 0;
77
78        stalls[tid].iew = false;
79        stalls[tid].commit = false;
80        serializeInst[tid] = NULL;
81
82        instsInProgress[tid] = 0;
83
84        emptyROB[tid] = true;
85
86        serializeOnNextInst[tid] = false;
87    }
88
89    // @todo: Make into a parameter.
90    skidBufferMax = (2 * (iewToRenameDelay * params->decodeWidth)) + renameWidth;
91}
92
93template <class Impl>
94std::string
95DefaultRename<Impl>::name() const
96{
97    return cpu->name() + ".rename";
98}
99
100template <class Impl>
101void
102DefaultRename<Impl>::regStats()
103{
104    renameSquashCycles
105        .name(name() + ".SquashCycles")
106        .desc("Number of cycles rename is squashing")
107        .prereq(renameSquashCycles);
108    renameIdleCycles
109        .name(name() + ".IdleCycles")
110        .desc("Number of cycles rename is idle")
111        .prereq(renameIdleCycles);
112    renameBlockCycles
113        .name(name() + ".BlockCycles")
114        .desc("Number of cycles rename is blocking")
115        .prereq(renameBlockCycles);
116    renameSerializeStallCycles
117        .name(name() + ".serializeStallCycles")
118        .desc("count of cycles rename stalled for serializing inst")
119        .flags(Stats::total);
120    renameRunCycles
121        .name(name() + ".RunCycles")
122        .desc("Number of cycles rename is running")
123        .prereq(renameIdleCycles);
124    renameUnblockCycles
125        .name(name() + ".UnblockCycles")
126        .desc("Number of cycles rename is unblocking")
127        .prereq(renameUnblockCycles);
128    renameRenamedInsts
129        .name(name() + ".RenamedInsts")
130        .desc("Number of instructions processed by rename")
131        .prereq(renameRenamedInsts);
132    renameSquashedInsts
133        .name(name() + ".SquashedInsts")
134        .desc("Number of squashed instructions processed by rename")
135        .prereq(renameSquashedInsts);
136    renameROBFullEvents
137        .name(name() + ".ROBFullEvents")
138        .desc("Number of times rename has blocked due to ROB full")
139        .prereq(renameROBFullEvents);
140    renameIQFullEvents
141        .name(name() + ".IQFullEvents")
142        .desc("Number of times rename has blocked due to IQ full")
143        .prereq(renameIQFullEvents);
144    renameLSQFullEvents
145        .name(name() + ".LSQFullEvents")
146        .desc("Number of times rename has blocked due to LSQ full")
147        .prereq(renameLSQFullEvents);
148    renameFullRegistersEvents
149        .name(name() + ".FullRegisterEvents")
150        .desc("Number of times there has been no free registers")
151        .prereq(renameFullRegistersEvents);
152    renameRenamedOperands
153        .name(name() + ".RenamedOperands")
154        .desc("Number of destination operands rename has renamed")
155        .prereq(renameRenamedOperands);
156    renameRenameLookups
157        .name(name() + ".RenameLookups")
158        .desc("Number of register rename lookups that rename has made")
159        .prereq(renameRenameLookups);
160    renameCommittedMaps
161        .name(name() + ".CommittedMaps")
162        .desc("Number of HB maps that are committed")
163        .prereq(renameCommittedMaps);
164    renameUndoneMaps
165        .name(name() + ".UndoneMaps")
166        .desc("Number of HB maps that are undone due to squashing")
167        .prereq(renameUndoneMaps);
168    renamedSerializing
169        .name(name() + ".serializingInsts")
170        .desc("count of serializing insts renamed")
171        .flags(Stats::total)
172        ;
173    renamedTempSerializing
174        .name(name() + ".tempSerializingInsts")
175        .desc("count of temporary serializing insts renamed")
176        .flags(Stats::total)
177        ;
178    renameSkidInsts
179        .name(name() + ".skidInsts")
180        .desc("count of insts added to the skid buffer")
181        .flags(Stats::total)
182        ;
183    intRenameLookups
184        .name(name() + ".int_rename_lookups")
185        .desc("Number of integer rename lookups")
186        .prereq(intRenameLookups);
187    fpRenameLookups
188        .name(name() + ".fp_rename_lookups")
189        .desc("Number of floating rename lookups")
190        .prereq(fpRenameLookups);
191}
192
193template <class Impl>
194void
195DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
196{
197    timeBuffer = tb_ptr;
198
199    // Setup wire to read information from time buffer, from IEW stage.
200    fromIEW = timeBuffer->getWire(-iewToRenameDelay);
201
202    // Setup wire to read infromation from time buffer, from commit stage.
203    fromCommit = timeBuffer->getWire(-commitToRenameDelay);
204
205    // Setup wire to write information to previous stages.
206    toDecode = timeBuffer->getWire(0);
207}
208
209template <class Impl>
210void
211DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
212{
213    renameQueue = rq_ptr;
214
215    // Setup wire to write information to future stages.
216    toIEW = renameQueue->getWire(0);
217}
218
219template <class Impl>
220void
221DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
222{
223    decodeQueue = dq_ptr;
224
225    // Setup wire to get information from decode.
226    fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
227}
228
229template <class Impl>
230void
231DefaultRename<Impl>::initStage()
232{
233    // Grab the number of free entries directly from the stages.
234    for (ThreadID tid = 0; tid < numThreads; tid++) {
235        freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
236        freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
237        freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
238        emptyROB[tid] = true;
239    }
240}
241
242template<class Impl>
243void
244DefaultRename<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
245{
246    activeThreads = at_ptr;
247}
248
249
250template <class Impl>
251void
252DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
253{
254    for (ThreadID tid = 0; tid < numThreads; tid++)
255        renameMap[tid] = &rm_ptr[tid];
256}
257
258template <class Impl>
259void
260DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
261{
262    freeList = fl_ptr;
263}
264
265template<class Impl>
266void
267DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
268{
269    scoreboard = _scoreboard;
270}
271
272template <class Impl>
273bool
274DefaultRename<Impl>::drain()
275{
276    // Rename is ready to switch out at any time.
277    cpu->signalDrained();
278    return true;
279}
280
281template <class Impl>
282void
283DefaultRename<Impl>::switchOut()
284{
285    // Clear any state, fix up the rename map.
286    for (ThreadID tid = 0; tid < numThreads; tid++) {
287        typename std::list<RenameHistory>::iterator hb_it =
288            historyBuffer[tid].begin();
289
290        while (!historyBuffer[tid].empty()) {
291            assert(hb_it != historyBuffer[tid].end());
292
293            DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
294                    "number %i.\n", tid, (*hb_it).instSeqNum);
295
296            // Tell the rename map to set the architected register to the
297            // previous physical register that it was renamed to.
298            renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
299
300            // Put the renamed physical register back on the free list.
301            freeList->addReg(hb_it->newPhysReg);
302
303            // Be sure to mark its register as ready if it's a misc register.
304            if (hb_it->newPhysReg >= maxPhysicalRegs) {
305                scoreboard->setReg(hb_it->newPhysReg);
306            }
307
308            historyBuffer[tid].erase(hb_it++);
309        }
310        insts[tid].clear();
311        skidBuffer[tid].clear();
312    }
313}
314
315template <class Impl>
316void
317DefaultRename<Impl>::takeOverFrom()
318{
319    _status = Inactive;
320    initStage();
321
322    // Reset all state prior to taking over from the other CPU.
323    for (ThreadID tid = 0; tid < numThreads; tid++) {
324        renameStatus[tid] = Idle;
325
326        stalls[tid].iew = false;
327        stalls[tid].commit = false;
328        serializeInst[tid] = NULL;
329
330        instsInProgress[tid] = 0;
331
332        emptyROB[tid] = true;
333
334        serializeOnNextInst[tid] = false;
335    }
336}
337
338template <class Impl>
339void
340DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, ThreadID tid)
341{
342    DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
343
344    // Clear the stall signal if rename was blocked or unblocking before.
345    // If it still needs to block, the blocking should happen the next
346    // cycle and there should be space to hold everything due to the squash.
347    if (renameStatus[tid] == Blocked ||
348        renameStatus[tid] == Unblocking) {
349        toDecode->renameUnblock[tid] = 1;
350
351        resumeSerialize = false;
352        serializeInst[tid] = NULL;
353    } else if (renameStatus[tid] == SerializeStall) {
354        if (serializeInst[tid]->seqNum <= squash_seq_num) {
355            DPRINTF(Rename, "Rename will resume serializing after squash\n");
356            resumeSerialize = true;
357            assert(serializeInst[tid]);
358        } else {
359            resumeSerialize = false;
360            toDecode->renameUnblock[tid] = 1;
361
362            serializeInst[tid] = NULL;
363        }
364    }
365
366    // Set the status to Squashing.
367    renameStatus[tid] = Squashing;
368
369    // Squash any instructions from decode.
370    unsigned squashCount = 0;
371
372    for (int i=0; i<fromDecode->size; i++) {
373        if (fromDecode->insts[i]->threadNumber == tid &&
374            fromDecode->insts[i]->seqNum > squash_seq_num) {
375            fromDecode->insts[i]->setSquashed();
376            wroteToTimeBuffer = true;
377            squashCount++;
378        }
379
380    }
381
382    // Clear the instruction list and skid buffer in case they have any
383    // insts in them.
384    insts[tid].clear();
385
386    // Clear the skid buffer in case it has any data in it.
387    skidBuffer[tid].clear();
388
389    doSquash(squash_seq_num, tid);
390}
391
392template <class Impl>
393void
394DefaultRename<Impl>::tick()
395{
396    wroteToTimeBuffer = false;
397
398    blockThisCycle = false;
399
400    bool status_change = false;
401
402    toIEWIndex = 0;
403
404    sortInsts();
405
406    list<ThreadID>::iterator threads = activeThreads->begin();
407    list<ThreadID>::iterator end = activeThreads->end();
408
409    // Check stall and squash signals.
410    while (threads != end) {
411        ThreadID tid = *threads++;
412
413        DPRINTF(Rename, "Processing [tid:%i]\n", tid);
414
415        status_change = checkSignalsAndUpdate(tid) || status_change;
416
417        rename(status_change, tid);
418    }
419
420    if (status_change) {
421        updateStatus();
422    }
423
424    if (wroteToTimeBuffer) {
425        DPRINTF(Activity, "Activity this cycle.\n");
426        cpu->activityThisCycle();
427    }
428
429    threads = activeThreads->begin();
430
431    while (threads != end) {
432        ThreadID tid = *threads++;
433
434        // If we committed this cycle then doneSeqNum will be > 0
435        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
436            !fromCommit->commitInfo[tid].squash &&
437            renameStatus[tid] != Squashing) {
438
439            removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
440                                  tid);
441        }
442    }
443
444    // @todo: make into updateProgress function
445    for (ThreadID tid = 0; tid < numThreads; tid++) {
446        instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
447
448        assert(instsInProgress[tid] >=0);
449    }
450
451}
452
453template<class Impl>
454void
455DefaultRename<Impl>::rename(bool &status_change, ThreadID tid)
456{
457    // If status is Running or idle,
458    //     call renameInsts()
459    // If status is Unblocking,
460    //     buffer any instructions coming from decode
461    //     continue trying to empty skid buffer
462    //     check if stall conditions have passed
463
464    if (renameStatus[tid] == Blocked) {
465        ++renameBlockCycles;
466    } else if (renameStatus[tid] == Squashing) {
467        ++renameSquashCycles;
468    } else if (renameStatus[tid] == SerializeStall) {
469        ++renameSerializeStallCycles;
470        // If we are currently in SerializeStall and resumeSerialize
471        // was set, then that means that we are resuming serializing
472        // this cycle.  Tell the previous stages to block.
473        if (resumeSerialize) {
474            resumeSerialize = false;
475            block(tid);
476            toDecode->renameUnblock[tid] = false;
477        }
478    } else if (renameStatus[tid] == Unblocking) {
479        if (resumeUnblocking) {
480            block(tid);
481            resumeUnblocking = false;
482            toDecode->renameUnblock[tid] = false;
483        }
484    }
485
486    if (renameStatus[tid] == Running ||
487        renameStatus[tid] == Idle) {
488        DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
489                "stage.\n", tid);
490
491        renameInsts(tid);
492    } else if (renameStatus[tid] == Unblocking) {
493        renameInsts(tid);
494
495        if (validInsts()) {
496            // Add the current inputs to the skid buffer so they can be
497            // reprocessed when this stage unblocks.
498            skidInsert(tid);
499        }
500
501        // If we switched over to blocking, then there's a potential for
502        // an overall status change.
503        status_change = unblock(tid) || status_change || blockThisCycle;
504    }
505}
506
507template <class Impl>
508void
509DefaultRename<Impl>::renameInsts(ThreadID tid)
510{
511    // Instructions can be either in the skid buffer or the queue of
512    // instructions coming from decode, depending on the status.
513    int insts_available = renameStatus[tid] == Unblocking ?
514        skidBuffer[tid].size() : insts[tid].size();
515
516    // Check the decode queue to see if instructions are available.
517    // If there are no available instructions to rename, then do nothing.
518    if (insts_available == 0) {
519        DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
520                tid);
521        // Should I change status to idle?
522        ++renameIdleCycles;
523        return;
524    } else if (renameStatus[tid] == Unblocking) {
525        ++renameUnblockCycles;
526    } else if (renameStatus[tid] == Running) {
527        ++renameRunCycles;
528    }
529
530    DynInstPtr inst;
531
532    // Will have to do a different calculation for the number of free
533    // entries.
534    int free_rob_entries = calcFreeROBEntries(tid);
535    int free_iq_entries  = calcFreeIQEntries(tid);
536    int free_lsq_entries = calcFreeLSQEntries(tid);
537    int min_free_entries = free_rob_entries;
538
539    FullSource source = ROB;
540
541    if (free_iq_entries < min_free_entries) {
542        min_free_entries = free_iq_entries;
543        source = IQ;
544    }
545
546    if (free_lsq_entries < min_free_entries) {
547        min_free_entries = free_lsq_entries;
548        source = LSQ;
549    }
550
551    // Check if there's any space left.
552    if (min_free_entries <= 0) {
553        DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
554                "entries.\n"
555                "ROB has %i free entries.\n"
556                "IQ has %i free entries.\n"
557                "LSQ has %i free entries.\n",
558                tid,
559                free_rob_entries,
560                free_iq_entries,
561                free_lsq_entries);
562
563        blockThisCycle = true;
564
565        block(tid);
566
567        incrFullStat(source);
568
569        return;
570    } else if (min_free_entries < insts_available) {
571        DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
572                "%i insts available, but only %i insts can be "
573                "renamed due to ROB/IQ/LSQ limits.\n",
574                tid, insts_available, min_free_entries);
575
576        insts_available = min_free_entries;
577
578        blockThisCycle = true;
579
580        incrFullStat(source);
581    }
582
583    InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
584        skidBuffer[tid] : insts[tid];
585
586    DPRINTF(Rename, "[tid:%u]: %i available instructions to "
587            "send iew.\n", tid, insts_available);
588
589    DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
590            "dispatched to IQ last cycle.\n",
591            tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
592
593    // Handle serializing the next instruction if necessary.
594    if (serializeOnNextInst[tid]) {
595        if (emptyROB[tid] && instsInProgress[tid] == 0) {
596            // ROB already empty; no need to serialize.
597            serializeOnNextInst[tid] = false;
598        } else if (!insts_to_rename.empty()) {
599            insts_to_rename.front()->setSerializeBefore();
600        }
601    }
602
603    int renamed_insts = 0;
604
605    while (insts_available > 0 &&  toIEWIndex < renameWidth) {
606        DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
607
608        assert(!insts_to_rename.empty());
609
610        inst = insts_to_rename.front();
611
612        insts_to_rename.pop_front();
613
614        if (renameStatus[tid] == Unblocking) {
615            DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%s from rename "
616                    "skidBuffer\n", tid, inst->seqNum, inst->pcState());
617        }
618
619        if (inst->isSquashed()) {
620            DPRINTF(Rename, "[tid:%u]: instruction %i with PC %s is "
621                    "squashed, skipping.\n", tid, inst->seqNum,
622                    inst->pcState());
623
624            ++renameSquashedInsts;
625
626            // Decrement how many instructions are available.
627            --insts_available;
628
629            continue;
630        }
631
632        DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
633                "PC %s.\n", tid, inst->seqNum, inst->pcState());
634
635        // Handle serializeAfter/serializeBefore instructions.
636        // serializeAfter marks the next instruction as serializeBefore.
637        // serializeBefore makes the instruction wait in rename until the ROB
638        // is empty.
639
640        // In this model, IPR accesses are serialize before
641        // instructions, and store conditionals are serialize after
642        // instructions.  This is mainly due to lack of support for
643        // out-of-order operations of either of those classes of
644        // instructions.
645        if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
646            !inst->isSerializeHandled()) {
647            DPRINTF(Rename, "Serialize before instruction encountered.\n");
648
649            if (!inst->isTempSerializeBefore()) {
650                renamedSerializing++;
651                inst->setSerializeHandled();
652            } else {
653                renamedTempSerializing++;
654            }
655
656            // Change status over to SerializeStall so that other stages know
657            // what this is blocked on.
658            renameStatus[tid] = SerializeStall;
659
660            serializeInst[tid] = inst;
661
662            blockThisCycle = true;
663
664            break;
665        } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
666                   !inst->isSerializeHandled()) {
667            DPRINTF(Rename, "Serialize after instruction encountered.\n");
668
669            renamedSerializing++;
670
671            inst->setSerializeHandled();
672
673            serializeAfter(insts_to_rename, tid);
674        }
675
676        // Check here to make sure there are enough destination registers
677        // to rename to.  Otherwise block.
678        if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
679            DPRINTF(Rename, "Blocking due to lack of free "
680                    "physical registers to rename to.\n");
681            blockThisCycle = true;
682            insts_to_rename.push_front(inst);
683            ++renameFullRegistersEvents;
684
685            break;
686        }
687
688        renameSrcRegs(inst, inst->threadNumber);
689
690        renameDestRegs(inst, inst->threadNumber);
691
692        ++renamed_insts;
693
694#if TRACING_ON
695        inst->renameTick = curTick();
696#endif
697
698        // Put instruction in rename queue.
699        toIEW->insts[toIEWIndex] = inst;
700        ++(toIEW->size);
701
702        // Increment which instruction we're on.
703        ++toIEWIndex;
704
705        // Decrement how many instructions are available.
706        --insts_available;
707    }
708
709    instsInProgress[tid] += renamed_insts;
710    renameRenamedInsts += renamed_insts;
711
712    // If we wrote to the time buffer, record this.
713    if (toIEWIndex) {
714        wroteToTimeBuffer = true;
715    }
716
717    // Check if there's any instructions left that haven't yet been renamed.
718    // If so then block.
719    if (insts_available) {
720        blockThisCycle = true;
721    }
722
723    if (blockThisCycle) {
724        block(tid);
725        toDecode->renameUnblock[tid] = false;
726    }
727}
728
729template<class Impl>
730void
731DefaultRename<Impl>::skidInsert(ThreadID tid)
732{
733    DynInstPtr inst = NULL;
734
735    while (!insts[tid].empty()) {
736        inst = insts[tid].front();
737
738        insts[tid].pop_front();
739
740        assert(tid == inst->threadNumber);
741
742        DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC: %s into Rename "
743                "skidBuffer\n", tid, inst->seqNum, inst->pcState());
744
745        ++renameSkidInsts;
746
747        skidBuffer[tid].push_back(inst);
748    }
749
750    if (skidBuffer[tid].size() > skidBufferMax)
751    {
752        typename InstQueue::iterator it;
753        warn("Skidbuffer contents:\n");
754        for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
755        {
756            warn("[tid:%u]: %s [sn:%i].\n", tid,
757                    (*it)->staticInst->disassemble(inst->instAddr()),
758                    (*it)->seqNum);
759        }
760        panic("Skidbuffer Exceeded Max Size");
761    }
762}
763
764template <class Impl>
765void
766DefaultRename<Impl>::sortInsts()
767{
768    int insts_from_decode = fromDecode->size;
769#ifdef DEBUG
770    for (ThreadID tid = 0; tid < numThreads; tid++)
771        assert(insts[tid].empty());
772#endif
773    for (int i = 0; i < insts_from_decode; ++i) {
774        DynInstPtr inst = fromDecode->insts[i];
775        insts[inst->threadNumber].push_back(inst);
776    }
777}
778
779template<class Impl>
780bool
781DefaultRename<Impl>::skidsEmpty()
782{
783    list<ThreadID>::iterator threads = activeThreads->begin();
784    list<ThreadID>::iterator end = activeThreads->end();
785
786    while (threads != end) {
787        ThreadID tid = *threads++;
788
789        if (!skidBuffer[tid].empty())
790            return false;
791    }
792
793    return true;
794}
795
796template<class Impl>
797void
798DefaultRename<Impl>::updateStatus()
799{
800    bool any_unblocking = false;
801
802    list<ThreadID>::iterator threads = activeThreads->begin();
803    list<ThreadID>::iterator end = activeThreads->end();
804
805    while (threads != end) {
806        ThreadID tid = *threads++;
807
808        if (renameStatus[tid] == Unblocking) {
809            any_unblocking = true;
810            break;
811        }
812    }
813
814    // Rename will have activity if it's unblocking.
815    if (any_unblocking) {
816        if (_status == Inactive) {
817            _status = Active;
818
819            DPRINTF(Activity, "Activating stage.\n");
820
821            cpu->activateStage(O3CPU::RenameIdx);
822        }
823    } else {
824        // If it's not unblocking, then rename will not have any internal
825        // activity.  Switch it to inactive.
826        if (_status == Active) {
827            _status = Inactive;
828            DPRINTF(Activity, "Deactivating stage.\n");
829
830            cpu->deactivateStage(O3CPU::RenameIdx);
831        }
832    }
833}
834
835template <class Impl>
836bool
837DefaultRename<Impl>::block(ThreadID tid)
838{
839    DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
840
841    // Add the current inputs onto the skid buffer, so they can be
842    // reprocessed when this stage unblocks.
843    skidInsert(tid);
844
845    // Only signal backwards to block if the previous stages do not think
846    // rename is already blocked.
847    if (renameStatus[tid] != Blocked) {
848        // If resumeUnblocking is set, we unblocked during the squash,
849        // but now we're have unblocking status. We need to tell earlier
850        // stages to block.
851        if (resumeUnblocking || renameStatus[tid] != Unblocking) {
852            toDecode->renameBlock[tid] = true;
853            toDecode->renameUnblock[tid] = false;
854            wroteToTimeBuffer = true;
855        }
856
857        // Rename can not go from SerializeStall to Blocked, otherwise
858        // it would not know to complete the serialize stall.
859        if (renameStatus[tid] != SerializeStall) {
860            // Set status to Blocked.
861            renameStatus[tid] = Blocked;
862            return true;
863        }
864    }
865
866    return false;
867}
868
869template <class Impl>
870bool
871DefaultRename<Impl>::unblock(ThreadID tid)
872{
873    DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
874
875    // Rename is done unblocking if the skid buffer is empty.
876    if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
877
878        DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
879
880        toDecode->renameUnblock[tid] = true;
881        wroteToTimeBuffer = true;
882
883        renameStatus[tid] = Running;
884        return true;
885    }
886
887    return false;
888}
889
890template <class Impl>
891void
892DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, ThreadID tid)
893{
894    typename std::list<RenameHistory>::iterator hb_it =
895        historyBuffer[tid].begin();
896
897    // After a syscall squashes everything, the history buffer may be empty
898    // but the ROB may still be squashing instructions.
899    if (historyBuffer[tid].empty()) {
900        return;
901    }
902
903    // Go through the most recent instructions, undoing the mappings
904    // they did and freeing up the registers.
905    while (!historyBuffer[tid].empty() &&
906           (*hb_it).instSeqNum > squashed_seq_num) {
907        assert(hb_it != historyBuffer[tid].end());
908
909        DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
910                "number %i.\n", tid, (*hb_it).instSeqNum);
911
912        // Tell the rename map to set the architected register to the
913        // previous physical register that it was renamed to.
914        renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
915
916        // Put the renamed physical register back on the free list.
917        freeList->addReg(hb_it->newPhysReg);
918
919        // Be sure to mark its register as ready if it's a misc register.
920        if (hb_it->newPhysReg >= maxPhysicalRegs) {
921            scoreboard->setReg(hb_it->newPhysReg);
922        }
923
924        historyBuffer[tid].erase(hb_it++);
925
926        ++renameUndoneMaps;
927    }
928}
929
930template<class Impl>
931void
932DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, ThreadID tid)
933{
934    DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
935            "history buffer %u (size=%i), until [sn:%lli].\n",
936            tid, tid, historyBuffer[tid].size(), inst_seq_num);
937
938    typename std::list<RenameHistory>::iterator hb_it =
939        historyBuffer[tid].end();
940
941    --hb_it;
942
943    if (historyBuffer[tid].empty()) {
944        DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
945        return;
946    } else if (hb_it->instSeqNum > inst_seq_num) {
947        DPRINTF(Rename, "[tid:%u]: Old sequence number encountered.  Ensure "
948                "that a syscall happened recently.\n", tid);
949        return;
950    }
951
952    // Commit all the renames up until (and including) the committed sequence
953    // number. Some or even all of the committed instructions may not have
954    // rename histories if they did not have destination registers that were
955    // renamed.
956    while (!historyBuffer[tid].empty() &&
957           hb_it != historyBuffer[tid].end() &&
958           (*hb_it).instSeqNum <= inst_seq_num) {
959
960        DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
961                "[sn:%lli].\n",
962                tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
963
964        freeList->addReg((*hb_it).prevPhysReg);
965        ++renameCommittedMaps;
966
967        historyBuffer[tid].erase(hb_it--);
968    }
969}
970
971template <class Impl>
972inline void
973DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst, ThreadID tid)
974{
975    assert(renameMap[tid] != 0);
976
977    unsigned num_src_regs = inst->numSrcRegs();
978
979    // Get the architectual register numbers from the source and
980    // destination operands, and redirect them to the right register.
981    // Will need to mark dependencies though.
982    for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
983        RegIndex src_reg = inst->srcRegIdx(src_idx);
984        RegIndex flat_src_reg = src_reg;
985        if (src_reg < TheISA::FP_Base_DepTag) {
986            flat_src_reg = inst->tcBase()->flattenIntIndex(src_reg);
987            DPRINTF(Rename, "Flattening index %d to %d.\n",
988                    (int)src_reg, (int)flat_src_reg);
989        } else if (src_reg < TheISA::Ctrl_Base_DepTag) {
990            src_reg = src_reg - TheISA::FP_Base_DepTag;
991            flat_src_reg = inst->tcBase()->flattenFloatIndex(src_reg);
992            DPRINTF(Rename, "Flattening index %d to %d.\n",
993                    (int)src_reg, (int)flat_src_reg);
994            flat_src_reg += TheISA::NumIntRegs;
995        } else if (src_reg < TheISA::Max_DepTag) {
996            flat_src_reg = src_reg - TheISA::Ctrl_Base_DepTag +
997                           TheISA::NumFloatRegs + TheISA::NumIntRegs;
998            DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
999                    src_reg, flat_src_reg);
1000        } else {
1001            panic("Reg index is out of bound: %d.", src_reg);
1002        }
1003
1004        inst->flattenSrcReg(src_idx, flat_src_reg);
1005
1006        // Look up the source registers to get the phys. register they've
1007        // been renamed to, and set the sources to those registers.
1008        PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
1009
1010        DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
1011                "physical reg %i.\n", tid, (int)flat_src_reg,
1012                (int)renamed_reg);
1013
1014        inst->renameSrcReg(src_idx, renamed_reg);
1015
1016        // See if the register is ready or not.
1017        if (scoreboard->getReg(renamed_reg) == true) {
1018            DPRINTF(Rename, "[tid:%u]: Register %d is ready.\n",
1019                    tid, renamed_reg);
1020
1021            inst->markSrcRegReady(src_idx);
1022        } else {
1023            DPRINTF(Rename, "[tid:%u]: Register %d is not ready.\n",
1024                    tid, renamed_reg);
1025        }
1026
1027        ++renameRenameLookups;
1028        inst->isFloating() ? fpRenameLookups++ : intRenameLookups++;
1029    }
1030}
1031
1032template <class Impl>
1033inline void
1034DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst, ThreadID tid)
1035{
1036    typename RenameMap::RenameInfo rename_result;
1037
1038    unsigned num_dest_regs = inst->numDestRegs();
1039
1040    // Rename the destination registers.
1041    for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
1042        RegIndex dest_reg = inst->destRegIdx(dest_idx);
1043        RegIndex flat_dest_reg = dest_reg;
1044        if (dest_reg < TheISA::FP_Base_DepTag) {
1045            // Integer registers are flattened.
1046            flat_dest_reg = inst->tcBase()->flattenIntIndex(dest_reg);
1047            DPRINTF(Rename, "Flattening index %d to %d.\n",
1048                    (int)dest_reg, (int)flat_dest_reg);
1049        } else if (dest_reg < TheISA::Ctrl_Base_DepTag) {
1050            dest_reg = dest_reg - TheISA::FP_Base_DepTag;
1051            flat_dest_reg = inst->tcBase()->flattenFloatIndex(dest_reg);
1052            DPRINTF(Rename, "Flattening index %d to %d.\n",
1053                    (int)dest_reg, (int)flat_dest_reg);
1054            flat_dest_reg += TheISA::NumIntRegs;
1055        } else if (dest_reg < TheISA::Max_DepTag) {
1056            // Floating point and Miscellaneous registers need their indexes
1057            // adjusted to account for the expanded number of flattened int regs.
1058            flat_dest_reg = dest_reg - TheISA::Ctrl_Base_DepTag +
1059                            TheISA::NumIntRegs + TheISA::NumFloatRegs;
1060            DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
1061                    dest_reg, flat_dest_reg);
1062        } else {
1063            panic("Reg index is out of bound: %d.", dest_reg);
1064        }
1065
1066        inst->flattenDestReg(dest_idx, flat_dest_reg);
1067
1068        // Get the physical register that the destination will be
1069        // renamed to.
1070        rename_result = renameMap[tid]->rename(flat_dest_reg);
1071
1072        //Mark Scoreboard entry as not ready
1073        if (dest_reg < TheISA::Ctrl_Base_DepTag)
1074            scoreboard->unsetReg(rename_result.first);
1075
1076        DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
1077                "reg %i.\n", tid, (int)flat_dest_reg,
1078                (int)rename_result.first);
1079
1080        // Record the rename information so that a history can be kept.
1081        RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
1082                               rename_result.first,
1083                               rename_result.second);
1084
1085        historyBuffer[tid].push_front(hb_entry);
1086
1087        DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
1088                "(size=%i), [sn:%lli].\n",tid,
1089                historyBuffer[tid].size(),
1090                (*historyBuffer[tid].begin()).instSeqNum);
1091
1092        // Tell the instruction to rename the appropriate destination
1093        // register (dest_idx) to the new physical register
1094        // (rename_result.first), and record the previous physical
1095        // register that the same logical register was renamed to
1096        // (rename_result.second).
1097        inst->renameDestReg(dest_idx,
1098                            rename_result.first,
1099                            rename_result.second);
1100
1101        ++renameRenamedOperands;
1102    }
1103}
1104
1105template <class Impl>
1106inline int
1107DefaultRename<Impl>::calcFreeROBEntries(ThreadID tid)
1108{
1109    int num_free = freeEntries[tid].robEntries -
1110                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1111
1112    //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
1113
1114    return num_free;
1115}
1116
1117template <class Impl>
1118inline int
1119DefaultRename<Impl>::calcFreeIQEntries(ThreadID tid)
1120{
1121    int num_free = freeEntries[tid].iqEntries -
1122                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1123
1124    //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
1125
1126    return num_free;
1127}
1128
1129template <class Impl>
1130inline int
1131DefaultRename<Impl>::calcFreeLSQEntries(ThreadID tid)
1132{
1133    int num_free = freeEntries[tid].lsqEntries -
1134                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
1135
1136    //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
1137
1138    return num_free;
1139}
1140
1141template <class Impl>
1142unsigned
1143DefaultRename<Impl>::validInsts()
1144{
1145    unsigned inst_count = 0;
1146
1147    for (int i=0; i<fromDecode->size; i++) {
1148        if (!fromDecode->insts[i]->isSquashed())
1149            inst_count++;
1150    }
1151
1152    return inst_count;
1153}
1154
1155template <class Impl>
1156void
1157DefaultRename<Impl>::readStallSignals(ThreadID tid)
1158{
1159    if (fromIEW->iewBlock[tid]) {
1160        stalls[tid].iew = true;
1161    }
1162
1163    if (fromIEW->iewUnblock[tid]) {
1164        assert(stalls[tid].iew);
1165        stalls[tid].iew = false;
1166    }
1167
1168    if (fromCommit->commitBlock[tid]) {
1169        stalls[tid].commit = true;
1170    }
1171
1172    if (fromCommit->commitUnblock[tid]) {
1173        assert(stalls[tid].commit);
1174        stalls[tid].commit = false;
1175    }
1176}
1177
1178template <class Impl>
1179bool
1180DefaultRename<Impl>::checkStall(ThreadID tid)
1181{
1182    bool ret_val = false;
1183
1184    if (stalls[tid].iew) {
1185        DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
1186        ret_val = true;
1187    } else if (stalls[tid].commit) {
1188        DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
1189        ret_val = true;
1190    } else if (calcFreeROBEntries(tid) <= 0) {
1191        DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
1192        ret_val = true;
1193    } else if (calcFreeIQEntries(tid) <= 0) {
1194        DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
1195        ret_val = true;
1196    } else if (calcFreeLSQEntries(tid) <= 0) {
1197        DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
1198        ret_val = true;
1199    } else if (renameMap[tid]->numFreeEntries() <= 0) {
1200        DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
1201        ret_val = true;
1202    } else if (renameStatus[tid] == SerializeStall &&
1203               (!emptyROB[tid] || instsInProgress[tid])) {
1204        DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
1205                "empty.\n",
1206                tid);
1207        ret_val = true;
1208    }
1209
1210    return ret_val;
1211}
1212
1213template <class Impl>
1214void
1215DefaultRename<Impl>::readFreeEntries(ThreadID tid)
1216{
1217    if (fromIEW->iewInfo[tid].usedIQ)
1218        freeEntries[tid].iqEntries = fromIEW->iewInfo[tid].freeIQEntries;
1219
1220    if (fromIEW->iewInfo[tid].usedLSQ)
1221        freeEntries[tid].lsqEntries = fromIEW->iewInfo[tid].freeLSQEntries;
1222
1223    if (fromCommit->commitInfo[tid].usedROB) {
1224        freeEntries[tid].robEntries =
1225            fromCommit->commitInfo[tid].freeROBEntries;
1226        emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
1227    }
1228
1229    DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
1230            tid,
1231            freeEntries[tid].iqEntries,
1232            freeEntries[tid].robEntries,
1233            freeEntries[tid].lsqEntries);
1234
1235    DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
1236            tid, instsInProgress[tid]);
1237}
1238
1239template <class Impl>
1240bool
1241DefaultRename<Impl>::checkSignalsAndUpdate(ThreadID tid)
1242{
1243    // Check if there's a squash signal, squash if there is
1244    // Check stall signals, block if necessary.
1245    // If status was blocked
1246    //     check if stall conditions have passed
1247    //         if so then go to unblocking
1248    // If status was Squashing
1249    //     check if squashing is not high.  Switch to running this cycle.
1250    // If status was serialize stall
1251    //     check if ROB is empty and no insts are in flight to the ROB
1252
1253    readFreeEntries(tid);
1254    readStallSignals(tid);
1255
1256    if (fromCommit->commitInfo[tid].squash) {
1257        DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
1258                "commit.\n", tid);
1259
1260        squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
1261
1262        return true;
1263    }
1264
1265    if (fromCommit->commitInfo[tid].robSquashing) {
1266        DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
1267
1268        renameStatus[tid] = Squashing;
1269
1270        return true;
1271    }
1272
1273    if (checkStall(tid)) {
1274        return block(tid);
1275    }
1276
1277    if (renameStatus[tid] == Blocked) {
1278        DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
1279                tid);
1280
1281        renameStatus[tid] = Unblocking;
1282
1283        unblock(tid);
1284
1285        return true;
1286    }
1287
1288    if (renameStatus[tid] == Squashing) {
1289        // Switch status to running if rename isn't being told to block or
1290        // squash this cycle.
1291        if (resumeSerialize) {
1292            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
1293                    tid);
1294
1295            renameStatus[tid] = SerializeStall;
1296            return true;
1297        } else if (resumeUnblocking) {
1298            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
1299                    tid);
1300            renameStatus[tid] = Unblocking;
1301            return true;
1302        } else {
1303            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
1304                    tid);
1305
1306            renameStatus[tid] = Running;
1307            return false;
1308        }
1309    }
1310
1311    if (renameStatus[tid] == SerializeStall) {
1312        // Stall ends once the ROB is free.
1313        DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
1314                "unblocking.\n", tid);
1315
1316        DynInstPtr serial_inst = serializeInst[tid];
1317
1318        renameStatus[tid] = Unblocking;
1319
1320        unblock(tid);
1321
1322        DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
1323                "PC %s.\n", tid, serial_inst->seqNum, serial_inst->pcState());
1324
1325        // Put instruction into queue here.
1326        serial_inst->clearSerializeBefore();
1327
1328        if (!skidBuffer[tid].empty()) {
1329            skidBuffer[tid].push_front(serial_inst);
1330        } else {
1331            insts[tid].push_front(serial_inst);
1332        }
1333
1334        DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
1335                " Adding to front of list.\n", tid);
1336
1337        serializeInst[tid] = NULL;
1338
1339        return true;
1340    }
1341
1342    // If we've reached this point, we have not gotten any signals that
1343    // cause rename to change its status.  Rename remains the same as before.
1344    return false;
1345}
1346
1347template<class Impl>
1348void
1349DefaultRename<Impl>::serializeAfter(InstQueue &inst_list, ThreadID tid)
1350{
1351    if (inst_list.empty()) {
1352        // Mark a bit to say that I must serialize on the next instruction.
1353        serializeOnNextInst[tid] = true;
1354        return;
1355    }
1356
1357    // Set the next instruction as serializing.
1358    inst_list.front()->setSerializeBefore();
1359}
1360
1361template <class Impl>
1362inline void
1363DefaultRename<Impl>::incrFullStat(const FullSource &source)
1364{
1365    switch (source) {
1366      case ROB:
1367        ++renameROBFullEvents;
1368        break;
1369      case IQ:
1370        ++renameIQFullEvents;
1371        break;
1372      case LSQ:
1373        ++renameLSQFullEvents;
1374        break;
1375      default:
1376        panic("Rename full stall stat should be incremented for a reason!");
1377        break;
1378    }
1379}
1380
1381template <class Impl>
1382void
1383DefaultRename<Impl>::dumpHistory()
1384{
1385    typename std::list<RenameHistory>::iterator buf_it;
1386
1387    for (ThreadID tid = 0; tid < numThreads; tid++) {
1388
1389        buf_it = historyBuffer[tid].begin();
1390
1391        while (buf_it != historyBuffer[tid].end()) {
1392            cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
1393                    "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
1394                    (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
1395
1396            buf_it++;
1397        }
1398    }
1399}
1400