rename_impl.hh revision 7897:d9e8b1fd1a9f
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <list>
45
46#include "arch/isa_traits.hh"
47#include "arch/registers.hh"
48#include "config/full_system.hh"
49#include "config/the_isa.hh"
50#include "cpu/o3/rename.hh"
51#include "params/DerivO3CPU.hh"
52
53using namespace std;
54
55template <class Impl>
56DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, DerivO3CPUParams *params)
57    : cpu(_cpu),
58      iewToRenameDelay(params->iewToRenameDelay),
59      decodeToRenameDelay(params->decodeToRenameDelay),
60      commitToRenameDelay(params->commitToRenameDelay),
61      renameWidth(params->renameWidth),
62      commitWidth(params->commitWidth),
63      resumeSerialize(false),
64      resumeUnblocking(false),
65      numThreads(params->numThreads),
66      maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
67{
68    _status = Inactive;
69
70    for (ThreadID tid = 0; tid < numThreads; tid++) {
71        renameStatus[tid] = Idle;
72
73        freeEntries[tid].iqEntries = 0;
74        freeEntries[tid].lsqEntries = 0;
75        freeEntries[tid].robEntries = 0;
76
77        stalls[tid].iew = false;
78        stalls[tid].commit = false;
79        serializeInst[tid] = NULL;
80
81        instsInProgress[tid] = 0;
82
83        emptyROB[tid] = true;
84
85        serializeOnNextInst[tid] = false;
86    }
87
88    // @todo: Make into a parameter.
89    skidBufferMax = (2 * (iewToRenameDelay * params->decodeWidth)) + renameWidth;
90}
91
92template <class Impl>
93std::string
94DefaultRename<Impl>::name() const
95{
96    return cpu->name() + ".rename";
97}
98
99template <class Impl>
100void
101DefaultRename<Impl>::regStats()
102{
103    renameSquashCycles
104        .name(name() + ".RENAME:SquashCycles")
105        .desc("Number of cycles rename is squashing")
106        .prereq(renameSquashCycles);
107    renameIdleCycles
108        .name(name() + ".RENAME:IdleCycles")
109        .desc("Number of cycles rename is idle")
110        .prereq(renameIdleCycles);
111    renameBlockCycles
112        .name(name() + ".RENAME:BlockCycles")
113        .desc("Number of cycles rename is blocking")
114        .prereq(renameBlockCycles);
115    renameSerializeStallCycles
116        .name(name() + ".RENAME:serializeStallCycles")
117        .desc("count of cycles rename stalled for serializing inst")
118        .flags(Stats::total);
119    renameRunCycles
120        .name(name() + ".RENAME:RunCycles")
121        .desc("Number of cycles rename is running")
122        .prereq(renameIdleCycles);
123    renameUnblockCycles
124        .name(name() + ".RENAME:UnblockCycles")
125        .desc("Number of cycles rename is unblocking")
126        .prereq(renameUnblockCycles);
127    renameRenamedInsts
128        .name(name() + ".RENAME:RenamedInsts")
129        .desc("Number of instructions processed by rename")
130        .prereq(renameRenamedInsts);
131    renameSquashedInsts
132        .name(name() + ".RENAME:SquashedInsts")
133        .desc("Number of squashed instructions processed by rename")
134        .prereq(renameSquashedInsts);
135    renameROBFullEvents
136        .name(name() + ".RENAME:ROBFullEvents")
137        .desc("Number of times rename has blocked due to ROB full")
138        .prereq(renameROBFullEvents);
139    renameIQFullEvents
140        .name(name() + ".RENAME:IQFullEvents")
141        .desc("Number of times rename has blocked due to IQ full")
142        .prereq(renameIQFullEvents);
143    renameLSQFullEvents
144        .name(name() + ".RENAME:LSQFullEvents")
145        .desc("Number of times rename has blocked due to LSQ full")
146        .prereq(renameLSQFullEvents);
147    renameFullRegistersEvents
148        .name(name() + ".RENAME:FullRegisterEvents")
149        .desc("Number of times there has been no free registers")
150        .prereq(renameFullRegistersEvents);
151    renameRenamedOperands
152        .name(name() + ".RENAME:RenamedOperands")
153        .desc("Number of destination operands rename has renamed")
154        .prereq(renameRenamedOperands);
155    renameRenameLookups
156        .name(name() + ".RENAME:RenameLookups")
157        .desc("Number of register rename lookups that rename has made")
158        .prereq(renameRenameLookups);
159    renameCommittedMaps
160        .name(name() + ".RENAME:CommittedMaps")
161        .desc("Number of HB maps that are committed")
162        .prereq(renameCommittedMaps);
163    renameUndoneMaps
164        .name(name() + ".RENAME:UndoneMaps")
165        .desc("Number of HB maps that are undone due to squashing")
166        .prereq(renameUndoneMaps);
167    renamedSerializing
168        .name(name() + ".RENAME:serializingInsts")
169        .desc("count of serializing insts renamed")
170        .flags(Stats::total)
171        ;
172    renamedTempSerializing
173        .name(name() + ".RENAME:tempSerializingInsts")
174        .desc("count of temporary serializing insts renamed")
175        .flags(Stats::total)
176        ;
177    renameSkidInsts
178        .name(name() + ".RENAME:skidInsts")
179        .desc("count of insts added to the skid buffer")
180        .flags(Stats::total)
181        ;
182    intRenameLookups
183        .name(name() + ".RENAME:int_rename_lookups")
184        .desc("Number of integer rename lookups")
185        .prereq(intRenameLookups);
186    fpRenameLookups
187        .name(name() + ".RENAME:fp_rename_lookups")
188        .desc("Number of floating rename lookups")
189        .prereq(fpRenameLookups);
190}
191
192template <class Impl>
193void
194DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
195{
196    timeBuffer = tb_ptr;
197
198    // Setup wire to read information from time buffer, from IEW stage.
199    fromIEW = timeBuffer->getWire(-iewToRenameDelay);
200
201    // Setup wire to read infromation from time buffer, from commit stage.
202    fromCommit = timeBuffer->getWire(-commitToRenameDelay);
203
204    // Setup wire to write information to previous stages.
205    toDecode = timeBuffer->getWire(0);
206}
207
208template <class Impl>
209void
210DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
211{
212    renameQueue = rq_ptr;
213
214    // Setup wire to write information to future stages.
215    toIEW = renameQueue->getWire(0);
216}
217
218template <class Impl>
219void
220DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
221{
222    decodeQueue = dq_ptr;
223
224    // Setup wire to get information from decode.
225    fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
226}
227
228template <class Impl>
229void
230DefaultRename<Impl>::initStage()
231{
232    // Grab the number of free entries directly from the stages.
233    for (ThreadID tid = 0; tid < numThreads; tid++) {
234        freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
235        freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
236        freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
237        emptyROB[tid] = true;
238    }
239}
240
241template<class Impl>
242void
243DefaultRename<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
244{
245    activeThreads = at_ptr;
246}
247
248
249template <class Impl>
250void
251DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
252{
253    for (ThreadID tid = 0; tid < numThreads; tid++)
254        renameMap[tid] = &rm_ptr[tid];
255}
256
257template <class Impl>
258void
259DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
260{
261    freeList = fl_ptr;
262}
263
264template<class Impl>
265void
266DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
267{
268    scoreboard = _scoreboard;
269}
270
271template <class Impl>
272bool
273DefaultRename<Impl>::drain()
274{
275    // Rename is ready to switch out at any time.
276    cpu->signalDrained();
277    return true;
278}
279
280template <class Impl>
281void
282DefaultRename<Impl>::switchOut()
283{
284    // Clear any state, fix up the rename map.
285    for (ThreadID tid = 0; tid < numThreads; tid++) {
286        typename std::list<RenameHistory>::iterator hb_it =
287            historyBuffer[tid].begin();
288
289        while (!historyBuffer[tid].empty()) {
290            assert(hb_it != historyBuffer[tid].end());
291
292            DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
293                    "number %i.\n", tid, (*hb_it).instSeqNum);
294
295            // Tell the rename map to set the architected register to the
296            // previous physical register that it was renamed to.
297            renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
298
299            // Put the renamed physical register back on the free list.
300            freeList->addReg(hb_it->newPhysReg);
301
302            // Be sure to mark its register as ready if it's a misc register.
303            if (hb_it->newPhysReg >= maxPhysicalRegs) {
304                scoreboard->setReg(hb_it->newPhysReg);
305            }
306
307            historyBuffer[tid].erase(hb_it++);
308        }
309        insts[tid].clear();
310        skidBuffer[tid].clear();
311    }
312}
313
314template <class Impl>
315void
316DefaultRename<Impl>::takeOverFrom()
317{
318    _status = Inactive;
319    initStage();
320
321    // Reset all state prior to taking over from the other CPU.
322    for (ThreadID tid = 0; tid < numThreads; tid++) {
323        renameStatus[tid] = Idle;
324
325        stalls[tid].iew = false;
326        stalls[tid].commit = false;
327        serializeInst[tid] = NULL;
328
329        instsInProgress[tid] = 0;
330
331        emptyROB[tid] = true;
332
333        serializeOnNextInst[tid] = false;
334    }
335}
336
337template <class Impl>
338void
339DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, ThreadID tid)
340{
341    DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
342
343    // Clear the stall signal if rename was blocked or unblocking before.
344    // If it still needs to block, the blocking should happen the next
345    // cycle and there should be space to hold everything due to the squash.
346    if (renameStatus[tid] == Blocked ||
347        renameStatus[tid] == Unblocking) {
348        toDecode->renameUnblock[tid] = 1;
349
350        resumeSerialize = false;
351        serializeInst[tid] = NULL;
352    } else if (renameStatus[tid] == SerializeStall) {
353        if (serializeInst[tid]->seqNum <= squash_seq_num) {
354            DPRINTF(Rename, "Rename will resume serializing after squash\n");
355            resumeSerialize = true;
356            assert(serializeInst[tid]);
357        } else {
358            resumeSerialize = false;
359            toDecode->renameUnblock[tid] = 1;
360
361            serializeInst[tid] = NULL;
362        }
363    }
364
365    // Set the status to Squashing.
366    renameStatus[tid] = Squashing;
367
368    // Squash any instructions from decode.
369    unsigned squashCount = 0;
370
371    for (int i=0; i<fromDecode->size; i++) {
372        if (fromDecode->insts[i]->threadNumber == tid &&
373            fromDecode->insts[i]->seqNum > squash_seq_num) {
374            fromDecode->insts[i]->setSquashed();
375            wroteToTimeBuffer = true;
376            squashCount++;
377        }
378
379    }
380
381    // Clear the instruction list and skid buffer in case they have any
382    // insts in them.
383    insts[tid].clear();
384
385    // Clear the skid buffer in case it has any data in it.
386    skidBuffer[tid].clear();
387
388    doSquash(squash_seq_num, tid);
389}
390
391template <class Impl>
392void
393DefaultRename<Impl>::tick()
394{
395    wroteToTimeBuffer = false;
396
397    blockThisCycle = false;
398
399    bool status_change = false;
400
401    toIEWIndex = 0;
402
403    sortInsts();
404
405    list<ThreadID>::iterator threads = activeThreads->begin();
406    list<ThreadID>::iterator end = activeThreads->end();
407
408    // Check stall and squash signals.
409    while (threads != end) {
410        ThreadID tid = *threads++;
411
412        DPRINTF(Rename, "Processing [tid:%i]\n", tid);
413
414        status_change = checkSignalsAndUpdate(tid) || status_change;
415
416        rename(status_change, tid);
417    }
418
419    if (status_change) {
420        updateStatus();
421    }
422
423    if (wroteToTimeBuffer) {
424        DPRINTF(Activity, "Activity this cycle.\n");
425        cpu->activityThisCycle();
426    }
427
428    threads = activeThreads->begin();
429
430    while (threads != end) {
431        ThreadID tid = *threads++;
432
433        // If we committed this cycle then doneSeqNum will be > 0
434        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
435            !fromCommit->commitInfo[tid].squash &&
436            renameStatus[tid] != Squashing) {
437
438            removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
439                                  tid);
440        }
441    }
442
443    // @todo: make into updateProgress function
444    for (ThreadID tid = 0; tid < numThreads; tid++) {
445        instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
446
447        assert(instsInProgress[tid] >=0);
448    }
449
450}
451
452template<class Impl>
453void
454DefaultRename<Impl>::rename(bool &status_change, ThreadID tid)
455{
456    // If status is Running or idle,
457    //     call renameInsts()
458    // If status is Unblocking,
459    //     buffer any instructions coming from decode
460    //     continue trying to empty skid buffer
461    //     check if stall conditions have passed
462
463    if (renameStatus[tid] == Blocked) {
464        ++renameBlockCycles;
465    } else if (renameStatus[tid] == Squashing) {
466        ++renameSquashCycles;
467    } else if (renameStatus[tid] == SerializeStall) {
468        ++renameSerializeStallCycles;
469        // If we are currently in SerializeStall and resumeSerialize
470        // was set, then that means that we are resuming serializing
471        // this cycle.  Tell the previous stages to block.
472        if (resumeSerialize) {
473            resumeSerialize = false;
474            block(tid);
475            toDecode->renameUnblock[tid] = false;
476        }
477    } else if (renameStatus[tid] == Unblocking) {
478        if (resumeUnblocking) {
479            block(tid);
480            resumeUnblocking = false;
481            toDecode->renameUnblock[tid] = false;
482        }
483    }
484
485    if (renameStatus[tid] == Running ||
486        renameStatus[tid] == Idle) {
487        DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
488                "stage.\n", tid);
489
490        renameInsts(tid);
491    } else if (renameStatus[tid] == Unblocking) {
492        renameInsts(tid);
493
494        if (validInsts()) {
495            // Add the current inputs to the skid buffer so they can be
496            // reprocessed when this stage unblocks.
497            skidInsert(tid);
498        }
499
500        // If we switched over to blocking, then there's a potential for
501        // an overall status change.
502        status_change = unblock(tid) || status_change || blockThisCycle;
503    }
504}
505
506template <class Impl>
507void
508DefaultRename<Impl>::renameInsts(ThreadID tid)
509{
510    // Instructions can be either in the skid buffer or the queue of
511    // instructions coming from decode, depending on the status.
512    int insts_available = renameStatus[tid] == Unblocking ?
513        skidBuffer[tid].size() : insts[tid].size();
514
515    // Check the decode queue to see if instructions are available.
516    // If there are no available instructions to rename, then do nothing.
517    if (insts_available == 0) {
518        DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
519                tid);
520        // Should I change status to idle?
521        ++renameIdleCycles;
522        return;
523    } else if (renameStatus[tid] == Unblocking) {
524        ++renameUnblockCycles;
525    } else if (renameStatus[tid] == Running) {
526        ++renameRunCycles;
527    }
528
529    DynInstPtr inst;
530
531    // Will have to do a different calculation for the number of free
532    // entries.
533    int free_rob_entries = calcFreeROBEntries(tid);
534    int free_iq_entries  = calcFreeIQEntries(tid);
535    int free_lsq_entries = calcFreeLSQEntries(tid);
536    int min_free_entries = free_rob_entries;
537
538    FullSource source = ROB;
539
540    if (free_iq_entries < min_free_entries) {
541        min_free_entries = free_iq_entries;
542        source = IQ;
543    }
544
545    if (free_lsq_entries < min_free_entries) {
546        min_free_entries = free_lsq_entries;
547        source = LSQ;
548    }
549
550    // Check if there's any space left.
551    if (min_free_entries <= 0) {
552        DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
553                "entries.\n"
554                "ROB has %i free entries.\n"
555                "IQ has %i free entries.\n"
556                "LSQ has %i free entries.\n",
557                tid,
558                free_rob_entries,
559                free_iq_entries,
560                free_lsq_entries);
561
562        blockThisCycle = true;
563
564        block(tid);
565
566        incrFullStat(source);
567
568        return;
569    } else if (min_free_entries < insts_available) {
570        DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
571                "%i insts available, but only %i insts can be "
572                "renamed due to ROB/IQ/LSQ limits.\n",
573                tid, insts_available, min_free_entries);
574
575        insts_available = min_free_entries;
576
577        blockThisCycle = true;
578
579        incrFullStat(source);
580    }
581
582    InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
583        skidBuffer[tid] : insts[tid];
584
585    DPRINTF(Rename, "[tid:%u]: %i available instructions to "
586            "send iew.\n", tid, insts_available);
587
588    DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
589            "dispatched to IQ last cycle.\n",
590            tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
591
592    // Handle serializing the next instruction if necessary.
593    if (serializeOnNextInst[tid]) {
594        if (emptyROB[tid] && instsInProgress[tid] == 0) {
595            // ROB already empty; no need to serialize.
596            serializeOnNextInst[tid] = false;
597        } else if (!insts_to_rename.empty()) {
598            insts_to_rename.front()->setSerializeBefore();
599        }
600    }
601
602    int renamed_insts = 0;
603
604    while (insts_available > 0 &&  toIEWIndex < renameWidth) {
605        DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
606
607        assert(!insts_to_rename.empty());
608
609        inst = insts_to_rename.front();
610
611        insts_to_rename.pop_front();
612
613        if (renameStatus[tid] == Unblocking) {
614            DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%s from rename "
615                    "skidBuffer\n", tid, inst->seqNum, inst->pcState());
616        }
617
618        if (inst->isSquashed()) {
619            DPRINTF(Rename, "[tid:%u]: instruction %i with PC %s is "
620                    "squashed, skipping.\n", tid, inst->seqNum,
621                    inst->pcState());
622
623            ++renameSquashedInsts;
624
625            // Decrement how many instructions are available.
626            --insts_available;
627
628            continue;
629        }
630
631        DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
632                "PC %s.\n", tid, inst->seqNum, inst->pcState());
633
634        // Handle serializeAfter/serializeBefore instructions.
635        // serializeAfter marks the next instruction as serializeBefore.
636        // serializeBefore makes the instruction wait in rename until the ROB
637        // is empty.
638
639        // In this model, IPR accesses are serialize before
640        // instructions, and store conditionals are serialize after
641        // instructions.  This is mainly due to lack of support for
642        // out-of-order operations of either of those classes of
643        // instructions.
644        if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
645            !inst->isSerializeHandled()) {
646            DPRINTF(Rename, "Serialize before instruction encountered.\n");
647
648            if (!inst->isTempSerializeBefore()) {
649                renamedSerializing++;
650                inst->setSerializeHandled();
651            } else {
652                renamedTempSerializing++;
653            }
654
655            // Change status over to SerializeStall so that other stages know
656            // what this is blocked on.
657            renameStatus[tid] = SerializeStall;
658
659            serializeInst[tid] = inst;
660
661            blockThisCycle = true;
662
663            break;
664        } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
665                   !inst->isSerializeHandled()) {
666            DPRINTF(Rename, "Serialize after instruction encountered.\n");
667
668            renamedSerializing++;
669
670            inst->setSerializeHandled();
671
672            serializeAfter(insts_to_rename, tid);
673        }
674
675        // Check here to make sure there are enough destination registers
676        // to rename to.  Otherwise block.
677        if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
678            DPRINTF(Rename, "Blocking due to lack of free "
679                    "physical registers to rename to.\n");
680            blockThisCycle = true;
681            insts_to_rename.push_front(inst);
682            ++renameFullRegistersEvents;
683
684            break;
685        }
686
687        renameSrcRegs(inst, inst->threadNumber);
688
689        renameDestRegs(inst, inst->threadNumber);
690
691        ++renamed_insts;
692
693        // Put instruction in rename queue.
694        toIEW->insts[toIEWIndex] = inst;
695        ++(toIEW->size);
696
697        // Increment which instruction we're on.
698        ++toIEWIndex;
699
700        // Decrement how many instructions are available.
701        --insts_available;
702    }
703
704    instsInProgress[tid] += renamed_insts;
705    renameRenamedInsts += renamed_insts;
706
707    // If we wrote to the time buffer, record this.
708    if (toIEWIndex) {
709        wroteToTimeBuffer = true;
710    }
711
712    // Check if there's any instructions left that haven't yet been renamed.
713    // If so then block.
714    if (insts_available) {
715        blockThisCycle = true;
716    }
717
718    if (blockThisCycle) {
719        block(tid);
720        toDecode->renameUnblock[tid] = false;
721    }
722}
723
724template<class Impl>
725void
726DefaultRename<Impl>::skidInsert(ThreadID tid)
727{
728    DynInstPtr inst = NULL;
729
730    while (!insts[tid].empty()) {
731        inst = insts[tid].front();
732
733        insts[tid].pop_front();
734
735        assert(tid == inst->threadNumber);
736
737        DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC: %s into Rename "
738                "skidBuffer\n", tid, inst->seqNum, inst->pcState());
739
740        ++renameSkidInsts;
741
742        skidBuffer[tid].push_back(inst);
743    }
744
745    if (skidBuffer[tid].size() > skidBufferMax)
746    {
747        typename InstQueue::iterator it;
748        warn("Skidbuffer contents:\n");
749        for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
750        {
751            warn("[tid:%u]: %s [sn:%i].\n", tid,
752                    (*it)->staticInst->disassemble(inst->instAddr()),
753                    (*it)->seqNum);
754        }
755        panic("Skidbuffer Exceeded Max Size");
756    }
757}
758
759template <class Impl>
760void
761DefaultRename<Impl>::sortInsts()
762{
763    int insts_from_decode = fromDecode->size;
764#ifdef DEBUG
765    for (ThreadID tid = 0; tid < numThreads; tid++)
766        assert(insts[tid].empty());
767#endif
768    for (int i = 0; i < insts_from_decode; ++i) {
769        DynInstPtr inst = fromDecode->insts[i];
770        insts[inst->threadNumber].push_back(inst);
771    }
772}
773
774template<class Impl>
775bool
776DefaultRename<Impl>::skidsEmpty()
777{
778    list<ThreadID>::iterator threads = activeThreads->begin();
779    list<ThreadID>::iterator end = activeThreads->end();
780
781    while (threads != end) {
782        ThreadID tid = *threads++;
783
784        if (!skidBuffer[tid].empty())
785            return false;
786    }
787
788    return true;
789}
790
791template<class Impl>
792void
793DefaultRename<Impl>::updateStatus()
794{
795    bool any_unblocking = false;
796
797    list<ThreadID>::iterator threads = activeThreads->begin();
798    list<ThreadID>::iterator end = activeThreads->end();
799
800    while (threads != end) {
801        ThreadID tid = *threads++;
802
803        if (renameStatus[tid] == Unblocking) {
804            any_unblocking = true;
805            break;
806        }
807    }
808
809    // Rename will have activity if it's unblocking.
810    if (any_unblocking) {
811        if (_status == Inactive) {
812            _status = Active;
813
814            DPRINTF(Activity, "Activating stage.\n");
815
816            cpu->activateStage(O3CPU::RenameIdx);
817        }
818    } else {
819        // If it's not unblocking, then rename will not have any internal
820        // activity.  Switch it to inactive.
821        if (_status == Active) {
822            _status = Inactive;
823            DPRINTF(Activity, "Deactivating stage.\n");
824
825            cpu->deactivateStage(O3CPU::RenameIdx);
826        }
827    }
828}
829
830template <class Impl>
831bool
832DefaultRename<Impl>::block(ThreadID tid)
833{
834    DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
835
836    // Add the current inputs onto the skid buffer, so they can be
837    // reprocessed when this stage unblocks.
838    skidInsert(tid);
839
840    // Only signal backwards to block if the previous stages do not think
841    // rename is already blocked.
842    if (renameStatus[tid] != Blocked) {
843        // If resumeUnblocking is set, we unblocked during the squash,
844        // but now we're have unblocking status. We need to tell earlier
845        // stages to block.
846        if (resumeUnblocking || renameStatus[tid] != Unblocking) {
847            toDecode->renameBlock[tid] = true;
848            toDecode->renameUnblock[tid] = false;
849            wroteToTimeBuffer = true;
850        }
851
852        // Rename can not go from SerializeStall to Blocked, otherwise
853        // it would not know to complete the serialize stall.
854        if (renameStatus[tid] != SerializeStall) {
855            // Set status to Blocked.
856            renameStatus[tid] = Blocked;
857            return true;
858        }
859    }
860
861    return false;
862}
863
864template <class Impl>
865bool
866DefaultRename<Impl>::unblock(ThreadID tid)
867{
868    DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
869
870    // Rename is done unblocking if the skid buffer is empty.
871    if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
872
873        DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
874
875        toDecode->renameUnblock[tid] = true;
876        wroteToTimeBuffer = true;
877
878        renameStatus[tid] = Running;
879        return true;
880    }
881
882    return false;
883}
884
885template <class Impl>
886void
887DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, ThreadID tid)
888{
889    typename std::list<RenameHistory>::iterator hb_it =
890        historyBuffer[tid].begin();
891
892    // After a syscall squashes everything, the history buffer may be empty
893    // but the ROB may still be squashing instructions.
894    if (historyBuffer[tid].empty()) {
895        return;
896    }
897
898    // Go through the most recent instructions, undoing the mappings
899    // they did and freeing up the registers.
900    while (!historyBuffer[tid].empty() &&
901           (*hb_it).instSeqNum > squashed_seq_num) {
902        assert(hb_it != historyBuffer[tid].end());
903
904        DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
905                "number %i.\n", tid, (*hb_it).instSeqNum);
906
907        // Tell the rename map to set the architected register to the
908        // previous physical register that it was renamed to.
909        renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
910
911        // Put the renamed physical register back on the free list.
912        freeList->addReg(hb_it->newPhysReg);
913
914        // Be sure to mark its register as ready if it's a misc register.
915        if (hb_it->newPhysReg >= maxPhysicalRegs) {
916            scoreboard->setReg(hb_it->newPhysReg);
917        }
918
919        historyBuffer[tid].erase(hb_it++);
920
921        ++renameUndoneMaps;
922    }
923}
924
925template<class Impl>
926void
927DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, ThreadID tid)
928{
929    DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
930            "history buffer %u (size=%i), until [sn:%lli].\n",
931            tid, tid, historyBuffer[tid].size(), inst_seq_num);
932
933    typename std::list<RenameHistory>::iterator hb_it =
934        historyBuffer[tid].end();
935
936    --hb_it;
937
938    if (historyBuffer[tid].empty()) {
939        DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
940        return;
941    } else if (hb_it->instSeqNum > inst_seq_num) {
942        DPRINTF(Rename, "[tid:%u]: Old sequence number encountered.  Ensure "
943                "that a syscall happened recently.\n", tid);
944        return;
945    }
946
947    // Commit all the renames up until (and including) the committed sequence
948    // number. Some or even all of the committed instructions may not have
949    // rename histories if they did not have destination registers that were
950    // renamed.
951    while (!historyBuffer[tid].empty() &&
952           hb_it != historyBuffer[tid].end() &&
953           (*hb_it).instSeqNum <= inst_seq_num) {
954
955        DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
956                "[sn:%lli].\n",
957                tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
958
959        freeList->addReg((*hb_it).prevPhysReg);
960        ++renameCommittedMaps;
961
962        historyBuffer[tid].erase(hb_it--);
963    }
964}
965
966template <class Impl>
967inline void
968DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst, ThreadID tid)
969{
970    assert(renameMap[tid] != 0);
971
972    unsigned num_src_regs = inst->numSrcRegs();
973
974    // Get the architectual register numbers from the source and
975    // destination operands, and redirect them to the right register.
976    // Will need to mark dependencies though.
977    for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
978        RegIndex src_reg = inst->srcRegIdx(src_idx);
979        RegIndex flat_src_reg = src_reg;
980        if (src_reg < TheISA::FP_Base_DepTag) {
981            flat_src_reg = inst->tcBase()->flattenIntIndex(src_reg);
982            DPRINTF(Rename, "Flattening index %d to %d.\n",
983                    (int)src_reg, (int)flat_src_reg);
984        } else if (src_reg < TheISA::Ctrl_Base_DepTag) {
985            src_reg = src_reg - TheISA::FP_Base_DepTag;
986            flat_src_reg = inst->tcBase()->flattenFloatIndex(src_reg);
987            DPRINTF(Rename, "Flattening index %d to %d.\n",
988                    (int)src_reg, (int)flat_src_reg);
989            flat_src_reg += TheISA::NumIntRegs;
990        } else if (src_reg < TheISA::Max_DepTag) {
991            flat_src_reg = src_reg - TheISA::Ctrl_Base_DepTag +
992                           TheISA::NumFloatRegs + TheISA::NumIntRegs;
993            DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
994                    src_reg, flat_src_reg);
995        } else {
996            panic("Reg index is out of bound: %d.", src_reg);
997        }
998
999        inst->flattenSrcReg(src_idx, flat_src_reg);
1000
1001        // Look up the source registers to get the phys. register they've
1002        // been renamed to, and set the sources to those registers.
1003        PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
1004
1005        DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
1006                "physical reg %i.\n", tid, (int)flat_src_reg,
1007                (int)renamed_reg);
1008
1009        inst->renameSrcReg(src_idx, renamed_reg);
1010
1011        // See if the register is ready or not.
1012        if (scoreboard->getReg(renamed_reg) == true) {
1013            DPRINTF(Rename, "[tid:%u]: Register %d is ready.\n",
1014                    tid, renamed_reg);
1015
1016            inst->markSrcRegReady(src_idx);
1017        } else {
1018            DPRINTF(Rename, "[tid:%u]: Register %d is not ready.\n",
1019                    tid, renamed_reg);
1020        }
1021
1022        ++renameRenameLookups;
1023        inst->isFloating() ? fpRenameLookups++ : intRenameLookups++;
1024    }
1025}
1026
1027template <class Impl>
1028inline void
1029DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst, ThreadID tid)
1030{
1031    typename RenameMap::RenameInfo rename_result;
1032
1033    unsigned num_dest_regs = inst->numDestRegs();
1034
1035    // Rename the destination registers.
1036    for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
1037        RegIndex dest_reg = inst->destRegIdx(dest_idx);
1038        RegIndex flat_dest_reg = dest_reg;
1039        if (dest_reg < TheISA::FP_Base_DepTag) {
1040            // Integer registers are flattened.
1041            flat_dest_reg = inst->tcBase()->flattenIntIndex(dest_reg);
1042            DPRINTF(Rename, "Flattening index %d to %d.\n",
1043                    (int)dest_reg, (int)flat_dest_reg);
1044        } else if (dest_reg < TheISA::Ctrl_Base_DepTag) {
1045            dest_reg = dest_reg - TheISA::FP_Base_DepTag;
1046            flat_dest_reg = inst->tcBase()->flattenFloatIndex(dest_reg);
1047            DPRINTF(Rename, "Flattening index %d to %d.\n",
1048                    (int)dest_reg, (int)flat_dest_reg);
1049            flat_dest_reg += TheISA::NumIntRegs;
1050        } else if (dest_reg < TheISA::Max_DepTag) {
1051            // Floating point and Miscellaneous registers need their indexes
1052            // adjusted to account for the expanded number of flattened int regs.
1053            flat_dest_reg = dest_reg - TheISA::Ctrl_Base_DepTag +
1054                            TheISA::NumIntRegs + TheISA::NumFloatRegs;
1055            DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
1056                    dest_reg, flat_dest_reg);
1057        } else {
1058            panic("Reg index is out of bound: %d.", dest_reg);
1059        }
1060
1061        inst->flattenDestReg(dest_idx, flat_dest_reg);
1062
1063        // Get the physical register that the destination will be
1064        // renamed to.
1065        rename_result = renameMap[tid]->rename(flat_dest_reg);
1066
1067        //Mark Scoreboard entry as not ready
1068        if (dest_reg < TheISA::Ctrl_Base_DepTag)
1069            scoreboard->unsetReg(rename_result.first);
1070
1071        DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
1072                "reg %i.\n", tid, (int)flat_dest_reg,
1073                (int)rename_result.first);
1074
1075        // Record the rename information so that a history can be kept.
1076        RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
1077                               rename_result.first,
1078                               rename_result.second);
1079
1080        historyBuffer[tid].push_front(hb_entry);
1081
1082        DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
1083                "(size=%i), [sn:%lli].\n",tid,
1084                historyBuffer[tid].size(),
1085                (*historyBuffer[tid].begin()).instSeqNum);
1086
1087        // Tell the instruction to rename the appropriate destination
1088        // register (dest_idx) to the new physical register
1089        // (rename_result.first), and record the previous physical
1090        // register that the same logical register was renamed to
1091        // (rename_result.second).
1092        inst->renameDestReg(dest_idx,
1093                            rename_result.first,
1094                            rename_result.second);
1095
1096        ++renameRenamedOperands;
1097    }
1098}
1099
1100template <class Impl>
1101inline int
1102DefaultRename<Impl>::calcFreeROBEntries(ThreadID tid)
1103{
1104    int num_free = freeEntries[tid].robEntries -
1105                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1106
1107    //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
1108
1109    return num_free;
1110}
1111
1112template <class Impl>
1113inline int
1114DefaultRename<Impl>::calcFreeIQEntries(ThreadID tid)
1115{
1116    int num_free = freeEntries[tid].iqEntries -
1117                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1118
1119    //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
1120
1121    return num_free;
1122}
1123
1124template <class Impl>
1125inline int
1126DefaultRename<Impl>::calcFreeLSQEntries(ThreadID tid)
1127{
1128    int num_free = freeEntries[tid].lsqEntries -
1129                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
1130
1131    //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
1132
1133    return num_free;
1134}
1135
1136template <class Impl>
1137unsigned
1138DefaultRename<Impl>::validInsts()
1139{
1140    unsigned inst_count = 0;
1141
1142    for (int i=0; i<fromDecode->size; i++) {
1143        if (!fromDecode->insts[i]->isSquashed())
1144            inst_count++;
1145    }
1146
1147    return inst_count;
1148}
1149
1150template <class Impl>
1151void
1152DefaultRename<Impl>::readStallSignals(ThreadID tid)
1153{
1154    if (fromIEW->iewBlock[tid]) {
1155        stalls[tid].iew = true;
1156    }
1157
1158    if (fromIEW->iewUnblock[tid]) {
1159        assert(stalls[tid].iew);
1160        stalls[tid].iew = false;
1161    }
1162
1163    if (fromCommit->commitBlock[tid]) {
1164        stalls[tid].commit = true;
1165    }
1166
1167    if (fromCommit->commitUnblock[tid]) {
1168        assert(stalls[tid].commit);
1169        stalls[tid].commit = false;
1170    }
1171}
1172
1173template <class Impl>
1174bool
1175DefaultRename<Impl>::checkStall(ThreadID tid)
1176{
1177    bool ret_val = false;
1178
1179    if (stalls[tid].iew) {
1180        DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
1181        ret_val = true;
1182    } else if (stalls[tid].commit) {
1183        DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
1184        ret_val = true;
1185    } else if (calcFreeROBEntries(tid) <= 0) {
1186        DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
1187        ret_val = true;
1188    } else if (calcFreeIQEntries(tid) <= 0) {
1189        DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
1190        ret_val = true;
1191    } else if (calcFreeLSQEntries(tid) <= 0) {
1192        DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
1193        ret_val = true;
1194    } else if (renameMap[tid]->numFreeEntries() <= 0) {
1195        DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
1196        ret_val = true;
1197    } else if (renameStatus[tid] == SerializeStall &&
1198               (!emptyROB[tid] || instsInProgress[tid])) {
1199        DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
1200                "empty.\n",
1201                tid);
1202        ret_val = true;
1203    }
1204
1205    return ret_val;
1206}
1207
1208template <class Impl>
1209void
1210DefaultRename<Impl>::readFreeEntries(ThreadID tid)
1211{
1212    bool updated = false;
1213    if (fromIEW->iewInfo[tid].usedIQ) {
1214        freeEntries[tid].iqEntries =
1215            fromIEW->iewInfo[tid].freeIQEntries;
1216        updated = true;
1217    }
1218
1219    if (fromIEW->iewInfo[tid].usedLSQ) {
1220        freeEntries[tid].lsqEntries =
1221            fromIEW->iewInfo[tid].freeLSQEntries;
1222        updated = true;
1223    }
1224
1225    if (fromCommit->commitInfo[tid].usedROB) {
1226        freeEntries[tid].robEntries =
1227            fromCommit->commitInfo[tid].freeROBEntries;
1228        emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
1229        updated = true;
1230    }
1231
1232    DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
1233            tid,
1234            freeEntries[tid].iqEntries,
1235            freeEntries[tid].robEntries,
1236            freeEntries[tid].lsqEntries);
1237
1238    DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
1239            tid, instsInProgress[tid]);
1240}
1241
1242template <class Impl>
1243bool
1244DefaultRename<Impl>::checkSignalsAndUpdate(ThreadID tid)
1245{
1246    // Check if there's a squash signal, squash if there is
1247    // Check stall signals, block if necessary.
1248    // If status was blocked
1249    //     check if stall conditions have passed
1250    //         if so then go to unblocking
1251    // If status was Squashing
1252    //     check if squashing is not high.  Switch to running this cycle.
1253    // If status was serialize stall
1254    //     check if ROB is empty and no insts are in flight to the ROB
1255
1256    readFreeEntries(tid);
1257    readStallSignals(tid);
1258
1259    if (fromCommit->commitInfo[tid].squash) {
1260        DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
1261                "commit.\n", tid);
1262
1263        squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
1264
1265        return true;
1266    }
1267
1268    if (fromCommit->commitInfo[tid].robSquashing) {
1269        DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
1270
1271        renameStatus[tid] = Squashing;
1272
1273        return true;
1274    }
1275
1276    if (checkStall(tid)) {
1277        return block(tid);
1278    }
1279
1280    if (renameStatus[tid] == Blocked) {
1281        DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
1282                tid);
1283
1284        renameStatus[tid] = Unblocking;
1285
1286        unblock(tid);
1287
1288        return true;
1289    }
1290
1291    if (renameStatus[tid] == Squashing) {
1292        // Switch status to running if rename isn't being told to block or
1293        // squash this cycle.
1294        if (resumeSerialize) {
1295            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
1296                    tid);
1297
1298            renameStatus[tid] = SerializeStall;
1299            return true;
1300        } else if (resumeUnblocking) {
1301            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
1302                    tid);
1303            renameStatus[tid] = Unblocking;
1304            return true;
1305        } else {
1306            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
1307                    tid);
1308
1309            renameStatus[tid] = Running;
1310            return false;
1311        }
1312    }
1313
1314    if (renameStatus[tid] == SerializeStall) {
1315        // Stall ends once the ROB is free.
1316        DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
1317                "unblocking.\n", tid);
1318
1319        DynInstPtr serial_inst = serializeInst[tid];
1320
1321        renameStatus[tid] = Unblocking;
1322
1323        unblock(tid);
1324
1325        DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
1326                "PC %s.\n", tid, serial_inst->seqNum, serial_inst->pcState());
1327
1328        // Put instruction into queue here.
1329        serial_inst->clearSerializeBefore();
1330
1331        if (!skidBuffer[tid].empty()) {
1332            skidBuffer[tid].push_front(serial_inst);
1333        } else {
1334            insts[tid].push_front(serial_inst);
1335        }
1336
1337        DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
1338                " Adding to front of list.\n", tid);
1339
1340        serializeInst[tid] = NULL;
1341
1342        return true;
1343    }
1344
1345    // If we've reached this point, we have not gotten any signals that
1346    // cause rename to change its status.  Rename remains the same as before.
1347    return false;
1348}
1349
1350template<class Impl>
1351void
1352DefaultRename<Impl>::serializeAfter(InstQueue &inst_list, ThreadID tid)
1353{
1354    if (inst_list.empty()) {
1355        // Mark a bit to say that I must serialize on the next instruction.
1356        serializeOnNextInst[tid] = true;
1357        return;
1358    }
1359
1360    // Set the next instruction as serializing.
1361    inst_list.front()->setSerializeBefore();
1362}
1363
1364template <class Impl>
1365inline void
1366DefaultRename<Impl>::incrFullStat(const FullSource &source)
1367{
1368    switch (source) {
1369      case ROB:
1370        ++renameROBFullEvents;
1371        break;
1372      case IQ:
1373        ++renameIQFullEvents;
1374        break;
1375      case LSQ:
1376        ++renameLSQFullEvents;
1377        break;
1378      default:
1379        panic("Rename full stall stat should be incremented for a reason!");
1380        break;
1381    }
1382}
1383
1384template <class Impl>
1385void
1386DefaultRename<Impl>::dumpHistory()
1387{
1388    typename std::list<RenameHistory>::iterator buf_it;
1389
1390    for (ThreadID tid = 0; tid < numThreads; tid++) {
1391
1392        buf_it = historyBuffer[tid].begin();
1393
1394        while (buf_it != historyBuffer[tid].end()) {
1395            cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
1396                    "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
1397                    (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
1398
1399            buf_it++;
1400        }
1401    }
1402}
1403