rename_impl.hh revision 4345:a95454b0e835
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include <list>
33
34#include "arch/isa_traits.hh"
35#include "arch/regfile.hh"
36#include "config/full_system.hh"
37#include "cpu/o3/rename.hh"
38
39template <class Impl>
40DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, Params *params)
41    : cpu(_cpu),
42      iewToRenameDelay(params->iewToRenameDelay),
43      decodeToRenameDelay(params->decodeToRenameDelay),
44      commitToRenameDelay(params->commitToRenameDelay),
45      renameWidth(params->renameWidth),
46      commitWidth(params->commitWidth),
47      resumeSerialize(false),
48      resumeUnblocking(false),
49      numThreads(params->numberOfThreads),
50      maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
51{
52    _status = Inactive;
53
54    for (int i=0; i< numThreads; i++) {
55        renameStatus[i] = Idle;
56
57        freeEntries[i].iqEntries = 0;
58        freeEntries[i].lsqEntries = 0;
59        freeEntries[i].robEntries = 0;
60
61        stalls[i].iew = false;
62        stalls[i].commit = false;
63        serializeInst[i] = NULL;
64
65        instsInProgress[i] = 0;
66
67        emptyROB[i] = true;
68
69        serializeOnNextInst[i] = false;
70    }
71
72    // @todo: Make into a parameter.
73    skidBufferMax = (2 * (iewToRenameDelay * params->decodeWidth)) + renameWidth;
74}
75
76template <class Impl>
77std::string
78DefaultRename<Impl>::name() const
79{
80    return cpu->name() + ".rename";
81}
82
83template <class Impl>
84void
85DefaultRename<Impl>::regStats()
86{
87    renameSquashCycles
88        .name(name() + ".RENAME:SquashCycles")
89        .desc("Number of cycles rename is squashing")
90        .prereq(renameSquashCycles);
91    renameIdleCycles
92        .name(name() + ".RENAME:IdleCycles")
93        .desc("Number of cycles rename is idle")
94        .prereq(renameIdleCycles);
95    renameBlockCycles
96        .name(name() + ".RENAME:BlockCycles")
97        .desc("Number of cycles rename is blocking")
98        .prereq(renameBlockCycles);
99    renameSerializeStallCycles
100        .name(name() + ".RENAME:serializeStallCycles")
101        .desc("count of cycles rename stalled for serializing inst")
102        .flags(Stats::total);
103    renameRunCycles
104        .name(name() + ".RENAME:RunCycles")
105        .desc("Number of cycles rename is running")
106        .prereq(renameIdleCycles);
107    renameUnblockCycles
108        .name(name() + ".RENAME:UnblockCycles")
109        .desc("Number of cycles rename is unblocking")
110        .prereq(renameUnblockCycles);
111    renameRenamedInsts
112        .name(name() + ".RENAME:RenamedInsts")
113        .desc("Number of instructions processed by rename")
114        .prereq(renameRenamedInsts);
115    renameSquashedInsts
116        .name(name() + ".RENAME:SquashedInsts")
117        .desc("Number of squashed instructions processed by rename")
118        .prereq(renameSquashedInsts);
119    renameROBFullEvents
120        .name(name() + ".RENAME:ROBFullEvents")
121        .desc("Number of times rename has blocked due to ROB full")
122        .prereq(renameROBFullEvents);
123    renameIQFullEvents
124        .name(name() + ".RENAME:IQFullEvents")
125        .desc("Number of times rename has blocked due to IQ full")
126        .prereq(renameIQFullEvents);
127    renameLSQFullEvents
128        .name(name() + ".RENAME:LSQFullEvents")
129        .desc("Number of times rename has blocked due to LSQ full")
130        .prereq(renameLSQFullEvents);
131    renameFullRegistersEvents
132        .name(name() + ".RENAME:FullRegisterEvents")
133        .desc("Number of times there has been no free registers")
134        .prereq(renameFullRegistersEvents);
135    renameRenamedOperands
136        .name(name() + ".RENAME:RenamedOperands")
137        .desc("Number of destination operands rename has renamed")
138        .prereq(renameRenamedOperands);
139    renameRenameLookups
140        .name(name() + ".RENAME:RenameLookups")
141        .desc("Number of register rename lookups that rename has made")
142        .prereq(renameRenameLookups);
143    renameCommittedMaps
144        .name(name() + ".RENAME:CommittedMaps")
145        .desc("Number of HB maps that are committed")
146        .prereq(renameCommittedMaps);
147    renameUndoneMaps
148        .name(name() + ".RENAME:UndoneMaps")
149        .desc("Number of HB maps that are undone due to squashing")
150        .prereq(renameUndoneMaps);
151    renamedSerializing
152        .name(name() + ".RENAME:serializingInsts")
153        .desc("count of serializing insts renamed")
154        .flags(Stats::total)
155        ;
156    renamedTempSerializing
157        .name(name() + ".RENAME:tempSerializingInsts")
158        .desc("count of temporary serializing insts renamed")
159        .flags(Stats::total)
160        ;
161    renameSkidInsts
162        .name(name() + ".RENAME:skidInsts")
163        .desc("count of insts added to the skid buffer")
164        .flags(Stats::total)
165        ;
166}
167
168template <class Impl>
169void
170DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
171{
172    timeBuffer = tb_ptr;
173
174    // Setup wire to read information from time buffer, from IEW stage.
175    fromIEW = timeBuffer->getWire(-iewToRenameDelay);
176
177    // Setup wire to read infromation from time buffer, from commit stage.
178    fromCommit = timeBuffer->getWire(-commitToRenameDelay);
179
180    // Setup wire to write information to previous stages.
181    toDecode = timeBuffer->getWire(0);
182}
183
184template <class Impl>
185void
186DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
187{
188    renameQueue = rq_ptr;
189
190    // Setup wire to write information to future stages.
191    toIEW = renameQueue->getWire(0);
192}
193
194template <class Impl>
195void
196DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
197{
198    decodeQueue = dq_ptr;
199
200    // Setup wire to get information from decode.
201    fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
202}
203
204template <class Impl>
205void
206DefaultRename<Impl>::initStage()
207{
208    // Grab the number of free entries directly from the stages.
209    for (int tid=0; tid < numThreads; tid++) {
210        freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
211        freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
212        freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
213        emptyROB[tid] = true;
214    }
215}
216
217template<class Impl>
218void
219DefaultRename<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
220{
221    activeThreads = at_ptr;
222}
223
224
225template <class Impl>
226void
227DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
228{
229    for (int i=0; i<numThreads; i++) {
230        renameMap[i] = &rm_ptr[i];
231    }
232}
233
234template <class Impl>
235void
236DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
237{
238    freeList = fl_ptr;
239}
240
241template<class Impl>
242void
243DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
244{
245    scoreboard = _scoreboard;
246}
247
248template <class Impl>
249bool
250DefaultRename<Impl>::drain()
251{
252    // Rename is ready to switch out at any time.
253    cpu->signalDrained();
254    return true;
255}
256
257template <class Impl>
258void
259DefaultRename<Impl>::switchOut()
260{
261    // Clear any state, fix up the rename map.
262    for (int i = 0; i < numThreads; i++) {
263        typename std::list<RenameHistory>::iterator hb_it =
264            historyBuffer[i].begin();
265
266        while (!historyBuffer[i].empty()) {
267            assert(hb_it != historyBuffer[i].end());
268
269            DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
270                    "number %i.\n", i, (*hb_it).instSeqNum);
271
272            // Tell the rename map to set the architected register to the
273            // previous physical register that it was renamed to.
274            renameMap[i]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
275
276            // Put the renamed physical register back on the free list.
277            freeList->addReg(hb_it->newPhysReg);
278
279            // Be sure to mark its register as ready if it's a misc register.
280            if (hb_it->newPhysReg >= maxPhysicalRegs) {
281                scoreboard->setReg(hb_it->newPhysReg);
282            }
283
284            historyBuffer[i].erase(hb_it++);
285        }
286        insts[i].clear();
287        skidBuffer[i].clear();
288    }
289}
290
291template <class Impl>
292void
293DefaultRename<Impl>::takeOverFrom()
294{
295    _status = Inactive;
296    initStage();
297
298    // Reset all state prior to taking over from the other CPU.
299    for (int i=0; i< numThreads; i++) {
300        renameStatus[i] = Idle;
301
302        stalls[i].iew = false;
303        stalls[i].commit = false;
304        serializeInst[i] = NULL;
305
306        instsInProgress[i] = 0;
307
308        emptyROB[i] = true;
309
310        serializeOnNextInst[i] = false;
311    }
312}
313
314template <class Impl>
315void
316DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, unsigned tid)
317{
318    DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
319
320    // Clear the stall signal if rename was blocked or unblocking before.
321    // If it still needs to block, the blocking should happen the next
322    // cycle and there should be space to hold everything due to the squash.
323    if (renameStatus[tid] == Blocked ||
324        renameStatus[tid] == Unblocking) {
325        toDecode->renameUnblock[tid] = 1;
326
327        resumeSerialize = false;
328        serializeInst[tid] = NULL;
329    } else if (renameStatus[tid] == SerializeStall) {
330        if (serializeInst[tid]->seqNum <= squash_seq_num) {
331            DPRINTF(Rename, "Rename will resume serializing after squash\n");
332            resumeSerialize = true;
333            assert(serializeInst[tid]);
334        } else {
335            resumeSerialize = false;
336            toDecode->renameUnblock[tid] = 1;
337
338            serializeInst[tid] = NULL;
339        }
340    }
341
342    // Set the status to Squashing.
343    renameStatus[tid] = Squashing;
344
345    // Squash any instructions from decode.
346    unsigned squashCount = 0;
347
348    for (int i=0; i<fromDecode->size; i++) {
349        if (fromDecode->insts[i]->threadNumber == tid &&
350            fromDecode->insts[i]->seqNum > squash_seq_num) {
351            fromDecode->insts[i]->setSquashed();
352            wroteToTimeBuffer = true;
353            squashCount++;
354        }
355
356    }
357
358    // Clear the instruction list and skid buffer in case they have any
359    // insts in them. Since we support multiple ISAs, we cant just:
360    // "insts[tid].clear();" or "skidBuffer[tid].clear()" since there is
361    // a possible delay slot inst for different architectures
362    // insts[tid].clear();
363#if ISA_HAS_DELAY_SLOT
364    DPRINTF(Rename, "[tid:%i] Squashing incoming decode instructions until "
365            "[sn:%i].\n",tid, squash_seq_num);
366    ListIt ilist_it = insts[tid].begin();
367    while (ilist_it != insts[tid].end()) {
368        if ((*ilist_it)->seqNum > squash_seq_num) {
369            (*ilist_it)->setSquashed();
370            DPRINTF(Rename, "Squashing incoming decode instruction, "
371                    "[tid:%i] [sn:%i] PC %08p.\n", tid, (*ilist_it)->seqNum, (*ilist_it)->PC);
372        }
373        ilist_it++;
374    }
375#else
376    insts[tid].clear();
377#endif
378
379    // Clear the skid buffer in case it has any data in it.
380    // See comments above.
381    //     skidBuffer[tid].clear();
382#if ISA_HAS_DELAY_SLOT
383    DPRINTF(Rename, "[tid:%i] Squashing incoming skidbuffer instructions "
384            "until [sn:%i].\n", tid, squash_seq_num);
385    ListIt slist_it = skidBuffer[tid].begin();
386    while (slist_it != skidBuffer[tid].end()) {
387        if ((*slist_it)->seqNum > squash_seq_num) {
388            (*slist_it)->setSquashed();
389            DPRINTF(Rename, "Squashing skidbuffer instruction, [tid:%i] [sn:%i]"
390                    "PC %08p.\n", tid, (*slist_it)->seqNum, (*slist_it)->PC);
391        }
392        slist_it++;
393    }
394    resumeUnblocking = (skidBuffer[tid].size() != 0);
395    DPRINTF(Rename, "Resume unblocking set to %s\n",
396            resumeUnblocking ? "true" : "false");
397#else
398    skidBuffer[tid].clear();
399#endif
400    doSquash(squash_seq_num, tid);
401}
402
403template <class Impl>
404void
405DefaultRename<Impl>::tick()
406{
407    wroteToTimeBuffer = false;
408
409    blockThisCycle = false;
410
411    bool status_change = false;
412
413    toIEWIndex = 0;
414
415    sortInsts();
416
417    std::list<unsigned>::iterator threads = activeThreads->begin();
418    std::list<unsigned>::iterator end = activeThreads->end();
419
420    // Check stall and squash signals.
421    while (threads != end) {
422        unsigned tid = *threads++;
423
424        DPRINTF(Rename, "Processing [tid:%i]\n", tid);
425
426        status_change = checkSignalsAndUpdate(tid) || status_change;
427
428        rename(status_change, tid);
429    }
430
431    if (status_change) {
432        updateStatus();
433    }
434
435    if (wroteToTimeBuffer) {
436        DPRINTF(Activity, "Activity this cycle.\n");
437        cpu->activityThisCycle();
438    }
439
440    threads = activeThreads->begin();
441
442    while (threads != end) {
443        unsigned tid = *threads++;
444
445        // If we committed this cycle then doneSeqNum will be > 0
446        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
447            !fromCommit->commitInfo[tid].squash &&
448            renameStatus[tid] != Squashing) {
449
450            removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
451                                  tid);
452        }
453    }
454
455    // @todo: make into updateProgress function
456    for (int tid=0; tid < numThreads; tid++) {
457        instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
458
459        assert(instsInProgress[tid] >=0);
460    }
461
462}
463
464template<class Impl>
465void
466DefaultRename<Impl>::rename(bool &status_change, unsigned tid)
467{
468    // If status is Running or idle,
469    //     call renameInsts()
470    // If status is Unblocking,
471    //     buffer any instructions coming from decode
472    //     continue trying to empty skid buffer
473    //     check if stall conditions have passed
474
475    if (renameStatus[tid] == Blocked) {
476        ++renameBlockCycles;
477    } else if (renameStatus[tid] == Squashing) {
478        ++renameSquashCycles;
479    } else if (renameStatus[tid] == SerializeStall) {
480        ++renameSerializeStallCycles;
481        // If we are currently in SerializeStall and resumeSerialize
482        // was set, then that means that we are resuming serializing
483        // this cycle.  Tell the previous stages to block.
484        if (resumeSerialize) {
485            resumeSerialize = false;
486            block(tid);
487            toDecode->renameUnblock[tid] = false;
488        }
489    } else if (renameStatus[tid] == Unblocking) {
490        if (resumeUnblocking) {
491            block(tid);
492            resumeUnblocking = false;
493            toDecode->renameUnblock[tid] = false;
494        }
495    }
496
497    if (renameStatus[tid] == Running ||
498        renameStatus[tid] == Idle) {
499        DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
500                "stage.\n", tid);
501
502        renameInsts(tid);
503    } else if (renameStatus[tid] == Unblocking) {
504        renameInsts(tid);
505
506        if (validInsts()) {
507            // Add the current inputs to the skid buffer so they can be
508            // reprocessed when this stage unblocks.
509            skidInsert(tid);
510        }
511
512        // If we switched over to blocking, then there's a potential for
513        // an overall status change.
514        status_change = unblock(tid) || status_change || blockThisCycle;
515    }
516}
517
518template <class Impl>
519void
520DefaultRename<Impl>::renameInsts(unsigned tid)
521{
522    // Instructions can be either in the skid buffer or the queue of
523    // instructions coming from decode, depending on the status.
524    int insts_available = renameStatus[tid] == Unblocking ?
525        skidBuffer[tid].size() : insts[tid].size();
526
527    // Check the decode queue to see if instructions are available.
528    // If there are no available instructions to rename, then do nothing.
529    if (insts_available == 0) {
530        DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
531                tid);
532        // Should I change status to idle?
533        ++renameIdleCycles;
534        return;
535    } else if (renameStatus[tid] == Unblocking) {
536        ++renameUnblockCycles;
537    } else if (renameStatus[tid] == Running) {
538        ++renameRunCycles;
539    }
540
541    DynInstPtr inst;
542
543    // Will have to do a different calculation for the number of free
544    // entries.
545    int free_rob_entries = calcFreeROBEntries(tid);
546    int free_iq_entries  = calcFreeIQEntries(tid);
547    int free_lsq_entries = calcFreeLSQEntries(tid);
548    int min_free_entries = free_rob_entries;
549
550    FullSource source = ROB;
551
552    if (free_iq_entries < min_free_entries) {
553        min_free_entries = free_iq_entries;
554        source = IQ;
555    }
556
557    if (free_lsq_entries < min_free_entries) {
558        min_free_entries = free_lsq_entries;
559        source = LSQ;
560    }
561
562    // Check if there's any space left.
563    if (min_free_entries <= 0) {
564        DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
565                "entries.\n"
566                "ROB has %i free entries.\n"
567                "IQ has %i free entries.\n"
568                "LSQ has %i free entries.\n",
569                tid,
570                free_rob_entries,
571                free_iq_entries,
572                free_lsq_entries);
573
574        blockThisCycle = true;
575
576        block(tid);
577
578        incrFullStat(source);
579
580        return;
581    } else if (min_free_entries < insts_available) {
582        DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
583                "%i insts available, but only %i insts can be "
584                "renamed due to ROB/IQ/LSQ limits.\n",
585                tid, insts_available, min_free_entries);
586
587        insts_available = min_free_entries;
588
589        blockThisCycle = true;
590
591        incrFullStat(source);
592    }
593
594    InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
595        skidBuffer[tid] : insts[tid];
596
597    DPRINTF(Rename, "[tid:%u]: %i available instructions to "
598            "send iew.\n", tid, insts_available);
599
600    DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
601            "dispatched to IQ last cycle.\n",
602            tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
603
604    // Handle serializing the next instruction if necessary.
605    if (serializeOnNextInst[tid]) {
606        if (emptyROB[tid] && instsInProgress[tid] == 0) {
607            // ROB already empty; no need to serialize.
608            serializeOnNextInst[tid] = false;
609        } else if (!insts_to_rename.empty()) {
610            insts_to_rename.front()->setSerializeBefore();
611        }
612    }
613
614    int renamed_insts = 0;
615
616    while (insts_available > 0 &&  toIEWIndex < renameWidth) {
617        DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
618
619        assert(!insts_to_rename.empty());
620
621        inst = insts_to_rename.front();
622
623        insts_to_rename.pop_front();
624
625        if (renameStatus[tid] == Unblocking) {
626            DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%#x from rename "
627                    "skidBuffer\n",
628                    tid, inst->seqNum, inst->readPC());
629        }
630
631        if (inst->isSquashed()) {
632            DPRINTF(Rename, "[tid:%u]: instruction %i with PC %#x is "
633                    "squashed, skipping.\n",
634                    tid, inst->seqNum, inst->readPC());
635
636            ++renameSquashedInsts;
637
638            // Decrement how many instructions are available.
639            --insts_available;
640
641            continue;
642        }
643
644        DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
645                "PC %#x.\n",
646                tid, inst->seqNum, inst->readPC());
647
648        // Handle serializeAfter/serializeBefore instructions.
649        // serializeAfter marks the next instruction as serializeBefore.
650        // serializeBefore makes the instruction wait in rename until the ROB
651        // is empty.
652
653        // In this model, IPR accesses are serialize before
654        // instructions, and store conditionals are serialize after
655        // instructions.  This is mainly due to lack of support for
656        // out-of-order operations of either of those classes of
657        // instructions.
658        if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
659            !inst->isSerializeHandled()) {
660            DPRINTF(Rename, "Serialize before instruction encountered.\n");
661
662            if (!inst->isTempSerializeBefore()) {
663                renamedSerializing++;
664                inst->setSerializeHandled();
665            } else {
666                renamedTempSerializing++;
667            }
668
669            // Change status over to SerializeStall so that other stages know
670            // what this is blocked on.
671            renameStatus[tid] = SerializeStall;
672
673            serializeInst[tid] = inst;
674
675            blockThisCycle = true;
676
677            break;
678        } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
679                   !inst->isSerializeHandled()) {
680            DPRINTF(Rename, "Serialize after instruction encountered.\n");
681
682            renamedSerializing++;
683
684            inst->setSerializeHandled();
685
686            serializeAfter(insts_to_rename, tid);
687        }
688
689        // Check here to make sure there are enough destination registers
690        // to rename to.  Otherwise block.
691        if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
692            DPRINTF(Rename, "Blocking due to lack of free "
693                    "physical registers to rename to.\n");
694            blockThisCycle = true;
695            insts_to_rename.push_front(inst);
696            ++renameFullRegistersEvents;
697
698            break;
699        }
700
701        renameSrcRegs(inst, inst->threadNumber);
702
703        renameDestRegs(inst, inst->threadNumber);
704
705        ++renamed_insts;
706
707        // Put instruction in rename queue.
708        toIEW->insts[toIEWIndex] = inst;
709        ++(toIEW->size);
710
711        // Increment which instruction we're on.
712        ++toIEWIndex;
713
714        // Decrement how many instructions are available.
715        --insts_available;
716    }
717
718    instsInProgress[tid] += renamed_insts;
719    renameRenamedInsts += renamed_insts;
720
721    // If we wrote to the time buffer, record this.
722    if (toIEWIndex) {
723        wroteToTimeBuffer = true;
724    }
725
726    // Check if there's any instructions left that haven't yet been renamed.
727    // If so then block.
728    if (insts_available) {
729        blockThisCycle = true;
730    }
731
732    if (blockThisCycle) {
733        block(tid);
734        toDecode->renameUnblock[tid] = false;
735    }
736}
737
738template<class Impl>
739void
740DefaultRename<Impl>::skidInsert(unsigned tid)
741{
742    DynInstPtr inst = NULL;
743
744    while (!insts[tid].empty()) {
745        inst = insts[tid].front();
746
747        insts[tid].pop_front();
748
749        assert(tid == inst->threadNumber);
750
751        DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC:%#x into Rename "
752                "skidBuffer\n", tid, inst->seqNum, inst->readPC());
753
754        ++renameSkidInsts;
755
756        skidBuffer[tid].push_back(inst);
757    }
758
759    if (skidBuffer[tid].size() > skidBufferMax)
760    {
761        typename InstQueue::iterator it;
762        warn("Skidbuffer contents:\n");
763        for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
764        {
765            warn("[tid:%u]: %s [sn:%i].\n", tid,
766                    (*it)->staticInst->disassemble(inst->readPC()),
767                    (*it)->seqNum);
768        }
769        panic("Skidbuffer Exceeded Max Size");
770    }
771}
772
773template <class Impl>
774void
775DefaultRename<Impl>::sortInsts()
776{
777    int insts_from_decode = fromDecode->size;
778#ifdef DEBUG
779#if !ISA_HAS_DELAY_SLOT
780    for (int i=0; i < numThreads; i++)
781        assert(insts[i].empty());
782#endif
783#endif
784    for (int i = 0; i < insts_from_decode; ++i) {
785        DynInstPtr inst = fromDecode->insts[i];
786        insts[inst->threadNumber].push_back(inst);
787    }
788}
789
790template<class Impl>
791bool
792DefaultRename<Impl>::skidsEmpty()
793{
794    std::list<unsigned>::iterator threads = activeThreads->begin();
795    std::list<unsigned>::iterator end = activeThreads->end();
796
797    while (threads != end) {
798        unsigned tid = *threads++;
799
800        if (!skidBuffer[tid].empty())
801            return false;
802    }
803
804    return true;
805}
806
807template<class Impl>
808void
809DefaultRename<Impl>::updateStatus()
810{
811    bool any_unblocking = false;
812
813    std::list<unsigned>::iterator threads = activeThreads->begin();
814    std::list<unsigned>::iterator end = activeThreads->end();
815
816    while (threads != end) {
817        unsigned tid = *threads++;
818
819        if (renameStatus[tid] == Unblocking) {
820            any_unblocking = true;
821            break;
822        }
823    }
824
825    // Rename will have activity if it's unblocking.
826    if (any_unblocking) {
827        if (_status == Inactive) {
828            _status = Active;
829
830            DPRINTF(Activity, "Activating stage.\n");
831
832            cpu->activateStage(O3CPU::RenameIdx);
833        }
834    } else {
835        // If it's not unblocking, then rename will not have any internal
836        // activity.  Switch it to inactive.
837        if (_status == Active) {
838            _status = Inactive;
839            DPRINTF(Activity, "Deactivating stage.\n");
840
841            cpu->deactivateStage(O3CPU::RenameIdx);
842        }
843    }
844}
845
846template <class Impl>
847bool
848DefaultRename<Impl>::block(unsigned tid)
849{
850    DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
851
852    // Add the current inputs onto the skid buffer, so they can be
853    // reprocessed when this stage unblocks.
854    skidInsert(tid);
855
856    // Only signal backwards to block if the previous stages do not think
857    // rename is already blocked.
858    if (renameStatus[tid] != Blocked) {
859        // If resumeUnblocking is set, we unblocked during the squash,
860        // but now we're have unblocking status. We need to tell earlier
861        // stages to block.
862        if (resumeUnblocking || renameStatus[tid] != Unblocking) {
863            toDecode->renameBlock[tid] = true;
864            toDecode->renameUnblock[tid] = false;
865            wroteToTimeBuffer = true;
866        }
867
868        // Rename can not go from SerializeStall to Blocked, otherwise
869        // it would not know to complete the serialize stall.
870        if (renameStatus[tid] != SerializeStall) {
871            // Set status to Blocked.
872            renameStatus[tid] = Blocked;
873            return true;
874        }
875    }
876
877    return false;
878}
879
880template <class Impl>
881bool
882DefaultRename<Impl>::unblock(unsigned tid)
883{
884    DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
885
886    // Rename is done unblocking if the skid buffer is empty.
887    if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
888
889        DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
890
891        toDecode->renameUnblock[tid] = true;
892        wroteToTimeBuffer = true;
893
894        renameStatus[tid] = Running;
895        return true;
896    }
897
898    return false;
899}
900
901template <class Impl>
902void
903DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, unsigned tid)
904{
905    typename std::list<RenameHistory>::iterator hb_it =
906        historyBuffer[tid].begin();
907
908    // After a syscall squashes everything, the history buffer may be empty
909    // but the ROB may still be squashing instructions.
910    if (historyBuffer[tid].empty()) {
911        return;
912    }
913
914    // Go through the most recent instructions, undoing the mappings
915    // they did and freeing up the registers.
916    while (!historyBuffer[tid].empty() &&
917           (*hb_it).instSeqNum > squashed_seq_num) {
918        assert(hb_it != historyBuffer[tid].end());
919
920        DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
921                "number %i.\n", tid, (*hb_it).instSeqNum);
922
923        // Tell the rename map to set the architected register to the
924        // previous physical register that it was renamed to.
925        renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
926
927        // Put the renamed physical register back on the free list.
928        freeList->addReg(hb_it->newPhysReg);
929
930        // Be sure to mark its register as ready if it's a misc register.
931        if (hb_it->newPhysReg >= maxPhysicalRegs) {
932            scoreboard->setReg(hb_it->newPhysReg);
933        }
934
935        historyBuffer[tid].erase(hb_it++);
936
937        ++renameUndoneMaps;
938    }
939}
940
941template<class Impl>
942void
943DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, unsigned tid)
944{
945    DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
946            "history buffer %u (size=%i), until [sn:%lli].\n",
947            tid, tid, historyBuffer[tid].size(), inst_seq_num);
948
949    typename std::list<RenameHistory>::iterator hb_it =
950        historyBuffer[tid].end();
951
952    --hb_it;
953
954    if (historyBuffer[tid].empty()) {
955        DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
956        return;
957    } else if (hb_it->instSeqNum > inst_seq_num) {
958        DPRINTF(Rename, "[tid:%u]: Old sequence number encountered.  Ensure "
959                "that a syscall happened recently.\n", tid);
960        return;
961    }
962
963    // Commit all the renames up until (and including) the committed sequence
964    // number. Some or even all of the committed instructions may not have
965    // rename histories if they did not have destination registers that were
966    // renamed.
967    while (!historyBuffer[tid].empty() &&
968           hb_it != historyBuffer[tid].end() &&
969           (*hb_it).instSeqNum <= inst_seq_num) {
970
971        DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
972                "[sn:%lli].\n",
973                tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
974
975        freeList->addReg((*hb_it).prevPhysReg);
976        ++renameCommittedMaps;
977
978        historyBuffer[tid].erase(hb_it--);
979    }
980}
981
982template <class Impl>
983inline void
984DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst,unsigned tid)
985{
986    assert(renameMap[tid] != 0);
987
988    unsigned num_src_regs = inst->numSrcRegs();
989
990    // Get the architectual register numbers from the source and
991    // destination operands, and redirect them to the right register.
992    // Will need to mark dependencies though.
993    for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
994        RegIndex src_reg = inst->srcRegIdx(src_idx);
995        RegIndex flat_src_reg = src_reg;
996        if (src_reg < TheISA::FP_Base_DepTag) {
997            flat_src_reg = TheISA::flattenIntIndex(inst->tcBase(), src_reg);
998            DPRINTF(Rename, "Flattening index %d to %d.\n", (int)src_reg, (int)flat_src_reg);
999        }
1000        inst->flattenSrcReg(src_idx, flat_src_reg);
1001
1002        // Look up the source registers to get the phys. register they've
1003        // been renamed to, and set the sources to those registers.
1004        PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
1005
1006        DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
1007                "physical reg %i.\n", tid, (int)flat_src_reg,
1008                (int)renamed_reg);
1009
1010        inst->renameSrcReg(src_idx, renamed_reg);
1011
1012        // See if the register is ready or not.
1013        if (scoreboard->getReg(renamed_reg) == true) {
1014            DPRINTF(Rename, "[tid:%u]: Register is ready.\n", tid);
1015
1016            inst->markSrcRegReady(src_idx);
1017        }
1018
1019        ++renameRenameLookups;
1020    }
1021}
1022
1023template <class Impl>
1024inline void
1025DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst,unsigned tid)
1026{
1027    typename RenameMap::RenameInfo rename_result;
1028
1029    unsigned num_dest_regs = inst->numDestRegs();
1030
1031    // Rename the destination registers.
1032    for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
1033        RegIndex dest_reg = inst->destRegIdx(dest_idx);
1034        RegIndex flat_dest_reg = dest_reg;
1035        if (dest_reg < TheISA::FP_Base_DepTag) {
1036            flat_dest_reg = TheISA::flattenIntIndex(inst->tcBase(), dest_reg);
1037            DPRINTF(Rename, "Flattening index %d to %d.\n", (int)dest_reg, (int)flat_dest_reg);
1038        }
1039
1040        inst->flattenDestReg(dest_idx, flat_dest_reg);
1041
1042        // Get the physical register that the destination will be
1043        // renamed to.
1044        rename_result = renameMap[tid]->rename(flat_dest_reg);
1045
1046        //Mark Scoreboard entry as not ready
1047        scoreboard->unsetReg(rename_result.first);
1048
1049        DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
1050                "reg %i.\n", tid, (int)flat_dest_reg,
1051                (int)rename_result.first);
1052
1053        // Record the rename information so that a history can be kept.
1054        RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
1055                               rename_result.first,
1056                               rename_result.second);
1057
1058        historyBuffer[tid].push_front(hb_entry);
1059
1060        DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
1061                "(size=%i), [sn:%lli].\n",tid,
1062                historyBuffer[tid].size(),
1063                (*historyBuffer[tid].begin()).instSeqNum);
1064
1065        // Tell the instruction to rename the appropriate destination
1066        // register (dest_idx) to the new physical register
1067        // (rename_result.first), and record the previous physical
1068        // register that the same logical register was renamed to
1069        // (rename_result.second).
1070        inst->renameDestReg(dest_idx,
1071                            rename_result.first,
1072                            rename_result.second);
1073
1074        ++renameRenamedOperands;
1075    }
1076}
1077
1078template <class Impl>
1079inline int
1080DefaultRename<Impl>::calcFreeROBEntries(unsigned tid)
1081{
1082    int num_free = freeEntries[tid].robEntries -
1083                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1084
1085    //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
1086
1087    return num_free;
1088}
1089
1090template <class Impl>
1091inline int
1092DefaultRename<Impl>::calcFreeIQEntries(unsigned tid)
1093{
1094    int num_free = freeEntries[tid].iqEntries -
1095                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1096
1097    //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
1098
1099    return num_free;
1100}
1101
1102template <class Impl>
1103inline int
1104DefaultRename<Impl>::calcFreeLSQEntries(unsigned tid)
1105{
1106    int num_free = freeEntries[tid].lsqEntries -
1107                  (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
1108
1109    //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
1110
1111    return num_free;
1112}
1113
1114template <class Impl>
1115unsigned
1116DefaultRename<Impl>::validInsts()
1117{
1118    unsigned inst_count = 0;
1119
1120    for (int i=0; i<fromDecode->size; i++) {
1121        if (!fromDecode->insts[i]->isSquashed())
1122            inst_count++;
1123    }
1124
1125    return inst_count;
1126}
1127
1128template <class Impl>
1129void
1130DefaultRename<Impl>::readStallSignals(unsigned tid)
1131{
1132    if (fromIEW->iewBlock[tid]) {
1133        stalls[tid].iew = true;
1134    }
1135
1136    if (fromIEW->iewUnblock[tid]) {
1137        assert(stalls[tid].iew);
1138        stalls[tid].iew = false;
1139    }
1140
1141    if (fromCommit->commitBlock[tid]) {
1142        stalls[tid].commit = true;
1143    }
1144
1145    if (fromCommit->commitUnblock[tid]) {
1146        assert(stalls[tid].commit);
1147        stalls[tid].commit = false;
1148    }
1149}
1150
1151template <class Impl>
1152bool
1153DefaultRename<Impl>::checkStall(unsigned tid)
1154{
1155    bool ret_val = false;
1156
1157    if (stalls[tid].iew) {
1158        DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
1159        ret_val = true;
1160    } else if (stalls[tid].commit) {
1161        DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
1162        ret_val = true;
1163    } else if (calcFreeROBEntries(tid) <= 0) {
1164        DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
1165        ret_val = true;
1166    } else if (calcFreeIQEntries(tid) <= 0) {
1167        DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
1168        ret_val = true;
1169    } else if (calcFreeLSQEntries(tid) <= 0) {
1170        DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
1171        ret_val = true;
1172    } else if (renameMap[tid]->numFreeEntries() <= 0) {
1173        DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
1174        ret_val = true;
1175    } else if (renameStatus[tid] == SerializeStall &&
1176               (!emptyROB[tid] || instsInProgress[tid])) {
1177        DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
1178                "empty.\n",
1179                tid);
1180        ret_val = true;
1181    }
1182
1183    return ret_val;
1184}
1185
1186template <class Impl>
1187void
1188DefaultRename<Impl>::readFreeEntries(unsigned tid)
1189{
1190    bool updated = false;
1191    if (fromIEW->iewInfo[tid].usedIQ) {
1192        freeEntries[tid].iqEntries =
1193            fromIEW->iewInfo[tid].freeIQEntries;
1194        updated = true;
1195    }
1196
1197    if (fromIEW->iewInfo[tid].usedLSQ) {
1198        freeEntries[tid].lsqEntries =
1199            fromIEW->iewInfo[tid].freeLSQEntries;
1200        updated = true;
1201    }
1202
1203    if (fromCommit->commitInfo[tid].usedROB) {
1204        freeEntries[tid].robEntries =
1205            fromCommit->commitInfo[tid].freeROBEntries;
1206        emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
1207        updated = true;
1208    }
1209
1210    DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
1211            tid,
1212            freeEntries[tid].iqEntries,
1213            freeEntries[tid].robEntries,
1214            freeEntries[tid].lsqEntries);
1215
1216    DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
1217            tid, instsInProgress[tid]);
1218}
1219
1220template <class Impl>
1221bool
1222DefaultRename<Impl>::checkSignalsAndUpdate(unsigned tid)
1223{
1224    // Check if there's a squash signal, squash if there is
1225    // Check stall signals, block if necessary.
1226    // If status was blocked
1227    //     check if stall conditions have passed
1228    //         if so then go to unblocking
1229    // If status was Squashing
1230    //     check if squashing is not high.  Switch to running this cycle.
1231    // If status was serialize stall
1232    //     check if ROB is empty and no insts are in flight to the ROB
1233
1234    readFreeEntries(tid);
1235    readStallSignals(tid);
1236
1237    if (fromCommit->commitInfo[tid].squash) {
1238        DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
1239                "commit.\n", tid);
1240
1241#if ISA_HAS_DELAY_SLOT
1242        InstSeqNum squashed_seq_num = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
1243#else
1244        InstSeqNum squashed_seq_num = fromCommit->commitInfo[tid].doneSeqNum;
1245#endif
1246
1247        squash(squashed_seq_num, tid);
1248
1249        return true;
1250    }
1251
1252    if (fromCommit->commitInfo[tid].robSquashing) {
1253        DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
1254
1255        renameStatus[tid] = Squashing;
1256
1257        return true;
1258    }
1259
1260    if (checkStall(tid)) {
1261        return block(tid);
1262    }
1263
1264    if (renameStatus[tid] == Blocked) {
1265        DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
1266                tid);
1267
1268        renameStatus[tid] = Unblocking;
1269
1270        unblock(tid);
1271
1272        return true;
1273    }
1274
1275    if (renameStatus[tid] == Squashing) {
1276        // Switch status to running if rename isn't being told to block or
1277        // squash this cycle.
1278        if (resumeSerialize) {
1279            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
1280                    tid);
1281
1282            renameStatus[tid] = SerializeStall;
1283            return true;
1284        } else if (resumeUnblocking) {
1285            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
1286                    tid);
1287            renameStatus[tid] = Unblocking;
1288            return true;
1289        } else {
1290            DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
1291                    tid);
1292
1293            renameStatus[tid] = Running;
1294            return false;
1295        }
1296    }
1297
1298    if (renameStatus[tid] == SerializeStall) {
1299        // Stall ends once the ROB is free.
1300        DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
1301                "unblocking.\n", tid);
1302
1303        DynInstPtr serial_inst = serializeInst[tid];
1304
1305        renameStatus[tid] = Unblocking;
1306
1307        unblock(tid);
1308
1309        DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
1310                "PC %#x.\n",
1311                tid, serial_inst->seqNum, serial_inst->readPC());
1312
1313        // Put instruction into queue here.
1314        serial_inst->clearSerializeBefore();
1315
1316        if (!skidBuffer[tid].empty()) {
1317            skidBuffer[tid].push_front(serial_inst);
1318        } else {
1319            insts[tid].push_front(serial_inst);
1320        }
1321
1322        DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
1323                " Adding to front of list.\n", tid);
1324
1325        serializeInst[tid] = NULL;
1326
1327        return true;
1328    }
1329
1330    // If we've reached this point, we have not gotten any signals that
1331    // cause rename to change its status.  Rename remains the same as before.
1332    return false;
1333}
1334
1335template<class Impl>
1336void
1337DefaultRename<Impl>::serializeAfter(InstQueue &inst_list,
1338                                   unsigned tid)
1339{
1340    if (inst_list.empty()) {
1341        // Mark a bit to say that I must serialize on the next instruction.
1342        serializeOnNextInst[tid] = true;
1343        return;
1344    }
1345
1346    // Set the next instruction as serializing.
1347    inst_list.front()->setSerializeBefore();
1348}
1349
1350template <class Impl>
1351inline void
1352DefaultRename<Impl>::incrFullStat(const FullSource &source)
1353{
1354    switch (source) {
1355      case ROB:
1356        ++renameROBFullEvents;
1357        break;
1358      case IQ:
1359        ++renameIQFullEvents;
1360        break;
1361      case LSQ:
1362        ++renameLSQFullEvents;
1363        break;
1364      default:
1365        panic("Rename full stall stat should be incremented for a reason!");
1366        break;
1367    }
1368}
1369
1370template <class Impl>
1371void
1372DefaultRename<Impl>::dumpHistory()
1373{
1374    typename std::list<RenameHistory>::iterator buf_it;
1375
1376    for (int i = 0; i < numThreads; i++) {
1377
1378        buf_it = historyBuffer[i].begin();
1379
1380        while (buf_it != historyBuffer[i].end()) {
1381            cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
1382                    "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
1383                    (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
1384
1385            buf_it++;
1386        }
1387    }
1388}
1389