lsq_unit_impl.hh revision 9944
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64                                              LSQUnit *lsq_ptr)
65    : Event(Default_Pri, AutoDelete),
66      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74    assert(!lsqPtr->cpu->switchedOut());
75
76    lsqPtr->writeback(inst, pkt);
77
78    if (pkt->senderState)
79        delete pkt->senderState;
80
81    delete pkt->req;
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    assert(!cpu->switchedOut());
111    if (inst->isSquashed()) {
112        iewStage->decrWb(inst->seqNum);
113    } else {
114        if (!state->noWB) {
115            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116                !state->isLoad) {
117                writeback(inst, pkt);
118            } else {
119                writeback(inst, state->mainPkt);
120            }
121        }
122
123        if (inst->isStore()) {
124            completeStore(state->idx);
125        }
126    }
127
128    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129        delete state->mainPkt->req;
130        delete state->mainPkt;
131    }
132    delete state;
133    delete pkt->req;
134    delete pkt;
135}
136
137template <class Impl>
138LSQUnit<Impl>::LSQUnit()
139    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
140      isStoreBlocked(false), isLoadBlocked(false),
141      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
142{
143}
144
145template<class Impl>
146void
147LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
148        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
149        unsigned id)
150{
151    cpu = cpu_ptr;
152    iewStage = iew_ptr;
153
154    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
155
156    lsq = lsq_ptr;
157
158    lsqID = id;
159
160    // Add 1 for the sentinel entry (they are circular queues).
161    LQEntries = maxLQEntries + 1;
162    SQEntries = maxSQEntries + 1;
163
164    //Due to uint8_t index in LSQSenderState
165    assert(LQEntries <= 256);
166    assert(SQEntries <= 256);
167
168    loadQueue.resize(LQEntries);
169    storeQueue.resize(SQEntries);
170
171    depCheckShift = params->LSQDepCheckShift;
172    checkLoads = params->LSQCheckLoads;
173    cachePorts = params->cachePorts;
174    needsTSO = params->needsTSO;
175
176    resetState();
177}
178
179
180template<class Impl>
181void
182LSQUnit<Impl>::resetState()
183{
184    loads = stores = storesToWB = 0;
185
186    loadHead = loadTail = 0;
187
188    storeHead = storeWBIdx = storeTail = 0;
189
190    usedPorts = 0;
191
192    retryPkt = NULL;
193    memDepViolator = NULL;
194
195    blockedLoadSeqNum = 0;
196
197    stalled = false;
198    isLoadBlocked = false;
199    loadBlockedHandled = false;
200
201    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
202}
203
204template<class Impl>
205std::string
206LSQUnit<Impl>::name() const
207{
208    if (Impl::MaxThreads == 1) {
209        return iewStage->name() + ".lsq";
210    } else {
211        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
212    }
213}
214
215template<class Impl>
216void
217LSQUnit<Impl>::regStats()
218{
219    lsqForwLoads
220        .name(name() + ".forwLoads")
221        .desc("Number of loads that had data forwarded from stores");
222
223    invAddrLoads
224        .name(name() + ".invAddrLoads")
225        .desc("Number of loads ignored due to an invalid address");
226
227    lsqSquashedLoads
228        .name(name() + ".squashedLoads")
229        .desc("Number of loads squashed");
230
231    lsqIgnoredResponses
232        .name(name() + ".ignoredResponses")
233        .desc("Number of memory responses ignored because the instruction is squashed");
234
235    lsqMemOrderViolation
236        .name(name() + ".memOrderViolation")
237        .desc("Number of memory ordering violations");
238
239    lsqSquashedStores
240        .name(name() + ".squashedStores")
241        .desc("Number of stores squashed");
242
243    invAddrSwpfs
244        .name(name() + ".invAddrSwpfs")
245        .desc("Number of software prefetches ignored due to an invalid address");
246
247    lsqBlockedLoads
248        .name(name() + ".blockedLoads")
249        .desc("Number of blocked loads due to partial load-store forwarding");
250
251    lsqRescheduledLoads
252        .name(name() + ".rescheduledLoads")
253        .desc("Number of loads that were rescheduled");
254
255    lsqCacheBlocked
256        .name(name() + ".cacheBlocked")
257        .desc("Number of times an access to memory failed due to the cache being blocked");
258}
259
260template<class Impl>
261void
262LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
263{
264    dcachePort = dcache_port;
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::clearLQ()
270{
271    loadQueue.clear();
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::clearSQ()
277{
278    storeQueue.clear();
279}
280
281template<class Impl>
282void
283LSQUnit<Impl>::drainSanityCheck() const
284{
285    for (int i = 0; i < loadQueue.size(); ++i)
286        assert(!loadQueue[i]);
287
288    assert(storesToWB == 0);
289    assert(!retryPkt);
290}
291
292template<class Impl>
293void
294LSQUnit<Impl>::takeOverFrom()
295{
296    resetState();
297}
298
299template<class Impl>
300void
301LSQUnit<Impl>::resizeLQ(unsigned size)
302{
303    unsigned size_plus_sentinel = size + 1;
304    assert(size_plus_sentinel >= LQEntries);
305
306    if (size_plus_sentinel > LQEntries) {
307        while (size_plus_sentinel > loadQueue.size()) {
308            DynInstPtr dummy;
309            loadQueue.push_back(dummy);
310            LQEntries++;
311        }
312    } else {
313        LQEntries = size_plus_sentinel;
314    }
315
316    assert(LQEntries <= 256);
317}
318
319template<class Impl>
320void
321LSQUnit<Impl>::resizeSQ(unsigned size)
322{
323    unsigned size_plus_sentinel = size + 1;
324    if (size_plus_sentinel > SQEntries) {
325        while (size_plus_sentinel > storeQueue.size()) {
326            SQEntry dummy;
327            storeQueue.push_back(dummy);
328            SQEntries++;
329        }
330    } else {
331        SQEntries = size_plus_sentinel;
332    }
333
334    assert(SQEntries <= 256);
335}
336
337template <class Impl>
338void
339LSQUnit<Impl>::insert(DynInstPtr &inst)
340{
341    assert(inst->isMemRef());
342
343    assert(inst->isLoad() || inst->isStore());
344
345    if (inst->isLoad()) {
346        insertLoad(inst);
347    } else {
348        insertStore(inst);
349    }
350
351    inst->setInLSQ();
352}
353
354template <class Impl>
355void
356LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
357{
358    assert((loadTail + 1) % LQEntries != loadHead);
359    assert(loads < LQEntries);
360
361    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
362            load_inst->pcState(), loadTail, load_inst->seqNum);
363
364    load_inst->lqIdx = loadTail;
365
366    if (stores == 0) {
367        load_inst->sqIdx = -1;
368    } else {
369        load_inst->sqIdx = storeTail;
370    }
371
372    loadQueue[loadTail] = load_inst;
373
374    incrLdIdx(loadTail);
375
376    ++loads;
377}
378
379template <class Impl>
380void
381LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
382{
383    // Make sure it is not full before inserting an instruction.
384    assert((storeTail + 1) % SQEntries != storeHead);
385    assert(stores < SQEntries);
386
387    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
388            store_inst->pcState(), storeTail, store_inst->seqNum);
389
390    store_inst->sqIdx = storeTail;
391    store_inst->lqIdx = loadTail;
392
393    storeQueue[storeTail] = SQEntry(store_inst);
394
395    incrStIdx(storeTail);
396
397    ++stores;
398}
399
400template <class Impl>
401typename Impl::DynInstPtr
402LSQUnit<Impl>::getMemDepViolator()
403{
404    DynInstPtr temp = memDepViolator;
405
406    memDepViolator = NULL;
407
408    return temp;
409}
410
411template <class Impl>
412unsigned
413LSQUnit<Impl>::numFreeEntries()
414{
415    unsigned free_lq_entries = LQEntries - loads;
416    unsigned free_sq_entries = SQEntries - stores;
417
418    // Both the LQ and SQ entries have an extra dummy entry to differentiate
419    // empty/full conditions.  Subtract 1 from the free entries.
420    if (free_lq_entries < free_sq_entries) {
421        return free_lq_entries - 1;
422    } else {
423        return free_sq_entries - 1;
424    }
425}
426
427template <class Impl>
428void
429LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
430{
431    int load_idx = loadHead;
432
433    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
434    // address. The CPU can speculatively execute a LL operation after a pending
435    // SC operation in the pipeline and that can make the cache monitor the CPU
436    // is connected to valid while it really shouldn't be.
437    for (int x = 0; x < cpu->numActiveThreads(); x++) {
438        ThreadContext *tc = cpu->getContext(x);
439        bool no_squash = cpu->thread[x]->noSquashFromTC;
440        cpu->thread[x]->noSquashFromTC = true;
441        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
442        cpu->thread[x]->noSquashFromTC = no_squash;
443    }
444
445    // If this is the only load in the LSQ we don't care
446    if (load_idx == loadTail)
447        return;
448    incrLdIdx(load_idx);
449
450    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
451    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
452    while (load_idx != loadTail) {
453        DynInstPtr ld_inst = loadQueue[load_idx];
454
455        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
456            incrLdIdx(load_idx);
457            continue;
458        }
459
460        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
461        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
462                    ld_inst->seqNum, load_addr, invalidate_addr);
463
464        if (load_addr == invalidate_addr) {
465            if (ld_inst->possibleLoadViolation()) {
466                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
467                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
468
469                // Mark the load for re-execution
470                ld_inst->fault = new ReExec;
471            } else {
472                // If a older load checks this and it's true
473                // then we might have missed the snoop
474                // in which case we need to invalidate to be sure
475                ld_inst->hitExternalSnoop(true);
476            }
477        }
478        incrLdIdx(load_idx);
479    }
480    return;
481}
482
483template <class Impl>
484Fault
485LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
486{
487    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
488    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
489
490    /** @todo in theory you only need to check an instruction that has executed
491     * however, there isn't a good way in the pipeline at the moment to check
492     * all instructions that will execute before the store writes back. Thus,
493     * like the implementation that came before it, we're overly conservative.
494     */
495    while (load_idx != loadTail) {
496        DynInstPtr ld_inst = loadQueue[load_idx];
497        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
498            incrLdIdx(load_idx);
499            continue;
500        }
501
502        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
503        Addr ld_eff_addr2 =
504            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
505
506        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
507            if (inst->isLoad()) {
508                // If this load is to the same block as an external snoop
509                // invalidate that we've observed then the load needs to be
510                // squashed as it could have newer data
511                if (ld_inst->hitExternalSnoop()) {
512                    if (!memDepViolator ||
513                            ld_inst->seqNum < memDepViolator->seqNum) {
514                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
515                                "and [sn:%lli] at address %#x\n",
516                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
517                        memDepViolator = ld_inst;
518
519                        ++lsqMemOrderViolation;
520
521                        return new GenericISA::M5PanicFault(
522                                "Detected fault with inst [sn:%lli] and "
523                                "[sn:%lli] at address %#x\n",
524                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
525                    }
526                }
527
528                // Otherwise, mark the load has a possible load violation
529                // and if we see a snoop before it's commited, we need to squash
530                ld_inst->possibleLoadViolation(true);
531                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
532                        " between instructions [sn:%lli] and [sn:%lli]\n",
533                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
534            } else {
535                // A load/store incorrectly passed this store.
536                // Check if we already have a violator, or if it's newer
537                // squash and refetch.
538                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
539                    break;
540
541                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
542                        "[sn:%lli] at address %#x\n",
543                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
544                memDepViolator = ld_inst;
545
546                ++lsqMemOrderViolation;
547
548                return new GenericISA::M5PanicFault("Detected fault with "
549                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
550                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
551            }
552        }
553
554        incrLdIdx(load_idx);
555    }
556    return NoFault;
557}
558
559
560
561
562template <class Impl>
563Fault
564LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
565{
566    using namespace TheISA;
567    // Execute a specific load.
568    Fault load_fault = NoFault;
569
570    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
571            inst->pcState(), inst->seqNum);
572
573    assert(!inst->isSquashed());
574
575    load_fault = inst->initiateAcc();
576
577    if (inst->isTranslationDelayed() &&
578        load_fault == NoFault)
579        return load_fault;
580
581    // If the instruction faulted or predicated false, then we need to send it
582    // along to commit without the instruction completing.
583    if (load_fault != NoFault || inst->readPredicate() == false) {
584        // Send this instruction to commit, also make sure iew stage
585        // realizes there is activity.
586        // Mark it as executed unless it is an uncached load that
587        // needs to hit the head of commit.
588        if (inst->readPredicate() == false)
589            inst->forwardOldRegs();
590        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
591                inst->seqNum,
592                (load_fault != NoFault ? "fault" : "predication"));
593        if (!(inst->hasRequest() && inst->uncacheable()) ||
594            inst->isAtCommit()) {
595            inst->setExecuted();
596        }
597        iewStage->instToCommit(inst);
598        iewStage->activityThisCycle();
599    } else if (!loadBlocked()) {
600        assert(inst->effAddrValid());
601        int load_idx = inst->lqIdx;
602        incrLdIdx(load_idx);
603
604        if (checkLoads)
605            return checkViolations(load_idx, inst);
606    }
607
608    return load_fault;
609}
610
611template <class Impl>
612Fault
613LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
614{
615    using namespace TheISA;
616    // Make sure that a store exists.
617    assert(stores != 0);
618
619    int store_idx = store_inst->sqIdx;
620
621    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
622            store_inst->pcState(), store_inst->seqNum);
623
624    assert(!store_inst->isSquashed());
625
626    // Check the recently completed loads to see if any match this store's
627    // address.  If so, then we have a memory ordering violation.
628    int load_idx = store_inst->lqIdx;
629
630    Fault store_fault = store_inst->initiateAcc();
631
632    if (store_inst->isTranslationDelayed() &&
633        store_fault == NoFault)
634        return store_fault;
635
636    if (store_inst->readPredicate() == false)
637        store_inst->forwardOldRegs();
638
639    if (storeQueue[store_idx].size == 0) {
640        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
641                store_inst->pcState(), store_inst->seqNum);
642
643        return store_fault;
644    } else if (store_inst->readPredicate() == false) {
645        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
646                store_inst->seqNum);
647        return store_fault;
648    }
649
650    assert(store_fault == NoFault);
651
652    if (store_inst->isStoreConditional()) {
653        // Store conditionals need to set themselves as able to
654        // writeback if we haven't had a fault by here.
655        storeQueue[store_idx].canWB = true;
656
657        ++storesToWB;
658    }
659
660    return checkViolations(load_idx, store_inst);
661
662}
663
664template <class Impl>
665void
666LSQUnit<Impl>::commitLoad()
667{
668    assert(loadQueue[loadHead]);
669
670    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
671            loadQueue[loadHead]->pcState());
672
673    loadQueue[loadHead] = NULL;
674
675    incrLdIdx(loadHead);
676
677    --loads;
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
683{
684    assert(loads == 0 || loadQueue[loadHead]);
685
686    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
687        commitLoad();
688    }
689}
690
691template <class Impl>
692void
693LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
694{
695    assert(stores == 0 || storeQueue[storeHead].inst);
696
697    int store_idx = storeHead;
698
699    while (store_idx != storeTail) {
700        assert(storeQueue[store_idx].inst);
701        // Mark any stores that are now committed and have not yet
702        // been marked as able to write back.
703        if (!storeQueue[store_idx].canWB) {
704            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
705                break;
706            }
707            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
708                    "%s [sn:%lli]\n",
709                    storeQueue[store_idx].inst->pcState(),
710                    storeQueue[store_idx].inst->seqNum);
711
712            storeQueue[store_idx].canWB = true;
713
714            ++storesToWB;
715        }
716
717        incrStIdx(store_idx);
718    }
719}
720
721template <class Impl>
722void
723LSQUnit<Impl>::writebackPendingStore()
724{
725    if (hasPendingPkt) {
726        assert(pendingPkt != NULL);
727
728        // If the cache is blocked, this will store the packet for retry.
729        if (sendStore(pendingPkt)) {
730            storePostSend(pendingPkt);
731        }
732        pendingPkt = NULL;
733        hasPendingPkt = false;
734    }
735}
736
737template <class Impl>
738void
739LSQUnit<Impl>::writebackStores()
740{
741    // First writeback the second packet from any split store that didn't
742    // complete last cycle because there weren't enough cache ports available.
743    if (TheISA::HasUnalignedMemAcc) {
744        writebackPendingStore();
745    }
746
747    while (storesToWB > 0 &&
748           storeWBIdx != storeTail &&
749           storeQueue[storeWBIdx].inst &&
750           storeQueue[storeWBIdx].canWB &&
751           ((!needsTSO) || (!storeInFlight)) &&
752           usedPorts < cachePorts) {
753
754        if (isStoreBlocked || lsq->cacheBlocked()) {
755            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
756                    " is blocked!\n");
757            break;
758        }
759
760        // Store didn't write any data so no need to write it back to
761        // memory.
762        if (storeQueue[storeWBIdx].size == 0) {
763            completeStore(storeWBIdx);
764
765            incrStIdx(storeWBIdx);
766
767            continue;
768        }
769
770        ++usedPorts;
771
772        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
773            incrStIdx(storeWBIdx);
774
775            continue;
776        }
777
778        assert(storeQueue[storeWBIdx].req);
779        assert(!storeQueue[storeWBIdx].committed);
780
781        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
782            assert(storeQueue[storeWBIdx].sreqLow);
783            assert(storeQueue[storeWBIdx].sreqHigh);
784        }
785
786        DynInstPtr inst = storeQueue[storeWBIdx].inst;
787
788        Request *req = storeQueue[storeWBIdx].req;
789        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
790        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
791
792        storeQueue[storeWBIdx].committed = true;
793
794        assert(!inst->memData);
795        inst->memData = new uint8_t[64];
796
797        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
798
799        MemCmd command =
800            req->isSwap() ? MemCmd::SwapReq :
801            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
802        PacketPtr data_pkt;
803        PacketPtr snd_data_pkt = NULL;
804
805        LSQSenderState *state = new LSQSenderState;
806        state->isLoad = false;
807        state->idx = storeWBIdx;
808        state->inst = inst;
809
810        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
811
812            // Build a single data packet if the store isn't split.
813            data_pkt = new Packet(req, command);
814            data_pkt->dataStatic(inst->memData);
815            data_pkt->senderState = state;
816        } else {
817            // Create two packets if the store is split in two.
818            data_pkt = new Packet(sreqLow, command);
819            snd_data_pkt = new Packet(sreqHigh, command);
820
821            data_pkt->dataStatic(inst->memData);
822            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
823
824            data_pkt->senderState = state;
825            snd_data_pkt->senderState = state;
826
827            state->isSplit = true;
828            state->outstanding = 2;
829
830            // Can delete the main request now.
831            delete req;
832            req = sreqLow;
833        }
834
835        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
836                "to Addr:%#x, data:%#x [sn:%lli]\n",
837                storeWBIdx, inst->pcState(),
838                req->getPaddr(), (int)*(inst->memData),
839                inst->seqNum);
840
841        // @todo: Remove this SC hack once the memory system handles it.
842        if (inst->isStoreConditional()) {
843            assert(!storeQueue[storeWBIdx].isSplit);
844            // Disable recording the result temporarily.  Writing to
845            // misc regs normally updates the result, but this is not
846            // the desired behavior when handling store conditionals.
847            inst->recordResult(false);
848            bool success = TheISA::handleLockedWrite(inst.get(), req);
849            inst->recordResult(true);
850
851            if (!success) {
852                // Instantly complete this store.
853                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
854                        "Instantly completing it.\n",
855                        inst->seqNum);
856                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
857                cpu->schedule(wb, curTick() + 1);
858                if (cpu->checker) {
859                    // Make sure to set the LLSC data for verification
860                    // if checker is loaded
861                    inst->reqToVerify->setExtraData(0);
862                    inst->completeAcc(data_pkt);
863                }
864                completeStore(storeWBIdx);
865                incrStIdx(storeWBIdx);
866                continue;
867            }
868        } else {
869            // Non-store conditionals do not need a writeback.
870            state->noWB = true;
871        }
872
873        bool split =
874            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
875
876        ThreadContext *thread = cpu->tcBase(lsqID);
877
878        if (req->isMmappedIpr()) {
879            assert(!inst->isStoreConditional());
880            TheISA::handleIprWrite(thread, data_pkt);
881            delete data_pkt;
882            if (split) {
883                assert(snd_data_pkt->req->isMmappedIpr());
884                TheISA::handleIprWrite(thread, snd_data_pkt);
885                delete snd_data_pkt;
886                delete sreqLow;
887                delete sreqHigh;
888            }
889            delete state;
890            delete req;
891            completeStore(storeWBIdx);
892            incrStIdx(storeWBIdx);
893        } else if (!sendStore(data_pkt)) {
894            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
895                    "retry later\n",
896                    inst->seqNum);
897
898            // Need to store the second packet, if split.
899            if (split) {
900                state->pktToSend = true;
901                state->pendingPacket = snd_data_pkt;
902            }
903        } else {
904
905            // If split, try to send the second packet too
906            if (split) {
907                assert(snd_data_pkt);
908
909                // Ensure there are enough ports to use.
910                if (usedPorts < cachePorts) {
911                    ++usedPorts;
912                    if (sendStore(snd_data_pkt)) {
913                        storePostSend(snd_data_pkt);
914                    } else {
915                        DPRINTF(IEW, "D-Cache became blocked when writing"
916                                " [sn:%lli] second packet, will retry later\n",
917                                inst->seqNum);
918                    }
919                } else {
920
921                    // Store the packet for when there's free ports.
922                    assert(pendingPkt == NULL);
923                    pendingPkt = snd_data_pkt;
924                    hasPendingPkt = true;
925                }
926            } else {
927
928                // Not a split store.
929                storePostSend(data_pkt);
930            }
931        }
932    }
933
934    // Not sure this should set it to 0.
935    usedPorts = 0;
936
937    assert(stores >= 0 && storesToWB >= 0);
938}
939
940/*template <class Impl>
941void
942LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
943{
944    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
945                                              mshrSeqNums.end(),
946                                              seqNum);
947
948    if (mshr_it != mshrSeqNums.end()) {
949        mshrSeqNums.erase(mshr_it);
950        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
951    }
952}*/
953
954template <class Impl>
955void
956LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
957{
958    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
959            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
960
961    int load_idx = loadTail;
962    decrLdIdx(load_idx);
963
964    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
965        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
966                "[sn:%lli]\n",
967                loadQueue[load_idx]->pcState(),
968                loadQueue[load_idx]->seqNum);
969
970        if (isStalled() && load_idx == stallingLoadIdx) {
971            stalled = false;
972            stallingStoreIsn = 0;
973            stallingLoadIdx = 0;
974        }
975
976        // Clear the smart pointer to make sure it is decremented.
977        loadQueue[load_idx]->setSquashed();
978        loadQueue[load_idx] = NULL;
979        --loads;
980
981        // Inefficient!
982        loadTail = load_idx;
983
984        decrLdIdx(load_idx);
985        ++lsqSquashedLoads;
986    }
987
988    if (isLoadBlocked) {
989        if (squashed_num < blockedLoadSeqNum) {
990            isLoadBlocked = false;
991            loadBlockedHandled = false;
992            blockedLoadSeqNum = 0;
993        }
994    }
995
996    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
997        memDepViolator = NULL;
998    }
999
1000    int store_idx = storeTail;
1001    decrStIdx(store_idx);
1002
1003    while (stores != 0 &&
1004           storeQueue[store_idx].inst->seqNum > squashed_num) {
1005        // Instructions marked as can WB are already committed.
1006        if (storeQueue[store_idx].canWB) {
1007            break;
1008        }
1009
1010        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1011                "idx:%i [sn:%lli]\n",
1012                storeQueue[store_idx].inst->pcState(),
1013                store_idx, storeQueue[store_idx].inst->seqNum);
1014
1015        // I don't think this can happen.  It should have been cleared
1016        // by the stalling load.
1017        if (isStalled() &&
1018            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1019            panic("Is stalled should have been cleared by stalling load!\n");
1020            stalled = false;
1021            stallingStoreIsn = 0;
1022        }
1023
1024        // Clear the smart pointer to make sure it is decremented.
1025        storeQueue[store_idx].inst->setSquashed();
1026        storeQueue[store_idx].inst = NULL;
1027        storeQueue[store_idx].canWB = 0;
1028
1029        // Must delete request now that it wasn't handed off to
1030        // memory.  This is quite ugly.  @todo: Figure out the proper
1031        // place to really handle request deletes.
1032        delete storeQueue[store_idx].req;
1033        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1034            delete storeQueue[store_idx].sreqLow;
1035            delete storeQueue[store_idx].sreqHigh;
1036
1037            storeQueue[store_idx].sreqLow = NULL;
1038            storeQueue[store_idx].sreqHigh = NULL;
1039        }
1040
1041        storeQueue[store_idx].req = NULL;
1042        --stores;
1043
1044        // Inefficient!
1045        storeTail = store_idx;
1046
1047        decrStIdx(store_idx);
1048        ++lsqSquashedStores;
1049    }
1050}
1051
1052template <class Impl>
1053void
1054LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1055{
1056    if (isStalled() &&
1057        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1058        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1059                "load idx:%i\n",
1060                stallingStoreIsn, stallingLoadIdx);
1061        stalled = false;
1062        stallingStoreIsn = 0;
1063        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1064    }
1065
1066    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1067        // The store is basically completed at this time. This
1068        // only works so long as the checker doesn't try to
1069        // verify the value in memory for stores.
1070        storeQueue[storeWBIdx].inst->setCompleted();
1071
1072        if (cpu->checker) {
1073            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1074        }
1075    }
1076
1077    if (needsTSO) {
1078        storeInFlight = true;
1079    }
1080
1081    incrStIdx(storeWBIdx);
1082}
1083
1084template <class Impl>
1085void
1086LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1087{
1088    iewStage->wakeCPU();
1089
1090    // Squashed instructions do not need to complete their access.
1091    if (inst->isSquashed()) {
1092        iewStage->decrWb(inst->seqNum);
1093        assert(!inst->isStore());
1094        ++lsqIgnoredResponses;
1095        return;
1096    }
1097
1098    if (!inst->isExecuted()) {
1099        inst->setExecuted();
1100
1101        // Complete access to copy data to proper place.
1102        inst->completeAcc(pkt);
1103    }
1104
1105    // Need to insert instruction into queue to commit
1106    iewStage->instToCommit(inst);
1107
1108    iewStage->activityThisCycle();
1109
1110    // see if this load changed the PC
1111    iewStage->checkMisprediction(inst);
1112}
1113
1114template <class Impl>
1115void
1116LSQUnit<Impl>::completeStore(int store_idx)
1117{
1118    assert(storeQueue[store_idx].inst);
1119    storeQueue[store_idx].completed = true;
1120    --storesToWB;
1121    // A bit conservative because a store completion may not free up entries,
1122    // but hopefully avoids two store completions in one cycle from making
1123    // the CPU tick twice.
1124    cpu->wakeCPU();
1125    cpu->activityThisCycle();
1126
1127    if (store_idx == storeHead) {
1128        do {
1129            incrStIdx(storeHead);
1130
1131            --stores;
1132        } while (storeQueue[storeHead].completed &&
1133                 storeHead != storeTail);
1134
1135        iewStage->updateLSQNextCycle = true;
1136    }
1137
1138    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1139            "idx:%i\n",
1140            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1141
1142#if TRACING_ON
1143    if (DTRACE(O3PipeView)) {
1144        storeQueue[store_idx].inst->storeTick =
1145            curTick() - storeQueue[store_idx].inst->fetchTick;
1146    }
1147#endif
1148
1149    if (isStalled() &&
1150        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1151        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1152                "load idx:%i\n",
1153                stallingStoreIsn, stallingLoadIdx);
1154        stalled = false;
1155        stallingStoreIsn = 0;
1156        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1157    }
1158
1159    storeQueue[store_idx].inst->setCompleted();
1160
1161    if (needsTSO) {
1162        storeInFlight = false;
1163    }
1164
1165    // Tell the checker we've completed this instruction.  Some stores
1166    // may get reported twice to the checker, but the checker can
1167    // handle that case.
1168    if (cpu->checker) {
1169        cpu->checker->verify(storeQueue[store_idx].inst);
1170    }
1171}
1172
1173template <class Impl>
1174bool
1175LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1176{
1177    if (!dcachePort->sendTimingReq(data_pkt)) {
1178        // Need to handle becoming blocked on a store.
1179        isStoreBlocked = true;
1180        ++lsqCacheBlocked;
1181        assert(retryPkt == NULL);
1182        retryPkt = data_pkt;
1183        lsq->setRetryTid(lsqID);
1184        return false;
1185    }
1186    return true;
1187}
1188
1189template <class Impl>
1190void
1191LSQUnit<Impl>::recvRetry()
1192{
1193    if (isStoreBlocked) {
1194        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1195        assert(retryPkt != NULL);
1196
1197        LSQSenderState *state =
1198            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1199
1200        if (dcachePort->sendTimingReq(retryPkt)) {
1201            // Don't finish the store unless this is the last packet.
1202            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1203                    state->pendingPacket == retryPkt) {
1204                state->pktToSend = false;
1205                storePostSend(retryPkt);
1206            }
1207            retryPkt = NULL;
1208            isStoreBlocked = false;
1209            lsq->setRetryTid(InvalidThreadID);
1210
1211            // Send any outstanding packet.
1212            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1213                assert(state->pendingPacket);
1214                if (sendStore(state->pendingPacket)) {
1215                    storePostSend(state->pendingPacket);
1216                }
1217            }
1218        } else {
1219            // Still blocked!
1220            ++lsqCacheBlocked;
1221            lsq->setRetryTid(lsqID);
1222        }
1223    } else if (isLoadBlocked) {
1224        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1225                "no need to resend packet.\n");
1226    } else {
1227        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1228    }
1229}
1230
1231template <class Impl>
1232inline void
1233LSQUnit<Impl>::incrStIdx(int &store_idx) const
1234{
1235    if (++store_idx >= SQEntries)
1236        store_idx = 0;
1237}
1238
1239template <class Impl>
1240inline void
1241LSQUnit<Impl>::decrStIdx(int &store_idx) const
1242{
1243    if (--store_idx < 0)
1244        store_idx += SQEntries;
1245}
1246
1247template <class Impl>
1248inline void
1249LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1250{
1251    if (++load_idx >= LQEntries)
1252        load_idx = 0;
1253}
1254
1255template <class Impl>
1256inline void
1257LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1258{
1259    if (--load_idx < 0)
1260        load_idx += LQEntries;
1261}
1262
1263template <class Impl>
1264void
1265LSQUnit<Impl>::dumpInsts() const
1266{
1267    cprintf("Load store queue: Dumping instructions.\n");
1268    cprintf("Load queue size: %i\n", loads);
1269    cprintf("Load queue: ");
1270
1271    int load_idx = loadHead;
1272
1273    while (load_idx != loadTail && loadQueue[load_idx]) {
1274        const DynInstPtr &inst(loadQueue[load_idx]);
1275        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1276
1277        incrLdIdx(load_idx);
1278    }
1279    cprintf("\n");
1280
1281    cprintf("Store queue size: %i\n", stores);
1282    cprintf("Store queue: ");
1283
1284    int store_idx = storeHead;
1285
1286    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1287        const DynInstPtr &inst(storeQueue[store_idx].inst);
1288        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1289
1290        incrStIdx(store_idx);
1291    }
1292
1293    cprintf("\n");
1294}
1295
1296#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1297