lsq_unit_impl.hh revision 9527
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/generic/debugfaults.hh"
45#include "arch/locked_mem.hh"
46#include "base/str.hh"
47#include "config/the_isa.hh"
48#include "cpu/checker/cpu.hh"
49#include "cpu/o3/lsq.hh"
50#include "cpu/o3/lsq_unit.hh"
51#include "debug/Activity.hh"
52#include "debug/IEW.hh"
53#include "debug/LSQUnit.hh"
54#include "debug/O3PipeView.hh"
55#include "mem/packet.hh"
56#include "mem/request.hh"
57
58template<class Impl>
59LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
60                                              LSQUnit *lsq_ptr)
61    : Event(Default_Pri, AutoDelete),
62      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
63{
64}
65
66template<class Impl>
67void
68LSQUnit<Impl>::WritebackEvent::process()
69{
70    assert(!lsqPtr->cpu->switchedOut());
71
72    lsqPtr->writeback(inst, pkt);
73
74    if (pkt->senderState)
75        delete pkt->senderState;
76
77    delete pkt->req;
78    delete pkt;
79}
80
81template<class Impl>
82const char *
83LSQUnit<Impl>::WritebackEvent::description() const
84{
85    return "Store writeback";
86}
87
88template<class Impl>
89void
90LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
91{
92    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
93    DynInstPtr inst = state->inst;
94    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
95    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
96
97    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
98
99    // If this is a split access, wait until all packets are received.
100    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
101        delete pkt->req;
102        delete pkt;
103        return;
104    }
105
106    assert(!cpu->switchedOut());
107    if (inst->isSquashed()) {
108        iewStage->decrWb(inst->seqNum);
109    } else {
110        if (!state->noWB) {
111            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112                !state->isLoad) {
113                writeback(inst, pkt);
114            } else {
115                writeback(inst, state->mainPkt);
116            }
117        }
118
119        if (inst->isStore()) {
120            completeStore(state->idx);
121        }
122    }
123
124    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125        delete state->mainPkt->req;
126        delete state->mainPkt;
127    }
128    delete state;
129    delete pkt->req;
130    delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
136      isStoreBlocked(false), isLoadBlocked(false),
137      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145        unsigned id)
146{
147    cpu = cpu_ptr;
148    iewStage = iew_ptr;
149
150    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152    lsq = lsq_ptr;
153
154    lsqID = id;
155
156    // Add 1 for the sentinel entry (they are circular queues).
157    LQEntries = maxLQEntries + 1;
158    SQEntries = maxSQEntries + 1;
159
160    loadQueue.resize(LQEntries);
161    storeQueue.resize(SQEntries);
162
163    depCheckShift = params->LSQDepCheckShift;
164    checkLoads = params->LSQCheckLoads;
165    cachePorts = params->cachePorts;
166    needsTSO = params->needsTSO;
167
168    resetState();
169}
170
171
172template<class Impl>
173void
174LSQUnit<Impl>::resetState()
175{
176    loads = stores = storesToWB = 0;
177
178    loadHead = loadTail = 0;
179
180    storeHead = storeWBIdx = storeTail = 0;
181
182    usedPorts = 0;
183
184    retryPkt = NULL;
185    memDepViolator = NULL;
186
187    blockedLoadSeqNum = 0;
188
189    stalled = false;
190    isLoadBlocked = false;
191    loadBlockedHandled = false;
192
193    cacheBlockMask = 0;
194}
195
196template<class Impl>
197std::string
198LSQUnit<Impl>::name() const
199{
200    if (Impl::MaxThreads == 1) {
201        return iewStage->name() + ".lsq";
202    } else {
203        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
204    }
205}
206
207template<class Impl>
208void
209LSQUnit<Impl>::regStats()
210{
211    lsqForwLoads
212        .name(name() + ".forwLoads")
213        .desc("Number of loads that had data forwarded from stores");
214
215    invAddrLoads
216        .name(name() + ".invAddrLoads")
217        .desc("Number of loads ignored due to an invalid address");
218
219    lsqSquashedLoads
220        .name(name() + ".squashedLoads")
221        .desc("Number of loads squashed");
222
223    lsqIgnoredResponses
224        .name(name() + ".ignoredResponses")
225        .desc("Number of memory responses ignored because the instruction is squashed");
226
227    lsqMemOrderViolation
228        .name(name() + ".memOrderViolation")
229        .desc("Number of memory ordering violations");
230
231    lsqSquashedStores
232        .name(name() + ".squashedStores")
233        .desc("Number of stores squashed");
234
235    invAddrSwpfs
236        .name(name() + ".invAddrSwpfs")
237        .desc("Number of software prefetches ignored due to an invalid address");
238
239    lsqBlockedLoads
240        .name(name() + ".blockedLoads")
241        .desc("Number of blocked loads due to partial load-store forwarding");
242
243    lsqRescheduledLoads
244        .name(name() + ".rescheduledLoads")
245        .desc("Number of loads that were rescheduled");
246
247    lsqCacheBlocked
248        .name(name() + ".cacheBlocked")
249        .desc("Number of times an access to memory failed due to the cache being blocked");
250}
251
252template<class Impl>
253void
254LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
255{
256    dcachePort = dcache_port;
257}
258
259template<class Impl>
260void
261LSQUnit<Impl>::clearLQ()
262{
263    loadQueue.clear();
264}
265
266template<class Impl>
267void
268LSQUnit<Impl>::clearSQ()
269{
270    storeQueue.clear();
271}
272
273template<class Impl>
274void
275LSQUnit<Impl>::drainSanityCheck() const
276{
277    for (int i = 0; i < loadQueue.size(); ++i)
278        assert(!loadQueue[i]);
279
280    assert(storesToWB == 0);
281    assert(!retryPkt);
282}
283
284template<class Impl>
285void
286LSQUnit<Impl>::takeOverFrom()
287{
288    resetState();
289}
290
291template<class Impl>
292void
293LSQUnit<Impl>::resizeLQ(unsigned size)
294{
295    unsigned size_plus_sentinel = size + 1;
296    assert(size_plus_sentinel >= LQEntries);
297
298    if (size_plus_sentinel > LQEntries) {
299        while (size_plus_sentinel > loadQueue.size()) {
300            DynInstPtr dummy;
301            loadQueue.push_back(dummy);
302            LQEntries++;
303        }
304    } else {
305        LQEntries = size_plus_sentinel;
306    }
307
308}
309
310template<class Impl>
311void
312LSQUnit<Impl>::resizeSQ(unsigned size)
313{
314    unsigned size_plus_sentinel = size + 1;
315    if (size_plus_sentinel > SQEntries) {
316        while (size_plus_sentinel > storeQueue.size()) {
317            SQEntry dummy;
318            storeQueue.push_back(dummy);
319            SQEntries++;
320        }
321    } else {
322        SQEntries = size_plus_sentinel;
323    }
324}
325
326template <class Impl>
327void
328LSQUnit<Impl>::insert(DynInstPtr &inst)
329{
330    assert(inst->isMemRef());
331
332    assert(inst->isLoad() || inst->isStore());
333
334    if (inst->isLoad()) {
335        insertLoad(inst);
336    } else {
337        insertStore(inst);
338    }
339
340    inst->setInLSQ();
341}
342
343template <class Impl>
344void
345LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
346{
347    assert((loadTail + 1) % LQEntries != loadHead);
348    assert(loads < LQEntries);
349
350    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
351            load_inst->pcState(), loadTail, load_inst->seqNum);
352
353    load_inst->lqIdx = loadTail;
354
355    if (stores == 0) {
356        load_inst->sqIdx = -1;
357    } else {
358        load_inst->sqIdx = storeTail;
359    }
360
361    loadQueue[loadTail] = load_inst;
362
363    incrLdIdx(loadTail);
364
365    ++loads;
366}
367
368template <class Impl>
369void
370LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
371{
372    // Make sure it is not full before inserting an instruction.
373    assert((storeTail + 1) % SQEntries != storeHead);
374    assert(stores < SQEntries);
375
376    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
377            store_inst->pcState(), storeTail, store_inst->seqNum);
378
379    store_inst->sqIdx = storeTail;
380    store_inst->lqIdx = loadTail;
381
382    storeQueue[storeTail] = SQEntry(store_inst);
383
384    incrStIdx(storeTail);
385
386    ++stores;
387}
388
389template <class Impl>
390typename Impl::DynInstPtr
391LSQUnit<Impl>::getMemDepViolator()
392{
393    DynInstPtr temp = memDepViolator;
394
395    memDepViolator = NULL;
396
397    return temp;
398}
399
400template <class Impl>
401unsigned
402LSQUnit<Impl>::numFreeEntries()
403{
404    unsigned free_lq_entries = LQEntries - loads;
405    unsigned free_sq_entries = SQEntries - stores;
406
407    // Both the LQ and SQ entries have an extra dummy entry to differentiate
408    // empty/full conditions.  Subtract 1 from the free entries.
409    if (free_lq_entries < free_sq_entries) {
410        return free_lq_entries - 1;
411    } else {
412        return free_sq_entries - 1;
413    }
414}
415
416template <class Impl>
417void
418LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
419{
420    int load_idx = loadHead;
421
422    if (!cacheBlockMask) {
423        assert(dcachePort);
424        Addr bs = dcachePort->peerBlockSize();
425
426        // Make sure we actually got a size
427        assert(bs != 0);
428
429        cacheBlockMask = ~(bs - 1);
430    }
431
432    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
433    // address. The CPU can speculatively execute a LL operation after a pending
434    // SC operation in the pipeline and that can make the cache monitor the CPU
435    // is connected to valid while it really shouldn't be.
436    for (int x = 0; x < cpu->numActiveThreads(); x++) {
437        ThreadContext *tc = cpu->getContext(x);
438        bool no_squash = cpu->thread[x]->noSquashFromTC;
439        cpu->thread[x]->noSquashFromTC = true;
440        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
441        cpu->thread[x]->noSquashFromTC = no_squash;
442    }
443
444    // If this is the only load in the LSQ we don't care
445    if (load_idx == loadTail)
446        return;
447    incrLdIdx(load_idx);
448
449    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
450    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
451    while (load_idx != loadTail) {
452        DynInstPtr ld_inst = loadQueue[load_idx];
453
454        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
455            incrLdIdx(load_idx);
456            continue;
457        }
458
459        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
460        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
461                    ld_inst->seqNum, load_addr, invalidate_addr);
462
463        if (load_addr == invalidate_addr) {
464            if (ld_inst->possibleLoadViolation()) {
465                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
466                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
467
468                // Mark the load for re-execution
469                ld_inst->fault = new ReExec;
470            } else {
471                // If a older load checks this and it's true
472                // then we might have missed the snoop
473                // in which case we need to invalidate to be sure
474                ld_inst->hitExternalSnoop(true);
475            }
476        }
477        incrLdIdx(load_idx);
478    }
479    return;
480}
481
482template <class Impl>
483Fault
484LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
485{
486    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
487    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
488
489    /** @todo in theory you only need to check an instruction that has executed
490     * however, there isn't a good way in the pipeline at the moment to check
491     * all instructions that will execute before the store writes back. Thus,
492     * like the implementation that came before it, we're overly conservative.
493     */
494    while (load_idx != loadTail) {
495        DynInstPtr ld_inst = loadQueue[load_idx];
496        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
497            incrLdIdx(load_idx);
498            continue;
499        }
500
501        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
502        Addr ld_eff_addr2 =
503            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
504
505        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
506            if (inst->isLoad()) {
507                // If this load is to the same block as an external snoop
508                // invalidate that we've observed then the load needs to be
509                // squashed as it could have newer data
510                if (ld_inst->hitExternalSnoop()) {
511                    if (!memDepViolator ||
512                            ld_inst->seqNum < memDepViolator->seqNum) {
513                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
514                                "and [sn:%lli] at address %#x\n",
515                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
516                        memDepViolator = ld_inst;
517
518                        ++lsqMemOrderViolation;
519
520                        return new GenericISA::M5PanicFault(
521                                "Detected fault with inst [sn:%lli] and "
522                                "[sn:%lli] at address %#x\n",
523                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
524                    }
525                }
526
527                // Otherwise, mark the load has a possible load violation
528                // and if we see a snoop before it's commited, we need to squash
529                ld_inst->possibleLoadViolation(true);
530                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
531                        " between instructions [sn:%lli] and [sn:%lli]\n",
532                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
533            } else {
534                // A load/store incorrectly passed this store.
535                // Check if we already have a violator, or if it's newer
536                // squash and refetch.
537                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
538                    break;
539
540                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
541                        "[sn:%lli] at address %#x\n",
542                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
543                memDepViolator = ld_inst;
544
545                ++lsqMemOrderViolation;
546
547                return new GenericISA::M5PanicFault("Detected fault with "
548                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
549                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
550            }
551        }
552
553        incrLdIdx(load_idx);
554    }
555    return NoFault;
556}
557
558
559
560
561template <class Impl>
562Fault
563LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
564{
565    using namespace TheISA;
566    // Execute a specific load.
567    Fault load_fault = NoFault;
568
569    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
570            inst->pcState(), inst->seqNum);
571
572    assert(!inst->isSquashed());
573
574    load_fault = inst->initiateAcc();
575
576    if (inst->isTranslationDelayed() &&
577        load_fault == NoFault)
578        return load_fault;
579
580    // If the instruction faulted or predicated false, then we need to send it
581    // along to commit without the instruction completing.
582    if (load_fault != NoFault || inst->readPredicate() == false) {
583        // Send this instruction to commit, also make sure iew stage
584        // realizes there is activity.
585        // Mark it as executed unless it is an uncached load that
586        // needs to hit the head of commit.
587        if (inst->readPredicate() == false)
588            inst->forwardOldRegs();
589        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
590                inst->seqNum,
591                (load_fault != NoFault ? "fault" : "predication"));
592        if (!(inst->hasRequest() && inst->uncacheable()) ||
593            inst->isAtCommit()) {
594            inst->setExecuted();
595        }
596        iewStage->instToCommit(inst);
597        iewStage->activityThisCycle();
598    } else if (!loadBlocked()) {
599        assert(inst->effAddrValid());
600        int load_idx = inst->lqIdx;
601        incrLdIdx(load_idx);
602
603        if (checkLoads)
604            return checkViolations(load_idx, inst);
605    }
606
607    return load_fault;
608}
609
610template <class Impl>
611Fault
612LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
613{
614    using namespace TheISA;
615    // Make sure that a store exists.
616    assert(stores != 0);
617
618    int store_idx = store_inst->sqIdx;
619
620    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
621            store_inst->pcState(), store_inst->seqNum);
622
623    assert(!store_inst->isSquashed());
624
625    // Check the recently completed loads to see if any match this store's
626    // address.  If so, then we have a memory ordering violation.
627    int load_idx = store_inst->lqIdx;
628
629    Fault store_fault = store_inst->initiateAcc();
630
631    if (store_inst->isTranslationDelayed() &&
632        store_fault == NoFault)
633        return store_fault;
634
635    if (store_inst->readPredicate() == false)
636        store_inst->forwardOldRegs();
637
638    if (storeQueue[store_idx].size == 0) {
639        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
640                store_inst->pcState(), store_inst->seqNum);
641
642        return store_fault;
643    } else if (store_inst->readPredicate() == false) {
644        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
645                store_inst->seqNum);
646        return store_fault;
647    }
648
649    assert(store_fault == NoFault);
650
651    if (store_inst->isStoreConditional()) {
652        // Store conditionals need to set themselves as able to
653        // writeback if we haven't had a fault by here.
654        storeQueue[store_idx].canWB = true;
655
656        ++storesToWB;
657    }
658
659    return checkViolations(load_idx, store_inst);
660
661}
662
663template <class Impl>
664void
665LSQUnit<Impl>::commitLoad()
666{
667    assert(loadQueue[loadHead]);
668
669    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
670            loadQueue[loadHead]->pcState());
671
672    loadQueue[loadHead] = NULL;
673
674    incrLdIdx(loadHead);
675
676    --loads;
677}
678
679template <class Impl>
680void
681LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
682{
683    assert(loads == 0 || loadQueue[loadHead]);
684
685    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
686        commitLoad();
687    }
688}
689
690template <class Impl>
691void
692LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
693{
694    assert(stores == 0 || storeQueue[storeHead].inst);
695
696    int store_idx = storeHead;
697
698    while (store_idx != storeTail) {
699        assert(storeQueue[store_idx].inst);
700        // Mark any stores that are now committed and have not yet
701        // been marked as able to write back.
702        if (!storeQueue[store_idx].canWB) {
703            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
704                break;
705            }
706            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
707                    "%s [sn:%lli]\n",
708                    storeQueue[store_idx].inst->pcState(),
709                    storeQueue[store_idx].inst->seqNum);
710
711            storeQueue[store_idx].canWB = true;
712
713            ++storesToWB;
714        }
715
716        incrStIdx(store_idx);
717    }
718}
719
720template <class Impl>
721void
722LSQUnit<Impl>::writebackPendingStore()
723{
724    if (hasPendingPkt) {
725        assert(pendingPkt != NULL);
726
727        // If the cache is blocked, this will store the packet for retry.
728        if (sendStore(pendingPkt)) {
729            storePostSend(pendingPkt);
730        }
731        pendingPkt = NULL;
732        hasPendingPkt = false;
733    }
734}
735
736template <class Impl>
737void
738LSQUnit<Impl>::writebackStores()
739{
740    // First writeback the second packet from any split store that didn't
741    // complete last cycle because there weren't enough cache ports available.
742    if (TheISA::HasUnalignedMemAcc) {
743        writebackPendingStore();
744    }
745
746    while (storesToWB > 0 &&
747           storeWBIdx != storeTail &&
748           storeQueue[storeWBIdx].inst &&
749           storeQueue[storeWBIdx].canWB &&
750           ((!needsTSO) || (!storeInFlight)) &&
751           usedPorts < cachePorts) {
752
753        if (isStoreBlocked || lsq->cacheBlocked()) {
754            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
755                    " is blocked!\n");
756            break;
757        }
758
759        // Store didn't write any data so no need to write it back to
760        // memory.
761        if (storeQueue[storeWBIdx].size == 0) {
762            completeStore(storeWBIdx);
763
764            incrStIdx(storeWBIdx);
765
766            continue;
767        }
768
769        ++usedPorts;
770
771        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
772            incrStIdx(storeWBIdx);
773
774            continue;
775        }
776
777        assert(storeQueue[storeWBIdx].req);
778        assert(!storeQueue[storeWBIdx].committed);
779
780        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
781            assert(storeQueue[storeWBIdx].sreqLow);
782            assert(storeQueue[storeWBIdx].sreqHigh);
783        }
784
785        DynInstPtr inst = storeQueue[storeWBIdx].inst;
786
787        Request *req = storeQueue[storeWBIdx].req;
788        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
789        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
790
791        storeQueue[storeWBIdx].committed = true;
792
793        assert(!inst->memData);
794        inst->memData = new uint8_t[64];
795
796        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
797
798        MemCmd command =
799            req->isSwap() ? MemCmd::SwapReq :
800            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
801        PacketPtr data_pkt;
802        PacketPtr snd_data_pkt = NULL;
803
804        LSQSenderState *state = new LSQSenderState;
805        state->isLoad = false;
806        state->idx = storeWBIdx;
807        state->inst = inst;
808
809        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
810
811            // Build a single data packet if the store isn't split.
812            data_pkt = new Packet(req, command);
813            data_pkt->dataStatic(inst->memData);
814            data_pkt->senderState = state;
815        } else {
816            // Create two packets if the store is split in two.
817            data_pkt = new Packet(sreqLow, command);
818            snd_data_pkt = new Packet(sreqHigh, command);
819
820            data_pkt->dataStatic(inst->memData);
821            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
822
823            data_pkt->senderState = state;
824            snd_data_pkt->senderState = state;
825
826            state->isSplit = true;
827            state->outstanding = 2;
828
829            // Can delete the main request now.
830            delete req;
831            req = sreqLow;
832        }
833
834        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
835                "to Addr:%#x, data:%#x [sn:%lli]\n",
836                storeWBIdx, inst->pcState(),
837                req->getPaddr(), (int)*(inst->memData),
838                inst->seqNum);
839
840        // @todo: Remove this SC hack once the memory system handles it.
841        if (inst->isStoreConditional()) {
842            assert(!storeQueue[storeWBIdx].isSplit);
843            // Disable recording the result temporarily.  Writing to
844            // misc regs normally updates the result, but this is not
845            // the desired behavior when handling store conditionals.
846            inst->recordResult(false);
847            bool success = TheISA::handleLockedWrite(inst.get(), req);
848            inst->recordResult(true);
849
850            if (!success) {
851                // Instantly complete this store.
852                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
853                        "Instantly completing it.\n",
854                        inst->seqNum);
855                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
856                cpu->schedule(wb, curTick() + 1);
857                if (cpu->checker) {
858                    // Make sure to set the LLSC data for verification
859                    // if checker is loaded
860                    inst->reqToVerify->setExtraData(0);
861                    inst->completeAcc(data_pkt);
862                }
863                completeStore(storeWBIdx);
864                incrStIdx(storeWBIdx);
865                continue;
866            }
867        } else {
868            // Non-store conditionals do not need a writeback.
869            state->noWB = true;
870        }
871
872        bool split =
873            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
874
875        ThreadContext *thread = cpu->tcBase(lsqID);
876
877        if (req->isMmappedIpr()) {
878            assert(!inst->isStoreConditional());
879            TheISA::handleIprWrite(thread, data_pkt);
880            delete data_pkt;
881            if (split) {
882                assert(snd_data_pkt->req->isMmappedIpr());
883                TheISA::handleIprWrite(thread, snd_data_pkt);
884                delete snd_data_pkt;
885                delete sreqLow;
886                delete sreqHigh;
887            }
888            delete state;
889            delete req;
890            completeStore(storeWBIdx);
891            incrStIdx(storeWBIdx);
892        } else if (!sendStore(data_pkt)) {
893            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
894                    "retry later\n",
895                    inst->seqNum);
896
897            // Need to store the second packet, if split.
898            if (split) {
899                state->pktToSend = true;
900                state->pendingPacket = snd_data_pkt;
901            }
902        } else {
903
904            // If split, try to send the second packet too
905            if (split) {
906                assert(snd_data_pkt);
907
908                // Ensure there are enough ports to use.
909                if (usedPorts < cachePorts) {
910                    ++usedPorts;
911                    if (sendStore(snd_data_pkt)) {
912                        storePostSend(snd_data_pkt);
913                    } else {
914                        DPRINTF(IEW, "D-Cache became blocked when writing"
915                                " [sn:%lli] second packet, will retry later\n",
916                                inst->seqNum);
917                    }
918                } else {
919
920                    // Store the packet for when there's free ports.
921                    assert(pendingPkt == NULL);
922                    pendingPkt = snd_data_pkt;
923                    hasPendingPkt = true;
924                }
925            } else {
926
927                // Not a split store.
928                storePostSend(data_pkt);
929            }
930        }
931    }
932
933    // Not sure this should set it to 0.
934    usedPorts = 0;
935
936    assert(stores >= 0 && storesToWB >= 0);
937}
938
939/*template <class Impl>
940void
941LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
942{
943    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
944                                              mshrSeqNums.end(),
945                                              seqNum);
946
947    if (mshr_it != mshrSeqNums.end()) {
948        mshrSeqNums.erase(mshr_it);
949        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
950    }
951}*/
952
953template <class Impl>
954void
955LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
956{
957    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
958            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
959
960    int load_idx = loadTail;
961    decrLdIdx(load_idx);
962
963    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
964        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
965                "[sn:%lli]\n",
966                loadQueue[load_idx]->pcState(),
967                loadQueue[load_idx]->seqNum);
968
969        if (isStalled() && load_idx == stallingLoadIdx) {
970            stalled = false;
971            stallingStoreIsn = 0;
972            stallingLoadIdx = 0;
973        }
974
975        // Clear the smart pointer to make sure it is decremented.
976        loadQueue[load_idx]->setSquashed();
977        loadQueue[load_idx] = NULL;
978        --loads;
979
980        // Inefficient!
981        loadTail = load_idx;
982
983        decrLdIdx(load_idx);
984        ++lsqSquashedLoads;
985    }
986
987    if (isLoadBlocked) {
988        if (squashed_num < blockedLoadSeqNum) {
989            isLoadBlocked = false;
990            loadBlockedHandled = false;
991            blockedLoadSeqNum = 0;
992        }
993    }
994
995    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
996        memDepViolator = NULL;
997    }
998
999    int store_idx = storeTail;
1000    decrStIdx(store_idx);
1001
1002    while (stores != 0 &&
1003           storeQueue[store_idx].inst->seqNum > squashed_num) {
1004        // Instructions marked as can WB are already committed.
1005        if (storeQueue[store_idx].canWB) {
1006            break;
1007        }
1008
1009        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1010                "idx:%i [sn:%lli]\n",
1011                storeQueue[store_idx].inst->pcState(),
1012                store_idx, storeQueue[store_idx].inst->seqNum);
1013
1014        // I don't think this can happen.  It should have been cleared
1015        // by the stalling load.
1016        if (isStalled() &&
1017            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1018            panic("Is stalled should have been cleared by stalling load!\n");
1019            stalled = false;
1020            stallingStoreIsn = 0;
1021        }
1022
1023        // Clear the smart pointer to make sure it is decremented.
1024        storeQueue[store_idx].inst->setSquashed();
1025        storeQueue[store_idx].inst = NULL;
1026        storeQueue[store_idx].canWB = 0;
1027
1028        // Must delete request now that it wasn't handed off to
1029        // memory.  This is quite ugly.  @todo: Figure out the proper
1030        // place to really handle request deletes.
1031        delete storeQueue[store_idx].req;
1032        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1033            delete storeQueue[store_idx].sreqLow;
1034            delete storeQueue[store_idx].sreqHigh;
1035
1036            storeQueue[store_idx].sreqLow = NULL;
1037            storeQueue[store_idx].sreqHigh = NULL;
1038        }
1039
1040        storeQueue[store_idx].req = NULL;
1041        --stores;
1042
1043        // Inefficient!
1044        storeTail = store_idx;
1045
1046        decrStIdx(store_idx);
1047        ++lsqSquashedStores;
1048    }
1049}
1050
1051template <class Impl>
1052void
1053LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1054{
1055    if (isStalled() &&
1056        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1057        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1058                "load idx:%i\n",
1059                stallingStoreIsn, stallingLoadIdx);
1060        stalled = false;
1061        stallingStoreIsn = 0;
1062        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1063    }
1064
1065    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1066        // The store is basically completed at this time. This
1067        // only works so long as the checker doesn't try to
1068        // verify the value in memory for stores.
1069        storeQueue[storeWBIdx].inst->setCompleted();
1070
1071        if (cpu->checker) {
1072            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1073        }
1074    }
1075
1076    if (needsTSO) {
1077        storeInFlight = true;
1078    }
1079
1080    incrStIdx(storeWBIdx);
1081}
1082
1083template <class Impl>
1084void
1085LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1086{
1087    iewStage->wakeCPU();
1088
1089    // Squashed instructions do not need to complete their access.
1090    if (inst->isSquashed()) {
1091        iewStage->decrWb(inst->seqNum);
1092        assert(!inst->isStore());
1093        ++lsqIgnoredResponses;
1094        return;
1095    }
1096
1097    if (!inst->isExecuted()) {
1098        inst->setExecuted();
1099
1100        // Complete access to copy data to proper place.
1101        inst->completeAcc(pkt);
1102    }
1103
1104    // Need to insert instruction into queue to commit
1105    iewStage->instToCommit(inst);
1106
1107    iewStage->activityThisCycle();
1108
1109    // see if this load changed the PC
1110    iewStage->checkMisprediction(inst);
1111}
1112
1113template <class Impl>
1114void
1115LSQUnit<Impl>::completeStore(int store_idx)
1116{
1117    assert(storeQueue[store_idx].inst);
1118    storeQueue[store_idx].completed = true;
1119    --storesToWB;
1120    // A bit conservative because a store completion may not free up entries,
1121    // but hopefully avoids two store completions in one cycle from making
1122    // the CPU tick twice.
1123    cpu->wakeCPU();
1124    cpu->activityThisCycle();
1125
1126    if (store_idx == storeHead) {
1127        do {
1128            incrStIdx(storeHead);
1129
1130            --stores;
1131        } while (storeQueue[storeHead].completed &&
1132                 storeHead != storeTail);
1133
1134        iewStage->updateLSQNextCycle = true;
1135    }
1136
1137    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1138            "idx:%i\n",
1139            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1140
1141#if TRACING_ON
1142    if (DTRACE(O3PipeView)) {
1143        storeQueue[store_idx].inst->storeTick =
1144            curTick() - storeQueue[store_idx].inst->fetchTick;
1145    }
1146#endif
1147
1148    if (isStalled() &&
1149        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1150        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1151                "load idx:%i\n",
1152                stallingStoreIsn, stallingLoadIdx);
1153        stalled = false;
1154        stallingStoreIsn = 0;
1155        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1156    }
1157
1158    storeQueue[store_idx].inst->setCompleted();
1159
1160    if (needsTSO) {
1161        storeInFlight = false;
1162    }
1163
1164    // Tell the checker we've completed this instruction.  Some stores
1165    // may get reported twice to the checker, but the checker can
1166    // handle that case.
1167    if (cpu->checker) {
1168        cpu->checker->verify(storeQueue[store_idx].inst);
1169    }
1170}
1171
1172template <class Impl>
1173bool
1174LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1175{
1176    if (!dcachePort->sendTimingReq(data_pkt)) {
1177        // Need to handle becoming blocked on a store.
1178        isStoreBlocked = true;
1179        ++lsqCacheBlocked;
1180        assert(retryPkt == NULL);
1181        retryPkt = data_pkt;
1182        lsq->setRetryTid(lsqID);
1183        return false;
1184    }
1185    return true;
1186}
1187
1188template <class Impl>
1189void
1190LSQUnit<Impl>::recvRetry()
1191{
1192    if (isStoreBlocked) {
1193        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1194        assert(retryPkt != NULL);
1195
1196        LSQSenderState *state =
1197            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1198
1199        if (dcachePort->sendTimingReq(retryPkt)) {
1200            // Don't finish the store unless this is the last packet.
1201            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1202                    state->pendingPacket == retryPkt) {
1203                state->pktToSend = false;
1204                storePostSend(retryPkt);
1205            }
1206            retryPkt = NULL;
1207            isStoreBlocked = false;
1208            lsq->setRetryTid(InvalidThreadID);
1209
1210            // Send any outstanding packet.
1211            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1212                assert(state->pendingPacket);
1213                if (sendStore(state->pendingPacket)) {
1214                    storePostSend(state->pendingPacket);
1215                }
1216            }
1217        } else {
1218            // Still blocked!
1219            ++lsqCacheBlocked;
1220            lsq->setRetryTid(lsqID);
1221        }
1222    } else if (isLoadBlocked) {
1223        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1224                "no need to resend packet.\n");
1225    } else {
1226        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1227    }
1228}
1229
1230template <class Impl>
1231inline void
1232LSQUnit<Impl>::incrStIdx(int &store_idx) const
1233{
1234    if (++store_idx >= SQEntries)
1235        store_idx = 0;
1236}
1237
1238template <class Impl>
1239inline void
1240LSQUnit<Impl>::decrStIdx(int &store_idx) const
1241{
1242    if (--store_idx < 0)
1243        store_idx += SQEntries;
1244}
1245
1246template <class Impl>
1247inline void
1248LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1249{
1250    if (++load_idx >= LQEntries)
1251        load_idx = 0;
1252}
1253
1254template <class Impl>
1255inline void
1256LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1257{
1258    if (--load_idx < 0)
1259        load_idx += LQEntries;
1260}
1261
1262template <class Impl>
1263void
1264LSQUnit<Impl>::dumpInsts() const
1265{
1266    cprintf("Load store queue: Dumping instructions.\n");
1267    cprintf("Load queue size: %i\n", loads);
1268    cprintf("Load queue: ");
1269
1270    int load_idx = loadHead;
1271
1272    while (load_idx != loadTail && loadQueue[load_idx]) {
1273        const DynInstPtr &inst(loadQueue[load_idx]);
1274        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1275
1276        incrLdIdx(load_idx);
1277    }
1278    cprintf("\n");
1279
1280    cprintf("Store queue size: %i\n", stores);
1281    cprintf("Store queue: ");
1282
1283    int store_idx = storeHead;
1284
1285    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1286        const DynInstPtr &inst(storeQueue[store_idx].inst);
1287        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1288
1289        incrStIdx(store_idx);
1290    }
1291
1292    cprintf("\n");
1293}
1294