lsq_unit_impl.hh revision 9444
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/generic/debugfaults.hh"
45#include "arch/locked_mem.hh"
46#include "base/str.hh"
47#include "config/the_isa.hh"
48#include "cpu/checker/cpu.hh"
49#include "cpu/o3/lsq.hh"
50#include "cpu/o3/lsq_unit.hh"
51#include "debug/Activity.hh"
52#include "debug/IEW.hh"
53#include "debug/LSQUnit.hh"
54#include "mem/packet.hh"
55#include "mem/request.hh"
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : Event(Default_Pri, AutoDelete),
61      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
62{
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    assert(!lsqPtr->cpu->switchedOut());
70
71    lsqPtr->writeback(inst, pkt);
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    // If this is a split access, wait until all packets are received.
99    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
100        delete pkt->req;
101        delete pkt;
102        return;
103    }
104
105    assert(!cpu->switchedOut());
106    if (inst->isSquashed()) {
107        iewStage->decrWb(inst->seqNum);
108    } else {
109        if (!state->noWB) {
110            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
111                !state->isLoad) {
112                writeback(inst, pkt);
113            } else {
114                writeback(inst, state->mainPkt);
115            }
116        }
117
118        if (inst->isStore()) {
119            completeStore(state->idx);
120        }
121    }
122
123    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
124        delete state->mainPkt->req;
125        delete state->mainPkt;
126    }
127    delete state;
128    delete pkt->req;
129    delete pkt;
130}
131
132template <class Impl>
133LSQUnit<Impl>::LSQUnit()
134    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
135      isStoreBlocked(false), isLoadBlocked(false),
136      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
137{
138}
139
140template<class Impl>
141void
142LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
143        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
144        unsigned id)
145{
146    cpu = cpu_ptr;
147    iewStage = iew_ptr;
148
149    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
150
151    lsq = lsq_ptr;
152
153    lsqID = id;
154
155    // Add 1 for the sentinel entry (they are circular queues).
156    LQEntries = maxLQEntries + 1;
157    SQEntries = maxSQEntries + 1;
158
159    loadQueue.resize(LQEntries);
160    storeQueue.resize(SQEntries);
161
162    depCheckShift = params->LSQDepCheckShift;
163    checkLoads = params->LSQCheckLoads;
164    cachePorts = params->cachePorts;
165    needsTSO = params->needsTSO;
166
167    resetState();
168}
169
170
171template<class Impl>
172void
173LSQUnit<Impl>::resetState()
174{
175    loads = stores = storesToWB = 0;
176
177    loadHead = loadTail = 0;
178
179    storeHead = storeWBIdx = storeTail = 0;
180
181    usedPorts = 0;
182
183    retryPkt = NULL;
184    memDepViolator = NULL;
185
186    blockedLoadSeqNum = 0;
187
188    stalled = false;
189    isLoadBlocked = false;
190    loadBlockedHandled = false;
191
192    cacheBlockMask = 0;
193}
194
195template<class Impl>
196std::string
197LSQUnit<Impl>::name() const
198{
199    if (Impl::MaxThreads == 1) {
200        return iewStage->name() + ".lsq";
201    } else {
202        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
203    }
204}
205
206template<class Impl>
207void
208LSQUnit<Impl>::regStats()
209{
210    lsqForwLoads
211        .name(name() + ".forwLoads")
212        .desc("Number of loads that had data forwarded from stores");
213
214    invAddrLoads
215        .name(name() + ".invAddrLoads")
216        .desc("Number of loads ignored due to an invalid address");
217
218    lsqSquashedLoads
219        .name(name() + ".squashedLoads")
220        .desc("Number of loads squashed");
221
222    lsqIgnoredResponses
223        .name(name() + ".ignoredResponses")
224        .desc("Number of memory responses ignored because the instruction is squashed");
225
226    lsqMemOrderViolation
227        .name(name() + ".memOrderViolation")
228        .desc("Number of memory ordering violations");
229
230    lsqSquashedStores
231        .name(name() + ".squashedStores")
232        .desc("Number of stores squashed");
233
234    invAddrSwpfs
235        .name(name() + ".invAddrSwpfs")
236        .desc("Number of software prefetches ignored due to an invalid address");
237
238    lsqBlockedLoads
239        .name(name() + ".blockedLoads")
240        .desc("Number of blocked loads due to partial load-store forwarding");
241
242    lsqRescheduledLoads
243        .name(name() + ".rescheduledLoads")
244        .desc("Number of loads that were rescheduled");
245
246    lsqCacheBlocked
247        .name(name() + ".cacheBlocked")
248        .desc("Number of times an access to memory failed due to the cache being blocked");
249}
250
251template<class Impl>
252void
253LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
254{
255    dcachePort = dcache_port;
256}
257
258template<class Impl>
259void
260LSQUnit<Impl>::clearLQ()
261{
262    loadQueue.clear();
263}
264
265template<class Impl>
266void
267LSQUnit<Impl>::clearSQ()
268{
269    storeQueue.clear();
270}
271
272template<class Impl>
273void
274LSQUnit<Impl>::drainSanityCheck() const
275{
276    for (int i = 0; i < loadQueue.size(); ++i)
277        assert(!loadQueue[i]);
278
279    assert(storesToWB == 0);
280    assert(!retryPkt);
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::takeOverFrom()
286{
287    resetState();
288}
289
290template<class Impl>
291void
292LSQUnit<Impl>::resizeLQ(unsigned size)
293{
294    unsigned size_plus_sentinel = size + 1;
295    assert(size_plus_sentinel >= LQEntries);
296
297    if (size_plus_sentinel > LQEntries) {
298        while (size_plus_sentinel > loadQueue.size()) {
299            DynInstPtr dummy;
300            loadQueue.push_back(dummy);
301            LQEntries++;
302        }
303    } else {
304        LQEntries = size_plus_sentinel;
305    }
306
307}
308
309template<class Impl>
310void
311LSQUnit<Impl>::resizeSQ(unsigned size)
312{
313    unsigned size_plus_sentinel = size + 1;
314    if (size_plus_sentinel > SQEntries) {
315        while (size_plus_sentinel > storeQueue.size()) {
316            SQEntry dummy;
317            storeQueue.push_back(dummy);
318            SQEntries++;
319        }
320    } else {
321        SQEntries = size_plus_sentinel;
322    }
323}
324
325template <class Impl>
326void
327LSQUnit<Impl>::insert(DynInstPtr &inst)
328{
329    assert(inst->isMemRef());
330
331    assert(inst->isLoad() || inst->isStore());
332
333    if (inst->isLoad()) {
334        insertLoad(inst);
335    } else {
336        insertStore(inst);
337    }
338
339    inst->setInLSQ();
340}
341
342template <class Impl>
343void
344LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
345{
346    assert((loadTail + 1) % LQEntries != loadHead);
347    assert(loads < LQEntries);
348
349    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
350            load_inst->pcState(), loadTail, load_inst->seqNum);
351
352    load_inst->lqIdx = loadTail;
353
354    if (stores == 0) {
355        load_inst->sqIdx = -1;
356    } else {
357        load_inst->sqIdx = storeTail;
358    }
359
360    loadQueue[loadTail] = load_inst;
361
362    incrLdIdx(loadTail);
363
364    ++loads;
365}
366
367template <class Impl>
368void
369LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
370{
371    // Make sure it is not full before inserting an instruction.
372    assert((storeTail + 1) % SQEntries != storeHead);
373    assert(stores < SQEntries);
374
375    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
376            store_inst->pcState(), storeTail, store_inst->seqNum);
377
378    store_inst->sqIdx = storeTail;
379    store_inst->lqIdx = loadTail;
380
381    storeQueue[storeTail] = SQEntry(store_inst);
382
383    incrStIdx(storeTail);
384
385    ++stores;
386}
387
388template <class Impl>
389typename Impl::DynInstPtr
390LSQUnit<Impl>::getMemDepViolator()
391{
392    DynInstPtr temp = memDepViolator;
393
394    memDepViolator = NULL;
395
396    return temp;
397}
398
399template <class Impl>
400unsigned
401LSQUnit<Impl>::numFreeEntries()
402{
403    unsigned free_lq_entries = LQEntries - loads;
404    unsigned free_sq_entries = SQEntries - stores;
405
406    // Both the LQ and SQ entries have an extra dummy entry to differentiate
407    // empty/full conditions.  Subtract 1 from the free entries.
408    if (free_lq_entries < free_sq_entries) {
409        return free_lq_entries - 1;
410    } else {
411        return free_sq_entries - 1;
412    }
413}
414
415template <class Impl>
416void
417LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
418{
419    int load_idx = loadHead;
420
421    if (!cacheBlockMask) {
422        assert(dcachePort);
423        Addr bs = dcachePort->peerBlockSize();
424
425        // Make sure we actually got a size
426        assert(bs != 0);
427
428        cacheBlockMask = ~(bs - 1);
429    }
430
431    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
432    // address. The CPU can speculatively execute a LL operation after a pending
433    // SC operation in the pipeline and that can make the cache monitor the CPU
434    // is connected to valid while it really shouldn't be.
435    for (int x = 0; x < cpu->numActiveThreads(); x++) {
436        ThreadContext *tc = cpu->getContext(x);
437        bool no_squash = cpu->thread[x]->noSquashFromTC;
438        cpu->thread[x]->noSquashFromTC = true;
439        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
440        cpu->thread[x]->noSquashFromTC = no_squash;
441    }
442
443    // If this is the only load in the LSQ we don't care
444    if (load_idx == loadTail)
445        return;
446    incrLdIdx(load_idx);
447
448    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
449    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
450    while (load_idx != loadTail) {
451        DynInstPtr ld_inst = loadQueue[load_idx];
452
453        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
454            incrLdIdx(load_idx);
455            continue;
456        }
457
458        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
459        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
460                    ld_inst->seqNum, load_addr, invalidate_addr);
461
462        if (load_addr == invalidate_addr) {
463            if (ld_inst->possibleLoadViolation()) {
464                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
465                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
466
467                // Mark the load for re-execution
468                ld_inst->fault = new ReExec;
469            } else {
470                // If a older load checks this and it's true
471                // then we might have missed the snoop
472                // in which case we need to invalidate to be sure
473                ld_inst->hitExternalSnoop(true);
474            }
475        }
476        incrLdIdx(load_idx);
477    }
478    return;
479}
480
481template <class Impl>
482Fault
483LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
484{
485    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
486    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
487
488    /** @todo in theory you only need to check an instruction that has executed
489     * however, there isn't a good way in the pipeline at the moment to check
490     * all instructions that will execute before the store writes back. Thus,
491     * like the implementation that came before it, we're overly conservative.
492     */
493    while (load_idx != loadTail) {
494        DynInstPtr ld_inst = loadQueue[load_idx];
495        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
496            incrLdIdx(load_idx);
497            continue;
498        }
499
500        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
501        Addr ld_eff_addr2 =
502            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
503
504        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
505            if (inst->isLoad()) {
506                // If this load is to the same block as an external snoop
507                // invalidate that we've observed then the load needs to be
508                // squashed as it could have newer data
509                if (ld_inst->hitExternalSnoop()) {
510                    if (!memDepViolator ||
511                            ld_inst->seqNum < memDepViolator->seqNum) {
512                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
513                                "and [sn:%lli] at address %#x\n",
514                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
515                        memDepViolator = ld_inst;
516
517                        ++lsqMemOrderViolation;
518
519                        return new GenericISA::M5PanicFault(
520                                "Detected fault with inst [sn:%lli] and "
521                                "[sn:%lli] at address %#x\n",
522                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
523                    }
524                }
525
526                // Otherwise, mark the load has a possible load violation
527                // and if we see a snoop before it's commited, we need to squash
528                ld_inst->possibleLoadViolation(true);
529                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
530                        " between instructions [sn:%lli] and [sn:%lli]\n",
531                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
532            } else {
533                // A load/store incorrectly passed this store.
534                // Check if we already have a violator, or if it's newer
535                // squash and refetch.
536                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
537                    break;
538
539                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
540                        "[sn:%lli] at address %#x\n",
541                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
542                memDepViolator = ld_inst;
543
544                ++lsqMemOrderViolation;
545
546                return new GenericISA::M5PanicFault("Detected fault with "
547                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
548                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
549            }
550        }
551
552        incrLdIdx(load_idx);
553    }
554    return NoFault;
555}
556
557
558
559
560template <class Impl>
561Fault
562LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
563{
564    using namespace TheISA;
565    // Execute a specific load.
566    Fault load_fault = NoFault;
567
568    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
569            inst->pcState(), inst->seqNum);
570
571    assert(!inst->isSquashed());
572
573    load_fault = inst->initiateAcc();
574
575    if (inst->isTranslationDelayed() &&
576        load_fault == NoFault)
577        return load_fault;
578
579    // If the instruction faulted or predicated false, then we need to send it
580    // along to commit without the instruction completing.
581    if (load_fault != NoFault || inst->readPredicate() == false) {
582        // Send this instruction to commit, also make sure iew stage
583        // realizes there is activity.
584        // Mark it as executed unless it is an uncached load that
585        // needs to hit the head of commit.
586        if (inst->readPredicate() == false)
587            inst->forwardOldRegs();
588        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
589                inst->seqNum,
590                (load_fault != NoFault ? "fault" : "predication"));
591        if (!(inst->hasRequest() && inst->uncacheable()) ||
592            inst->isAtCommit()) {
593            inst->setExecuted();
594        }
595        iewStage->instToCommit(inst);
596        iewStage->activityThisCycle();
597    } else if (!loadBlocked()) {
598        assert(inst->effAddrValid());
599        int load_idx = inst->lqIdx;
600        incrLdIdx(load_idx);
601
602        if (checkLoads)
603            return checkViolations(load_idx, inst);
604    }
605
606    return load_fault;
607}
608
609template <class Impl>
610Fault
611LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
612{
613    using namespace TheISA;
614    // Make sure that a store exists.
615    assert(stores != 0);
616
617    int store_idx = store_inst->sqIdx;
618
619    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
620            store_inst->pcState(), store_inst->seqNum);
621
622    assert(!store_inst->isSquashed());
623
624    // Check the recently completed loads to see if any match this store's
625    // address.  If so, then we have a memory ordering violation.
626    int load_idx = store_inst->lqIdx;
627
628    Fault store_fault = store_inst->initiateAcc();
629
630    if (store_inst->isTranslationDelayed() &&
631        store_fault == NoFault)
632        return store_fault;
633
634    if (store_inst->readPredicate() == false)
635        store_inst->forwardOldRegs();
636
637    if (storeQueue[store_idx].size == 0) {
638        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
639                store_inst->pcState(), store_inst->seqNum);
640
641        return store_fault;
642    } else if (store_inst->readPredicate() == false) {
643        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
644                store_inst->seqNum);
645        return store_fault;
646    }
647
648    assert(store_fault == NoFault);
649
650    if (store_inst->isStoreConditional()) {
651        // Store conditionals need to set themselves as able to
652        // writeback if we haven't had a fault by here.
653        storeQueue[store_idx].canWB = true;
654
655        ++storesToWB;
656    }
657
658    return checkViolations(load_idx, store_inst);
659
660}
661
662template <class Impl>
663void
664LSQUnit<Impl>::commitLoad()
665{
666    assert(loadQueue[loadHead]);
667
668    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
669            loadQueue[loadHead]->pcState());
670
671    loadQueue[loadHead] = NULL;
672
673    incrLdIdx(loadHead);
674
675    --loads;
676}
677
678template <class Impl>
679void
680LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
681{
682    assert(loads == 0 || loadQueue[loadHead]);
683
684    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
685        commitLoad();
686    }
687}
688
689template <class Impl>
690void
691LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
692{
693    assert(stores == 0 || storeQueue[storeHead].inst);
694
695    int store_idx = storeHead;
696
697    while (store_idx != storeTail) {
698        assert(storeQueue[store_idx].inst);
699        // Mark any stores that are now committed and have not yet
700        // been marked as able to write back.
701        if (!storeQueue[store_idx].canWB) {
702            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
703                break;
704            }
705            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
706                    "%s [sn:%lli]\n",
707                    storeQueue[store_idx].inst->pcState(),
708                    storeQueue[store_idx].inst->seqNum);
709
710            storeQueue[store_idx].canWB = true;
711
712            ++storesToWB;
713        }
714
715        incrStIdx(store_idx);
716    }
717}
718
719template <class Impl>
720void
721LSQUnit<Impl>::writebackPendingStore()
722{
723    if (hasPendingPkt) {
724        assert(pendingPkt != NULL);
725
726        // If the cache is blocked, this will store the packet for retry.
727        if (sendStore(pendingPkt)) {
728            storePostSend(pendingPkt);
729        }
730        pendingPkt = NULL;
731        hasPendingPkt = false;
732    }
733}
734
735template <class Impl>
736void
737LSQUnit<Impl>::writebackStores()
738{
739    // First writeback the second packet from any split store that didn't
740    // complete last cycle because there weren't enough cache ports available.
741    if (TheISA::HasUnalignedMemAcc) {
742        writebackPendingStore();
743    }
744
745    while (storesToWB > 0 &&
746           storeWBIdx != storeTail &&
747           storeQueue[storeWBIdx].inst &&
748           storeQueue[storeWBIdx].canWB &&
749           ((!needsTSO) || (!storeInFlight)) &&
750           usedPorts < cachePorts) {
751
752        if (isStoreBlocked || lsq->cacheBlocked()) {
753            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
754                    " is blocked!\n");
755            break;
756        }
757
758        // Store didn't write any data so no need to write it back to
759        // memory.
760        if (storeQueue[storeWBIdx].size == 0) {
761            completeStore(storeWBIdx);
762
763            incrStIdx(storeWBIdx);
764
765            continue;
766        }
767
768        ++usedPorts;
769
770        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
771            incrStIdx(storeWBIdx);
772
773            continue;
774        }
775
776        assert(storeQueue[storeWBIdx].req);
777        assert(!storeQueue[storeWBIdx].committed);
778
779        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
780            assert(storeQueue[storeWBIdx].sreqLow);
781            assert(storeQueue[storeWBIdx].sreqHigh);
782        }
783
784        DynInstPtr inst = storeQueue[storeWBIdx].inst;
785
786        Request *req = storeQueue[storeWBIdx].req;
787        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
788        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
789
790        storeQueue[storeWBIdx].committed = true;
791
792        assert(!inst->memData);
793        inst->memData = new uint8_t[64];
794
795        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
796
797        MemCmd command =
798            req->isSwap() ? MemCmd::SwapReq :
799            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
800        PacketPtr data_pkt;
801        PacketPtr snd_data_pkt = NULL;
802
803        LSQSenderState *state = new LSQSenderState;
804        state->isLoad = false;
805        state->idx = storeWBIdx;
806        state->inst = inst;
807
808        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
809
810            // Build a single data packet if the store isn't split.
811            data_pkt = new Packet(req, command);
812            data_pkt->dataStatic(inst->memData);
813            data_pkt->senderState = state;
814        } else {
815            // Create two packets if the store is split in two.
816            data_pkt = new Packet(sreqLow, command);
817            snd_data_pkt = new Packet(sreqHigh, command);
818
819            data_pkt->dataStatic(inst->memData);
820            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
821
822            data_pkt->senderState = state;
823            snd_data_pkt->senderState = state;
824
825            state->isSplit = true;
826            state->outstanding = 2;
827
828            // Can delete the main request now.
829            delete req;
830            req = sreqLow;
831        }
832
833        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
834                "to Addr:%#x, data:%#x [sn:%lli]\n",
835                storeWBIdx, inst->pcState(),
836                req->getPaddr(), (int)*(inst->memData),
837                inst->seqNum);
838
839        // @todo: Remove this SC hack once the memory system handles it.
840        if (inst->isStoreConditional()) {
841            assert(!storeQueue[storeWBIdx].isSplit);
842            // Disable recording the result temporarily.  Writing to
843            // misc regs normally updates the result, but this is not
844            // the desired behavior when handling store conditionals.
845            inst->recordResult(false);
846            bool success = TheISA::handleLockedWrite(inst.get(), req);
847            inst->recordResult(true);
848
849            if (!success) {
850                // Instantly complete this store.
851                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
852                        "Instantly completing it.\n",
853                        inst->seqNum);
854                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
855                cpu->schedule(wb, curTick() + 1);
856                if (cpu->checker) {
857                    // Make sure to set the LLSC data for verification
858                    // if checker is loaded
859                    inst->reqToVerify->setExtraData(0);
860                    inst->completeAcc(data_pkt);
861                }
862                completeStore(storeWBIdx);
863                incrStIdx(storeWBIdx);
864                continue;
865            }
866        } else {
867            // Non-store conditionals do not need a writeback.
868            state->noWB = true;
869        }
870
871        bool split =
872            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
873
874        ThreadContext *thread = cpu->tcBase(lsqID);
875
876        if (req->isMmappedIpr()) {
877            assert(!inst->isStoreConditional());
878            TheISA::handleIprWrite(thread, data_pkt);
879            delete data_pkt;
880            if (split) {
881                assert(snd_data_pkt->req->isMmappedIpr());
882                TheISA::handleIprWrite(thread, snd_data_pkt);
883                delete snd_data_pkt;
884                delete sreqLow;
885                delete sreqHigh;
886            }
887            delete state;
888            delete req;
889            completeStore(storeWBIdx);
890            incrStIdx(storeWBIdx);
891        } else if (!sendStore(data_pkt)) {
892            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
893                    "retry later\n",
894                    inst->seqNum);
895
896            // Need to store the second packet, if split.
897            if (split) {
898                state->pktToSend = true;
899                state->pendingPacket = snd_data_pkt;
900            }
901        } else {
902
903            // If split, try to send the second packet too
904            if (split) {
905                assert(snd_data_pkt);
906
907                // Ensure there are enough ports to use.
908                if (usedPorts < cachePorts) {
909                    ++usedPorts;
910                    if (sendStore(snd_data_pkt)) {
911                        storePostSend(snd_data_pkt);
912                    } else {
913                        DPRINTF(IEW, "D-Cache became blocked when writing"
914                                " [sn:%lli] second packet, will retry later\n",
915                                inst->seqNum);
916                    }
917                } else {
918
919                    // Store the packet for when there's free ports.
920                    assert(pendingPkt == NULL);
921                    pendingPkt = snd_data_pkt;
922                    hasPendingPkt = true;
923                }
924            } else {
925
926                // Not a split store.
927                storePostSend(data_pkt);
928            }
929        }
930    }
931
932    // Not sure this should set it to 0.
933    usedPorts = 0;
934
935    assert(stores >= 0 && storesToWB >= 0);
936}
937
938/*template <class Impl>
939void
940LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
941{
942    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
943                                              mshrSeqNums.end(),
944                                              seqNum);
945
946    if (mshr_it != mshrSeqNums.end()) {
947        mshrSeqNums.erase(mshr_it);
948        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
949    }
950}*/
951
952template <class Impl>
953void
954LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
955{
956    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
957            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
958
959    int load_idx = loadTail;
960    decrLdIdx(load_idx);
961
962    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
963        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
964                "[sn:%lli]\n",
965                loadQueue[load_idx]->pcState(),
966                loadQueue[load_idx]->seqNum);
967
968        if (isStalled() && load_idx == stallingLoadIdx) {
969            stalled = false;
970            stallingStoreIsn = 0;
971            stallingLoadIdx = 0;
972        }
973
974        // Clear the smart pointer to make sure it is decremented.
975        loadQueue[load_idx]->setSquashed();
976        loadQueue[load_idx] = NULL;
977        --loads;
978
979        // Inefficient!
980        loadTail = load_idx;
981
982        decrLdIdx(load_idx);
983        ++lsqSquashedLoads;
984    }
985
986    if (isLoadBlocked) {
987        if (squashed_num < blockedLoadSeqNum) {
988            isLoadBlocked = false;
989            loadBlockedHandled = false;
990            blockedLoadSeqNum = 0;
991        }
992    }
993
994    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
995        memDepViolator = NULL;
996    }
997
998    int store_idx = storeTail;
999    decrStIdx(store_idx);
1000
1001    while (stores != 0 &&
1002           storeQueue[store_idx].inst->seqNum > squashed_num) {
1003        // Instructions marked as can WB are already committed.
1004        if (storeQueue[store_idx].canWB) {
1005            break;
1006        }
1007
1008        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1009                "idx:%i [sn:%lli]\n",
1010                storeQueue[store_idx].inst->pcState(),
1011                store_idx, storeQueue[store_idx].inst->seqNum);
1012
1013        // I don't think this can happen.  It should have been cleared
1014        // by the stalling load.
1015        if (isStalled() &&
1016            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1017            panic("Is stalled should have been cleared by stalling load!\n");
1018            stalled = false;
1019            stallingStoreIsn = 0;
1020        }
1021
1022        // Clear the smart pointer to make sure it is decremented.
1023        storeQueue[store_idx].inst->setSquashed();
1024        storeQueue[store_idx].inst = NULL;
1025        storeQueue[store_idx].canWB = 0;
1026
1027        // Must delete request now that it wasn't handed off to
1028        // memory.  This is quite ugly.  @todo: Figure out the proper
1029        // place to really handle request deletes.
1030        delete storeQueue[store_idx].req;
1031        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1032            delete storeQueue[store_idx].sreqLow;
1033            delete storeQueue[store_idx].sreqHigh;
1034
1035            storeQueue[store_idx].sreqLow = NULL;
1036            storeQueue[store_idx].sreqHigh = NULL;
1037        }
1038
1039        storeQueue[store_idx].req = NULL;
1040        --stores;
1041
1042        // Inefficient!
1043        storeTail = store_idx;
1044
1045        decrStIdx(store_idx);
1046        ++lsqSquashedStores;
1047    }
1048}
1049
1050template <class Impl>
1051void
1052LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1053{
1054    if (isStalled() &&
1055        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1056        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1057                "load idx:%i\n",
1058                stallingStoreIsn, stallingLoadIdx);
1059        stalled = false;
1060        stallingStoreIsn = 0;
1061        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1062    }
1063
1064    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1065        // The store is basically completed at this time. This
1066        // only works so long as the checker doesn't try to
1067        // verify the value in memory for stores.
1068        storeQueue[storeWBIdx].inst->setCompleted();
1069
1070        if (cpu->checker) {
1071            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1072        }
1073    }
1074
1075    if (needsTSO) {
1076        storeInFlight = true;
1077    }
1078
1079    incrStIdx(storeWBIdx);
1080}
1081
1082template <class Impl>
1083void
1084LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1085{
1086    iewStage->wakeCPU();
1087
1088    // Squashed instructions do not need to complete their access.
1089    if (inst->isSquashed()) {
1090        iewStage->decrWb(inst->seqNum);
1091        assert(!inst->isStore());
1092        ++lsqIgnoredResponses;
1093        return;
1094    }
1095
1096    if (!inst->isExecuted()) {
1097        inst->setExecuted();
1098
1099        // Complete access to copy data to proper place.
1100        inst->completeAcc(pkt);
1101    }
1102
1103    // Need to insert instruction into queue to commit
1104    iewStage->instToCommit(inst);
1105
1106    iewStage->activityThisCycle();
1107
1108    // see if this load changed the PC
1109    iewStage->checkMisprediction(inst);
1110}
1111
1112template <class Impl>
1113void
1114LSQUnit<Impl>::completeStore(int store_idx)
1115{
1116    assert(storeQueue[store_idx].inst);
1117    storeQueue[store_idx].completed = true;
1118    --storesToWB;
1119    // A bit conservative because a store completion may not free up entries,
1120    // but hopefully avoids two store completions in one cycle from making
1121    // the CPU tick twice.
1122    cpu->wakeCPU();
1123    cpu->activityThisCycle();
1124
1125    if (store_idx == storeHead) {
1126        do {
1127            incrStIdx(storeHead);
1128
1129            --stores;
1130        } while (storeQueue[storeHead].completed &&
1131                 storeHead != storeTail);
1132
1133        iewStage->updateLSQNextCycle = true;
1134    }
1135
1136    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1137            "idx:%i\n",
1138            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1139
1140    if (isStalled() &&
1141        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1142        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1143                "load idx:%i\n",
1144                stallingStoreIsn, stallingLoadIdx);
1145        stalled = false;
1146        stallingStoreIsn = 0;
1147        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1148    }
1149
1150    storeQueue[store_idx].inst->setCompleted();
1151
1152    if (needsTSO) {
1153        storeInFlight = false;
1154    }
1155
1156    // Tell the checker we've completed this instruction.  Some stores
1157    // may get reported twice to the checker, but the checker can
1158    // handle that case.
1159    if (cpu->checker) {
1160        cpu->checker->verify(storeQueue[store_idx].inst);
1161    }
1162}
1163
1164template <class Impl>
1165bool
1166LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1167{
1168    if (!dcachePort->sendTimingReq(data_pkt)) {
1169        // Need to handle becoming blocked on a store.
1170        isStoreBlocked = true;
1171        ++lsqCacheBlocked;
1172        assert(retryPkt == NULL);
1173        retryPkt = data_pkt;
1174        lsq->setRetryTid(lsqID);
1175        return false;
1176    }
1177    return true;
1178}
1179
1180template <class Impl>
1181void
1182LSQUnit<Impl>::recvRetry()
1183{
1184    if (isStoreBlocked) {
1185        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1186        assert(retryPkt != NULL);
1187
1188        LSQSenderState *state =
1189            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1190
1191        if (dcachePort->sendTimingReq(retryPkt)) {
1192            // Don't finish the store unless this is the last packet.
1193            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1194                    state->pendingPacket == retryPkt) {
1195                state->pktToSend = false;
1196                storePostSend(retryPkt);
1197            }
1198            retryPkt = NULL;
1199            isStoreBlocked = false;
1200            lsq->setRetryTid(InvalidThreadID);
1201
1202            // Send any outstanding packet.
1203            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1204                assert(state->pendingPacket);
1205                if (sendStore(state->pendingPacket)) {
1206                    storePostSend(state->pendingPacket);
1207                }
1208            }
1209        } else {
1210            // Still blocked!
1211            ++lsqCacheBlocked;
1212            lsq->setRetryTid(lsqID);
1213        }
1214    } else if (isLoadBlocked) {
1215        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1216                "no need to resend packet.\n");
1217    } else {
1218        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1219    }
1220}
1221
1222template <class Impl>
1223inline void
1224LSQUnit<Impl>::incrStIdx(int &store_idx) const
1225{
1226    if (++store_idx >= SQEntries)
1227        store_idx = 0;
1228}
1229
1230template <class Impl>
1231inline void
1232LSQUnit<Impl>::decrStIdx(int &store_idx) const
1233{
1234    if (--store_idx < 0)
1235        store_idx += SQEntries;
1236}
1237
1238template <class Impl>
1239inline void
1240LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1241{
1242    if (++load_idx >= LQEntries)
1243        load_idx = 0;
1244}
1245
1246template <class Impl>
1247inline void
1248LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1249{
1250    if (--load_idx < 0)
1251        load_idx += LQEntries;
1252}
1253
1254template <class Impl>
1255void
1256LSQUnit<Impl>::dumpInsts() const
1257{
1258    cprintf("Load store queue: Dumping instructions.\n");
1259    cprintf("Load queue size: %i\n", loads);
1260    cprintf("Load queue: ");
1261
1262    int load_idx = loadHead;
1263
1264    while (load_idx != loadTail && loadQueue[load_idx]) {
1265        const DynInstPtr &inst(loadQueue[load_idx]);
1266        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1267
1268        incrLdIdx(load_idx);
1269    }
1270    cprintf("\n");
1271
1272    cprintf("Store queue size: %i\n", stores);
1273    cprintf("Store queue: ");
1274
1275    int store_idx = storeHead;
1276
1277    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1278        const DynInstPtr &inst(storeQueue[store_idx].inst);
1279        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1280
1281        incrStIdx(store_idx);
1282    }
1283
1284    cprintf("\n");
1285}
1286