lsq_unit_impl.hh revision 8887
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/generic/debugfaults.hh"
45#include "arch/locked_mem.hh"
46#include "base/str.hh"
47#include "config/the_isa.hh"
48#include "cpu/checker/cpu.hh"
49#include "cpu/o3/lsq.hh"
50#include "cpu/o3/lsq_unit.hh"
51#include "debug/Activity.hh"
52#include "debug/IEW.hh"
53#include "debug/LSQUnit.hh"
54#include "mem/packet.hh"
55#include "mem/request.hh"
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : Event(Default_Pri, AutoDelete),
61      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
62{
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    if (!lsqPtr->isSwitchedOut()) {
70        lsqPtr->writeback(inst, pkt);
71    }
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    assert(!pkt->wasNacked());
99
100    // If this is a split access, wait until all packets are received.
101    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102        delete pkt->req;
103        delete pkt;
104        return;
105    }
106
107    if (isSwitchedOut() || inst->isSquashed()) {
108        iewStage->decrWb(inst->seqNum);
109    } else {
110        if (!state->noWB) {
111            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112                !state->isLoad) {
113                writeback(inst, pkt);
114            } else {
115                writeback(inst, state->mainPkt);
116            }
117        }
118
119        if (inst->isStore()) {
120            completeStore(state->idx);
121        }
122    }
123
124    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125        delete state->mainPkt->req;
126        delete state->mainPkt;
127    }
128    delete state;
129    delete pkt->req;
130    delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
136      isStoreBlocked(false), isLoadBlocked(false),
137      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145        unsigned id)
146{
147    cpu = cpu_ptr;
148    iewStage = iew_ptr;
149
150    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152    switchedOut = false;
153
154    cacheBlockMask = 0;
155
156    lsq = lsq_ptr;
157
158    lsqID = id;
159
160    // Add 1 for the sentinel entry (they are circular queues).
161    LQEntries = maxLQEntries + 1;
162    SQEntries = maxSQEntries + 1;
163
164    loadQueue.resize(LQEntries);
165    storeQueue.resize(SQEntries);
166
167    depCheckShift = params->LSQDepCheckShift;
168    checkLoads = params->LSQCheckLoads;
169
170    loadHead = loadTail = 0;
171
172    storeHead = storeWBIdx = storeTail = 0;
173
174    usedPorts = 0;
175    cachePorts = params->cachePorts;
176
177    retryPkt = NULL;
178    memDepViolator = NULL;
179
180    blockedLoadSeqNum = 0;
181    needsTSO = params->needsTSO;
182}
183
184template<class Impl>
185std::string
186LSQUnit<Impl>::name() const
187{
188    if (Impl::MaxThreads == 1) {
189        return iewStage->name() + ".lsq";
190    } else {
191        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
192    }
193}
194
195template<class Impl>
196void
197LSQUnit<Impl>::regStats()
198{
199    lsqForwLoads
200        .name(name() + ".forwLoads")
201        .desc("Number of loads that had data forwarded from stores");
202
203    invAddrLoads
204        .name(name() + ".invAddrLoads")
205        .desc("Number of loads ignored due to an invalid address");
206
207    lsqSquashedLoads
208        .name(name() + ".squashedLoads")
209        .desc("Number of loads squashed");
210
211    lsqIgnoredResponses
212        .name(name() + ".ignoredResponses")
213        .desc("Number of memory responses ignored because the instruction is squashed");
214
215    lsqMemOrderViolation
216        .name(name() + ".memOrderViolation")
217        .desc("Number of memory ordering violations");
218
219    lsqSquashedStores
220        .name(name() + ".squashedStores")
221        .desc("Number of stores squashed");
222
223    invAddrSwpfs
224        .name(name() + ".invAddrSwpfs")
225        .desc("Number of software prefetches ignored due to an invalid address");
226
227    lsqBlockedLoads
228        .name(name() + ".blockedLoads")
229        .desc("Number of blocked loads due to partial load-store forwarding");
230
231    lsqRescheduledLoads
232        .name(name() + ".rescheduledLoads")
233        .desc("Number of loads that were rescheduled");
234
235    lsqCacheBlocked
236        .name(name() + ".cacheBlocked")
237        .desc("Number of times an access to memory failed due to the cache being blocked");
238}
239
240template<class Impl>
241void
242LSQUnit<Impl>::setDcachePort(Port *dcache_port)
243{
244    dcachePort = dcache_port;
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251    loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258    storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265    switchedOut = true;
266    for (int i = 0; i < loadQueue.size(); ++i) {
267        assert(!loadQueue[i]);
268        loadQueue[i] = NULL;
269    }
270
271    assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278    switchedOut = false;
279    loads = stores = storesToWB = 0;
280
281    loadHead = loadTail = 0;
282
283    storeHead = storeWBIdx = storeTail = 0;
284
285    usedPorts = 0;
286
287    memDepViolator = NULL;
288
289    blockedLoadSeqNum = 0;
290
291    stalled = false;
292    isLoadBlocked = false;
293    loadBlockedHandled = false;
294
295    // Just incase the memory system changed out from under us
296    cacheBlockMask = 0;
297}
298
299template<class Impl>
300void
301LSQUnit<Impl>::resizeLQ(unsigned size)
302{
303    unsigned size_plus_sentinel = size + 1;
304    assert(size_plus_sentinel >= LQEntries);
305
306    if (size_plus_sentinel > LQEntries) {
307        while (size_plus_sentinel > loadQueue.size()) {
308            DynInstPtr dummy;
309            loadQueue.push_back(dummy);
310            LQEntries++;
311        }
312    } else {
313        LQEntries = size_plus_sentinel;
314    }
315
316}
317
318template<class Impl>
319void
320LSQUnit<Impl>::resizeSQ(unsigned size)
321{
322    unsigned size_plus_sentinel = size + 1;
323    if (size_plus_sentinel > SQEntries) {
324        while (size_plus_sentinel > storeQueue.size()) {
325            SQEntry dummy;
326            storeQueue.push_back(dummy);
327            SQEntries++;
328        }
329    } else {
330        SQEntries = size_plus_sentinel;
331    }
332}
333
334template <class Impl>
335void
336LSQUnit<Impl>::insert(DynInstPtr &inst)
337{
338    assert(inst->isMemRef());
339
340    assert(inst->isLoad() || inst->isStore());
341
342    if (inst->isLoad()) {
343        insertLoad(inst);
344    } else {
345        insertStore(inst);
346    }
347
348    inst->setInLSQ();
349}
350
351template <class Impl>
352void
353LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
354{
355    assert((loadTail + 1) % LQEntries != loadHead);
356    assert(loads < LQEntries);
357
358    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
359            load_inst->pcState(), loadTail, load_inst->seqNum);
360
361    load_inst->lqIdx = loadTail;
362
363    if (stores == 0) {
364        load_inst->sqIdx = -1;
365    } else {
366        load_inst->sqIdx = storeTail;
367    }
368
369    loadQueue[loadTail] = load_inst;
370
371    incrLdIdx(loadTail);
372
373    ++loads;
374}
375
376template <class Impl>
377void
378LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
379{
380    // Make sure it is not full before inserting an instruction.
381    assert((storeTail + 1) % SQEntries != storeHead);
382    assert(stores < SQEntries);
383
384    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
385            store_inst->pcState(), storeTail, store_inst->seqNum);
386
387    store_inst->sqIdx = storeTail;
388    store_inst->lqIdx = loadTail;
389
390    storeQueue[storeTail] = SQEntry(store_inst);
391
392    incrStIdx(storeTail);
393
394    ++stores;
395}
396
397template <class Impl>
398typename Impl::DynInstPtr
399LSQUnit<Impl>::getMemDepViolator()
400{
401    DynInstPtr temp = memDepViolator;
402
403    memDepViolator = NULL;
404
405    return temp;
406}
407
408template <class Impl>
409unsigned
410LSQUnit<Impl>::numFreeEntries()
411{
412    unsigned free_lq_entries = LQEntries - loads;
413    unsigned free_sq_entries = SQEntries - stores;
414
415    // Both the LQ and SQ entries have an extra dummy entry to differentiate
416    // empty/full conditions.  Subtract 1 from the free entries.
417    if (free_lq_entries < free_sq_entries) {
418        return free_lq_entries - 1;
419    } else {
420        return free_sq_entries - 1;
421    }
422}
423
424template <class Impl>
425int
426LSQUnit<Impl>::numLoadsReady()
427{
428    int load_idx = loadHead;
429    int retval = 0;
430
431    while (load_idx != loadTail) {
432        assert(loadQueue[load_idx]);
433
434        if (loadQueue[load_idx]->readyToIssue()) {
435            ++retval;
436        }
437    }
438
439    return retval;
440}
441
442template <class Impl>
443void
444LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
445{
446    int load_idx = loadHead;
447
448    if (!cacheBlockMask) {
449        assert(dcachePort);
450        Addr bs = dcachePort->peerBlockSize();
451
452        // Make sure we actually got a size
453        assert(bs != 0);
454
455        cacheBlockMask = ~(bs - 1);
456    }
457
458    // If this is the only load in the LSQ we don't care
459    if (load_idx == loadTail)
460        return;
461    incrLdIdx(load_idx);
462
463    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
464    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
465    while (load_idx != loadTail) {
466        DynInstPtr ld_inst = loadQueue[load_idx];
467
468        if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
469            incrLdIdx(load_idx);
470            continue;
471        }
472
473        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
474        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
475                    ld_inst->seqNum, load_addr, invalidate_addr);
476
477        if (load_addr == invalidate_addr) {
478            if (ld_inst->possibleLoadViolation) {
479                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
480                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
481
482                // Mark the load for re-execution
483                ld_inst->fault = new ReExec;
484            } else {
485                // If a older load checks this and it's true
486                // then we might have missed the snoop
487                // in which case we need to invalidate to be sure
488                ld_inst->hitExternalSnoop = true;
489            }
490        }
491        incrLdIdx(load_idx);
492    }
493    return;
494}
495
496template <class Impl>
497Fault
498LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
499{
500    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
501    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
502
503    /** @todo in theory you only need to check an instruction that has executed
504     * however, there isn't a good way in the pipeline at the moment to check
505     * all instructions that will execute before the store writes back. Thus,
506     * like the implementation that came before it, we're overly conservative.
507     */
508    while (load_idx != loadTail) {
509        DynInstPtr ld_inst = loadQueue[load_idx];
510        if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
511            incrLdIdx(load_idx);
512            continue;
513        }
514
515        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
516        Addr ld_eff_addr2 =
517            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
518
519        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
520            if (inst->isLoad()) {
521                // If this load is to the same block as an external snoop
522                // invalidate that we've observed then the load needs to be
523                // squashed as it could have newer data
524                if (ld_inst->hitExternalSnoop) {
525                    if (!memDepViolator ||
526                            ld_inst->seqNum < memDepViolator->seqNum) {
527                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
528                                "and [sn:%lli] at address %#x\n",
529                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
530                        memDepViolator = ld_inst;
531
532                        ++lsqMemOrderViolation;
533
534                        return new GenericISA::M5PanicFault(
535                                "Detected fault with inst [sn:%lli] and "
536                                "[sn:%lli] at address %#x\n",
537                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
538                    }
539                }
540
541                // Otherwise, mark the load has a possible load violation
542                // and if we see a snoop before it's commited, we need to squash
543                ld_inst->possibleLoadViolation = true;
544                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
545                        " between instructions [sn:%lli] and [sn:%lli]\n",
546                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
547            } else {
548                // A load/store incorrectly passed this store.
549                // Check if we already have a violator, or if it's newer
550                // squash and refetch.
551                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
552                    break;
553
554                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
555                        "[sn:%lli] at address %#x\n",
556                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557                memDepViolator = ld_inst;
558
559                ++lsqMemOrderViolation;
560
561                return new GenericISA::M5PanicFault("Detected fault with "
562                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
563                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
564            }
565        }
566
567        incrLdIdx(load_idx);
568    }
569    return NoFault;
570}
571
572
573
574
575template <class Impl>
576Fault
577LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
578{
579    using namespace TheISA;
580    // Execute a specific load.
581    Fault load_fault = NoFault;
582
583    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
584            inst->pcState(), inst->seqNum);
585
586    assert(!inst->isSquashed());
587
588    load_fault = inst->initiateAcc();
589
590    if (inst->isTranslationDelayed() &&
591        load_fault == NoFault)
592        return load_fault;
593
594    // If the instruction faulted or predicated false, then we need to send it
595    // along to commit without the instruction completing.
596    if (load_fault != NoFault || inst->readPredicate() == false) {
597        // Send this instruction to commit, also make sure iew stage
598        // realizes there is activity.
599        // Mark it as executed unless it is an uncached load that
600        // needs to hit the head of commit.
601        if (inst->readPredicate() == false)
602            inst->forwardOldRegs();
603        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
604                inst->seqNum,
605                (load_fault != NoFault ? "fault" : "predication"));
606        if (!(inst->hasRequest() && inst->uncacheable()) ||
607            inst->isAtCommit()) {
608            inst->setExecuted();
609        }
610        iewStage->instToCommit(inst);
611        iewStage->activityThisCycle();
612    } else if (!loadBlocked()) {
613        assert(inst->effAddrValid);
614        int load_idx = inst->lqIdx;
615        incrLdIdx(load_idx);
616
617        if (checkLoads)
618            return checkViolations(load_idx, inst);
619    }
620
621    return load_fault;
622}
623
624template <class Impl>
625Fault
626LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
627{
628    using namespace TheISA;
629    // Make sure that a store exists.
630    assert(stores != 0);
631
632    int store_idx = store_inst->sqIdx;
633
634    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
635            store_inst->pcState(), store_inst->seqNum);
636
637    assert(!store_inst->isSquashed());
638
639    // Check the recently completed loads to see if any match this store's
640    // address.  If so, then we have a memory ordering violation.
641    int load_idx = store_inst->lqIdx;
642
643    Fault store_fault = store_inst->initiateAcc();
644
645    if (store_inst->isTranslationDelayed() &&
646        store_fault == NoFault)
647        return store_fault;
648
649    if (store_inst->readPredicate() == false)
650        store_inst->forwardOldRegs();
651
652    if (storeQueue[store_idx].size == 0) {
653        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
654                store_inst->pcState(), store_inst->seqNum);
655
656        return store_fault;
657    } else if (store_inst->readPredicate() == false) {
658        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
659                store_inst->seqNum);
660        return store_fault;
661    }
662
663    assert(store_fault == NoFault);
664
665    if (store_inst->isStoreConditional()) {
666        // Store conditionals need to set themselves as able to
667        // writeback if we haven't had a fault by here.
668        storeQueue[store_idx].canWB = true;
669
670        ++storesToWB;
671    }
672
673    return checkViolations(load_idx, store_inst);
674
675}
676
677template <class Impl>
678void
679LSQUnit<Impl>::commitLoad()
680{
681    assert(loadQueue[loadHead]);
682
683    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
684            loadQueue[loadHead]->pcState());
685
686    loadQueue[loadHead] = NULL;
687
688    incrLdIdx(loadHead);
689
690    --loads;
691}
692
693template <class Impl>
694void
695LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
696{
697    assert(loads == 0 || loadQueue[loadHead]);
698
699    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
700        commitLoad();
701    }
702}
703
704template <class Impl>
705void
706LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
707{
708    assert(stores == 0 || storeQueue[storeHead].inst);
709
710    int store_idx = storeHead;
711
712    while (store_idx != storeTail) {
713        assert(storeQueue[store_idx].inst);
714        // Mark any stores that are now committed and have not yet
715        // been marked as able to write back.
716        if (!storeQueue[store_idx].canWB) {
717            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
718                break;
719            }
720            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
721                    "%s [sn:%lli]\n",
722                    storeQueue[store_idx].inst->pcState(),
723                    storeQueue[store_idx].inst->seqNum);
724
725            storeQueue[store_idx].canWB = true;
726
727            ++storesToWB;
728        }
729
730        incrStIdx(store_idx);
731    }
732}
733
734template <class Impl>
735void
736LSQUnit<Impl>::writebackPendingStore()
737{
738    if (hasPendingPkt) {
739        assert(pendingPkt != NULL);
740
741        // If the cache is blocked, this will store the packet for retry.
742        if (sendStore(pendingPkt)) {
743            storePostSend(pendingPkt);
744        }
745        pendingPkt = NULL;
746        hasPendingPkt = false;
747    }
748}
749
750template <class Impl>
751void
752LSQUnit<Impl>::writebackStores()
753{
754    // First writeback the second packet from any split store that didn't
755    // complete last cycle because there weren't enough cache ports available.
756    if (TheISA::HasUnalignedMemAcc) {
757        writebackPendingStore();
758    }
759
760    while (storesToWB > 0 &&
761           storeWBIdx != storeTail &&
762           storeQueue[storeWBIdx].inst &&
763           storeQueue[storeWBIdx].canWB &&
764           ((!needsTSO) || (!storeInFlight)) &&
765           usedPorts < cachePorts) {
766
767        if (isStoreBlocked || lsq->cacheBlocked()) {
768            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
769                    " is blocked!\n");
770            break;
771        }
772
773        // Store didn't write any data so no need to write it back to
774        // memory.
775        if (storeQueue[storeWBIdx].size == 0) {
776            completeStore(storeWBIdx);
777
778            incrStIdx(storeWBIdx);
779
780            continue;
781        }
782
783        ++usedPorts;
784
785        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
786            incrStIdx(storeWBIdx);
787
788            continue;
789        }
790
791        assert(storeQueue[storeWBIdx].req);
792        assert(!storeQueue[storeWBIdx].committed);
793
794        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
795            assert(storeQueue[storeWBIdx].sreqLow);
796            assert(storeQueue[storeWBIdx].sreqHigh);
797        }
798
799        DynInstPtr inst = storeQueue[storeWBIdx].inst;
800
801        Request *req = storeQueue[storeWBIdx].req;
802        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
803        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
804
805        storeQueue[storeWBIdx].committed = true;
806
807        assert(!inst->memData);
808        inst->memData = new uint8_t[64];
809
810        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
811
812        MemCmd command =
813            req->isSwap() ? MemCmd::SwapReq :
814            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
815        PacketPtr data_pkt;
816        PacketPtr snd_data_pkt = NULL;
817
818        LSQSenderState *state = new LSQSenderState;
819        state->isLoad = false;
820        state->idx = storeWBIdx;
821        state->inst = inst;
822
823        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
824
825            // Build a single data packet if the store isn't split.
826            data_pkt = new Packet(req, command, Packet::Broadcast);
827            data_pkt->dataStatic(inst->memData);
828            data_pkt->senderState = state;
829        } else {
830            // Create two packets if the store is split in two.
831            data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
832            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
833
834            data_pkt->dataStatic(inst->memData);
835            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
836
837            data_pkt->senderState = state;
838            snd_data_pkt->senderState = state;
839
840            state->isSplit = true;
841            state->outstanding = 2;
842
843            // Can delete the main request now.
844            delete req;
845            req = sreqLow;
846        }
847
848        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
849                "to Addr:%#x, data:%#x [sn:%lli]\n",
850                storeWBIdx, inst->pcState(),
851                req->getPaddr(), (int)*(inst->memData),
852                inst->seqNum);
853
854        // @todo: Remove this SC hack once the memory system handles it.
855        if (inst->isStoreConditional()) {
856            assert(!storeQueue[storeWBIdx].isSplit);
857            // Disable recording the result temporarily.  Writing to
858            // misc regs normally updates the result, but this is not
859            // the desired behavior when handling store conditionals.
860            inst->recordResult = false;
861            bool success = TheISA::handleLockedWrite(inst.get(), req);
862            inst->recordResult = true;
863
864            if (!success) {
865                // Instantly complete this store.
866                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
867                        "Instantly completing it.\n",
868                        inst->seqNum);
869                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
870                cpu->schedule(wb, curTick() + 1);
871                if (cpu->checker) {
872                    // Make sure to set the LLSC data for verification
873                    // if checker is loaded
874                    inst->reqToVerify->setExtraData(0);
875                    inst->completeAcc(data_pkt);
876                }
877                completeStore(storeWBIdx);
878                incrStIdx(storeWBIdx);
879                continue;
880            }
881        } else {
882            // Non-store conditionals do not need a writeback.
883            state->noWB = true;
884        }
885
886        bool split =
887            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
888
889        ThreadContext *thread = cpu->tcBase(lsqID);
890
891        if (req->isMmappedIpr()) {
892            assert(!inst->isStoreConditional());
893            TheISA::handleIprWrite(thread, data_pkt);
894            delete data_pkt;
895            if (split) {
896                assert(snd_data_pkt->req->isMmappedIpr());
897                TheISA::handleIprWrite(thread, snd_data_pkt);
898                delete snd_data_pkt;
899                delete sreqLow;
900                delete sreqHigh;
901            }
902            delete state;
903            delete req;
904            completeStore(storeWBIdx);
905            incrStIdx(storeWBIdx);
906        } else if (!sendStore(data_pkt)) {
907            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
908                    "retry later\n",
909                    inst->seqNum);
910
911            // Need to store the second packet, if split.
912            if (split) {
913                state->pktToSend = true;
914                state->pendingPacket = snd_data_pkt;
915            }
916        } else {
917
918            // If split, try to send the second packet too
919            if (split) {
920                assert(snd_data_pkt);
921
922                // Ensure there are enough ports to use.
923                if (usedPorts < cachePorts) {
924                    ++usedPorts;
925                    if (sendStore(snd_data_pkt)) {
926                        storePostSend(snd_data_pkt);
927                    } else {
928                        DPRINTF(IEW, "D-Cache became blocked when writing"
929                                " [sn:%lli] second packet, will retry later\n",
930                                inst->seqNum);
931                    }
932                } else {
933
934                    // Store the packet for when there's free ports.
935                    assert(pendingPkt == NULL);
936                    pendingPkt = snd_data_pkt;
937                    hasPendingPkt = true;
938                }
939            } else {
940
941                // Not a split store.
942                storePostSend(data_pkt);
943            }
944        }
945    }
946
947    // Not sure this should set it to 0.
948    usedPorts = 0;
949
950    assert(stores >= 0 && storesToWB >= 0);
951}
952
953/*template <class Impl>
954void
955LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
956{
957    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
958                                              mshrSeqNums.end(),
959                                              seqNum);
960
961    if (mshr_it != mshrSeqNums.end()) {
962        mshrSeqNums.erase(mshr_it);
963        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
964    }
965}*/
966
967template <class Impl>
968void
969LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
970{
971    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
972            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
973
974    int load_idx = loadTail;
975    decrLdIdx(load_idx);
976
977    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
978        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
979                "[sn:%lli]\n",
980                loadQueue[load_idx]->pcState(),
981                loadQueue[load_idx]->seqNum);
982
983        if (isStalled() && load_idx == stallingLoadIdx) {
984            stalled = false;
985            stallingStoreIsn = 0;
986            stallingLoadIdx = 0;
987        }
988
989        // Clear the smart pointer to make sure it is decremented.
990        loadQueue[load_idx]->setSquashed();
991        loadQueue[load_idx] = NULL;
992        --loads;
993
994        // Inefficient!
995        loadTail = load_idx;
996
997        decrLdIdx(load_idx);
998        ++lsqSquashedLoads;
999    }
1000
1001    if (isLoadBlocked) {
1002        if (squashed_num < blockedLoadSeqNum) {
1003            isLoadBlocked = false;
1004            loadBlockedHandled = false;
1005            blockedLoadSeqNum = 0;
1006        }
1007    }
1008
1009    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1010        memDepViolator = NULL;
1011    }
1012
1013    int store_idx = storeTail;
1014    decrStIdx(store_idx);
1015
1016    while (stores != 0 &&
1017           storeQueue[store_idx].inst->seqNum > squashed_num) {
1018        // Instructions marked as can WB are already committed.
1019        if (storeQueue[store_idx].canWB) {
1020            break;
1021        }
1022
1023        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1024                "idx:%i [sn:%lli]\n",
1025                storeQueue[store_idx].inst->pcState(),
1026                store_idx, storeQueue[store_idx].inst->seqNum);
1027
1028        // I don't think this can happen.  It should have been cleared
1029        // by the stalling load.
1030        if (isStalled() &&
1031            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1032            panic("Is stalled should have been cleared by stalling load!\n");
1033            stalled = false;
1034            stallingStoreIsn = 0;
1035        }
1036
1037        // Clear the smart pointer to make sure it is decremented.
1038        storeQueue[store_idx].inst->setSquashed();
1039        storeQueue[store_idx].inst = NULL;
1040        storeQueue[store_idx].canWB = 0;
1041
1042        // Must delete request now that it wasn't handed off to
1043        // memory.  This is quite ugly.  @todo: Figure out the proper
1044        // place to really handle request deletes.
1045        delete storeQueue[store_idx].req;
1046        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1047            delete storeQueue[store_idx].sreqLow;
1048            delete storeQueue[store_idx].sreqHigh;
1049
1050            storeQueue[store_idx].sreqLow = NULL;
1051            storeQueue[store_idx].sreqHigh = NULL;
1052        }
1053
1054        storeQueue[store_idx].req = NULL;
1055        --stores;
1056
1057        // Inefficient!
1058        storeTail = store_idx;
1059
1060        decrStIdx(store_idx);
1061        ++lsqSquashedStores;
1062    }
1063}
1064
1065template <class Impl>
1066void
1067LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1068{
1069    if (isStalled() &&
1070        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1071        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1072                "load idx:%i\n",
1073                stallingStoreIsn, stallingLoadIdx);
1074        stalled = false;
1075        stallingStoreIsn = 0;
1076        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1077    }
1078
1079    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1080        // The store is basically completed at this time. This
1081        // only works so long as the checker doesn't try to
1082        // verify the value in memory for stores.
1083        storeQueue[storeWBIdx].inst->setCompleted();
1084
1085        if (cpu->checker) {
1086            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1087        }
1088    }
1089
1090    if (needsTSO) {
1091        storeInFlight = true;
1092    }
1093
1094    incrStIdx(storeWBIdx);
1095}
1096
1097template <class Impl>
1098void
1099LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1100{
1101    iewStage->wakeCPU();
1102
1103    // Squashed instructions do not need to complete their access.
1104    if (inst->isSquashed()) {
1105        iewStage->decrWb(inst->seqNum);
1106        assert(!inst->isStore());
1107        ++lsqIgnoredResponses;
1108        return;
1109    }
1110
1111    if (!inst->isExecuted()) {
1112        inst->setExecuted();
1113
1114        // Complete access to copy data to proper place.
1115        inst->completeAcc(pkt);
1116    }
1117
1118    // Need to insert instruction into queue to commit
1119    iewStage->instToCommit(inst);
1120
1121    iewStage->activityThisCycle();
1122
1123    // see if this load changed the PC
1124    iewStage->checkMisprediction(inst);
1125}
1126
1127template <class Impl>
1128void
1129LSQUnit<Impl>::completeStore(int store_idx)
1130{
1131    assert(storeQueue[store_idx].inst);
1132    storeQueue[store_idx].completed = true;
1133    --storesToWB;
1134    // A bit conservative because a store completion may not free up entries,
1135    // but hopefully avoids two store completions in one cycle from making
1136    // the CPU tick twice.
1137    cpu->wakeCPU();
1138    cpu->activityThisCycle();
1139
1140    if (store_idx == storeHead) {
1141        do {
1142            incrStIdx(storeHead);
1143
1144            --stores;
1145        } while (storeQueue[storeHead].completed &&
1146                 storeHead != storeTail);
1147
1148        iewStage->updateLSQNextCycle = true;
1149    }
1150
1151    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1152            "idx:%i\n",
1153            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1154
1155    if (isStalled() &&
1156        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1157        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1158                "load idx:%i\n",
1159                stallingStoreIsn, stallingLoadIdx);
1160        stalled = false;
1161        stallingStoreIsn = 0;
1162        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1163    }
1164
1165    storeQueue[store_idx].inst->setCompleted();
1166
1167    if (needsTSO) {
1168        storeInFlight = false;
1169    }
1170
1171    // Tell the checker we've completed this instruction.  Some stores
1172    // may get reported twice to the checker, but the checker can
1173    // handle that case.
1174    if (cpu->checker) {
1175        cpu->checker->verify(storeQueue[store_idx].inst);
1176    }
1177}
1178
1179template <class Impl>
1180bool
1181LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1182{
1183    if (!dcachePort->sendTiming(data_pkt)) {
1184        // Need to handle becoming blocked on a store.
1185        isStoreBlocked = true;
1186        ++lsqCacheBlocked;
1187        assert(retryPkt == NULL);
1188        retryPkt = data_pkt;
1189        lsq->setRetryTid(lsqID);
1190        return false;
1191    }
1192    return true;
1193}
1194
1195template <class Impl>
1196void
1197LSQUnit<Impl>::recvRetry()
1198{
1199    if (isStoreBlocked) {
1200        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1201        assert(retryPkt != NULL);
1202
1203        LSQSenderState *state =
1204            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1205
1206        if (dcachePort->sendTiming(retryPkt)) {
1207            // Don't finish the store unless this is the last packet.
1208            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1209                    state->pendingPacket == retryPkt) {
1210                state->pktToSend = false;
1211                storePostSend(retryPkt);
1212            }
1213            retryPkt = NULL;
1214            isStoreBlocked = false;
1215            lsq->setRetryTid(InvalidThreadID);
1216
1217            // Send any outstanding packet.
1218            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1219                assert(state->pendingPacket);
1220                if (sendStore(state->pendingPacket)) {
1221                    storePostSend(state->pendingPacket);
1222                }
1223            }
1224        } else {
1225            // Still blocked!
1226            ++lsqCacheBlocked;
1227            lsq->setRetryTid(lsqID);
1228        }
1229    } else if (isLoadBlocked) {
1230        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1231                "no need to resend packet.\n");
1232    } else {
1233        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1234    }
1235}
1236
1237template <class Impl>
1238inline void
1239LSQUnit<Impl>::incrStIdx(int &store_idx)
1240{
1241    if (++store_idx >= SQEntries)
1242        store_idx = 0;
1243}
1244
1245template <class Impl>
1246inline void
1247LSQUnit<Impl>::decrStIdx(int &store_idx)
1248{
1249    if (--store_idx < 0)
1250        store_idx += SQEntries;
1251}
1252
1253template <class Impl>
1254inline void
1255LSQUnit<Impl>::incrLdIdx(int &load_idx)
1256{
1257    if (++load_idx >= LQEntries)
1258        load_idx = 0;
1259}
1260
1261template <class Impl>
1262inline void
1263LSQUnit<Impl>::decrLdIdx(int &load_idx)
1264{
1265    if (--load_idx < 0)
1266        load_idx += LQEntries;
1267}
1268
1269template <class Impl>
1270void
1271LSQUnit<Impl>::dumpInsts()
1272{
1273    cprintf("Load store queue: Dumping instructions.\n");
1274    cprintf("Load queue size: %i\n", loads);
1275    cprintf("Load queue: ");
1276
1277    int load_idx = loadHead;
1278
1279    while (load_idx != loadTail && loadQueue[load_idx]) {
1280        cprintf("%s ", loadQueue[load_idx]->pcState());
1281
1282        incrLdIdx(load_idx);
1283    }
1284
1285    cprintf("Store queue size: %i\n", stores);
1286    cprintf("Store queue: ");
1287
1288    int store_idx = storeHead;
1289
1290    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1291        cprintf("%s ", storeQueue[store_idx].inst->pcState());
1292
1293        incrStIdx(store_idx);
1294    }
1295
1296    cprintf("\n");
1297}
1298