lsq_unit_impl.hh revision 7944
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62    this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    if (!lsqPtr->isSwitchedOut()) {
70        lsqPtr->writeback(inst, pkt);
71    }
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    assert(!pkt->wasNacked());
99
100    // If this is a split access, wait until all packets are received.
101    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102        delete pkt->req;
103        delete pkt;
104        return;
105    }
106
107    if (isSwitchedOut() || inst->isSquashed()) {
108        iewStage->decrWb(inst->seqNum);
109    } else {
110        if (!state->noWB) {
111            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112                !state->isLoad) {
113                writeback(inst, pkt);
114            } else {
115                writeback(inst, state->mainPkt);
116            }
117        }
118
119        if (inst->isStore()) {
120            completeStore(state->idx);
121        }
122    }
123
124    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125        delete state->mainPkt->req;
126        delete state->mainPkt;
127    }
128    delete state;
129    delete pkt->req;
130    delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135    : loads(0), stores(0), storesToWB(0), stalled(false),
136      isStoreBlocked(false), isLoadBlocked(false),
137      loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145        unsigned id)
146{
147    cpu = cpu_ptr;
148    iewStage = iew_ptr;
149
150    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152    switchedOut = false;
153
154    lsq = lsq_ptr;
155
156    lsqID = id;
157
158    // Add 1 for the sentinel entry (they are circular queues).
159    LQEntries = maxLQEntries + 1;
160    SQEntries = maxSQEntries + 1;
161
162    loadQueue.resize(LQEntries);
163    storeQueue.resize(SQEntries);
164
165    loadHead = loadTail = 0;
166
167    storeHead = storeWBIdx = storeTail = 0;
168
169    usedPorts = 0;
170    cachePorts = params->cachePorts;
171
172    retryPkt = NULL;
173    memDepViolator = NULL;
174
175    blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182    if (Impl::MaxThreads == 1) {
183        return iewStage->name() + ".lsq";
184    } else {
185        return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186    }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193    lsqForwLoads
194        .name(name() + ".forwLoads")
195        .desc("Number of loads that had data forwarded from stores");
196
197    invAddrLoads
198        .name(name() + ".invAddrLoads")
199        .desc("Number of loads ignored due to an invalid address");
200
201    lsqSquashedLoads
202        .name(name() + ".squashedLoads")
203        .desc("Number of loads squashed");
204
205    lsqIgnoredResponses
206        .name(name() + ".ignoredResponses")
207        .desc("Number of memory responses ignored because the instruction is squashed");
208
209    lsqMemOrderViolation
210        .name(name() + ".memOrderViolation")
211        .desc("Number of memory ordering violations");
212
213    lsqSquashedStores
214        .name(name() + ".squashedStores")
215        .desc("Number of stores squashed");
216
217    invAddrSwpfs
218        .name(name() + ".invAddrSwpfs")
219        .desc("Number of software prefetches ignored due to an invalid address");
220
221    lsqBlockedLoads
222        .name(name() + ".blockedLoads")
223        .desc("Number of blocked loads due to partial load-store forwarding");
224
225    lsqRescheduledLoads
226        .name(name() + ".rescheduledLoads")
227        .desc("Number of loads that were rescheduled");
228
229    lsqCacheBlocked
230        .name(name() + ".cacheBlocked")
231        .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238    dcachePort = dcache_port;
239
240#if USE_CHECKER
241    if (cpu->checker) {
242        cpu->checker->setDcachePort(dcachePort);
243    }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251    loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258    storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265    switchedOut = true;
266    for (int i = 0; i < loadQueue.size(); ++i) {
267        assert(!loadQueue[i]);
268        loadQueue[i] = NULL;
269    }
270
271    assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278    switchedOut = false;
279    loads = stores = storesToWB = 0;
280
281    loadHead = loadTail = 0;
282
283    storeHead = storeWBIdx = storeTail = 0;
284
285    usedPorts = 0;
286
287    memDepViolator = NULL;
288
289    blockedLoadSeqNum = 0;
290
291    stalled = false;
292    isLoadBlocked = false;
293    loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300    unsigned size_plus_sentinel = size + 1;
301    assert(size_plus_sentinel >= LQEntries);
302
303    if (size_plus_sentinel > LQEntries) {
304        while (size_plus_sentinel > loadQueue.size()) {
305            DynInstPtr dummy;
306            loadQueue.push_back(dummy);
307            LQEntries++;
308        }
309    } else {
310        LQEntries = size_plus_sentinel;
311    }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319    unsigned size_plus_sentinel = size + 1;
320    if (size_plus_sentinel > SQEntries) {
321        while (size_plus_sentinel > storeQueue.size()) {
322            SQEntry dummy;
323            storeQueue.push_back(dummy);
324            SQEntries++;
325        }
326    } else {
327        SQEntries = size_plus_sentinel;
328    }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335    assert(inst->isMemRef());
336
337    assert(inst->isLoad() || inst->isStore());
338
339    if (inst->isLoad()) {
340        insertLoad(inst);
341    } else {
342        insertStore(inst);
343    }
344
345    inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352    assert((loadTail + 1) % LQEntries != loadHead);
353    assert(loads < LQEntries);
354
355    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356            load_inst->pcState(), loadTail, load_inst->seqNum);
357
358    load_inst->lqIdx = loadTail;
359
360    if (stores == 0) {
361        load_inst->sqIdx = -1;
362    } else {
363        load_inst->sqIdx = storeTail;
364    }
365
366    loadQueue[loadTail] = load_inst;
367
368    incrLdIdx(loadTail);
369
370    ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377    // Make sure it is not full before inserting an instruction.
378    assert((storeTail + 1) % SQEntries != storeHead);
379    assert(stores < SQEntries);
380
381    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382            store_inst->pcState(), storeTail, store_inst->seqNum);
383
384    store_inst->sqIdx = storeTail;
385    store_inst->lqIdx = loadTail;
386
387    storeQueue[storeTail] = SQEntry(store_inst);
388
389    incrStIdx(storeTail);
390
391    ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398    DynInstPtr temp = memDepViolator;
399
400    memDepViolator = NULL;
401
402    return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409    unsigned free_lq_entries = LQEntries - loads;
410    unsigned free_sq_entries = SQEntries - stores;
411
412    // Both the LQ and SQ entries have an extra dummy entry to differentiate
413    // empty/full conditions.  Subtract 1 from the free entries.
414    if (free_lq_entries < free_sq_entries) {
415        return free_lq_entries - 1;
416    } else {
417        return free_sq_entries - 1;
418    }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425    int load_idx = loadHead;
426    int retval = 0;
427
428    while (load_idx != loadTail) {
429        assert(loadQueue[load_idx]);
430
431        if (loadQueue[load_idx]->readyToIssue()) {
432            ++retval;
433        }
434    }
435
436    return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443    using namespace TheISA;
444    // Execute a specific load.
445    Fault load_fault = NoFault;
446
447    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448            inst->pcState(), inst->seqNum);
449
450    assert(!inst->isSquashed());
451
452    load_fault = inst->initiateAcc();
453
454    if (inst->isTranslationDelayed() &&
455        load_fault == NoFault)
456        return load_fault;
457
458    // If the instruction faulted or predicated false, then we need to send it
459    // along to commit without the instruction completing.
460    if (load_fault != NoFault || inst->readPredicate() == false) {
461        // Send this instruction to commit, also make sure iew stage
462        // realizes there is activity.
463        // Mark it as executed unless it is an uncached load that
464        // needs to hit the head of commit.
465        if (inst->readPredicate() == false)
466            inst->forwardOldRegs();
467        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
468                inst->seqNum,
469                (load_fault != NoFault ? "fault" : "predication"));
470        if (!(inst->hasRequest() && inst->uncacheable()) ||
471            inst->isAtCommit()) {
472            inst->setExecuted();
473        }
474        iewStage->instToCommit(inst);
475        iewStage->activityThisCycle();
476    } else if (!loadBlocked()) {
477        assert(inst->effAddrValid);
478        int load_idx = inst->lqIdx;
479        incrLdIdx(load_idx);
480        while (load_idx != loadTail) {
481            // Really only need to check loads that have actually executed
482
483            // @todo: For now this is extra conservative, detecting a
484            // violation if the addresses match assuming all accesses
485            // are quad word accesses.
486
487            // @todo: Fix this, magic number being used here
488
489            // @todo: Uncachable load is not executed until it reaches
490            // the head of the ROB. Once this if checks only the executed
491            // loads(as noted above), this check can be removed
492            if (loadQueue[load_idx]->effAddrValid &&
493                ((loadQueue[load_idx]->effAddr >> 8)
494                 == (inst->effAddr >> 8)) &&
495                !loadQueue[load_idx]->uncacheable()) {
496                // A load incorrectly passed this load.  Squash and refetch.
497                // For now return a fault to show that it was unsuccessful.
498                DynInstPtr violator = loadQueue[load_idx];
499                if (!memDepViolator ||
500                    (violator->seqNum < memDepViolator->seqNum)) {
501                    memDepViolator = violator;
502                } else {
503                    break;
504                }
505
506                ++lsqMemOrderViolation;
507
508                return genMachineCheckFault();
509            }
510
511            incrLdIdx(load_idx);
512        }
513    }
514
515    return load_fault;
516}
517
518template <class Impl>
519Fault
520LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
521{
522    using namespace TheISA;
523    // Make sure that a store exists.
524    assert(stores != 0);
525
526    int store_idx = store_inst->sqIdx;
527
528    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
529            store_inst->pcState(), store_inst->seqNum);
530
531    assert(!store_inst->isSquashed());
532
533    // Check the recently completed loads to see if any match this store's
534    // address.  If so, then we have a memory ordering violation.
535    int load_idx = store_inst->lqIdx;
536
537    Fault store_fault = store_inst->initiateAcc();
538
539    if (store_inst->isTranslationDelayed() &&
540        store_fault == NoFault)
541        return store_fault;
542
543    if (store_inst->readPredicate() == false)
544        store_inst->forwardOldRegs();
545
546    if (storeQueue[store_idx].size == 0) {
547        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
548                store_inst->pcState(), store_inst->seqNum);
549
550        return store_fault;
551    } else if (store_inst->readPredicate() == false) {
552        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
553                store_inst->seqNum);
554        return store_fault;
555    }
556
557    assert(store_fault == NoFault);
558
559    if (store_inst->isStoreConditional()) {
560        // Store conditionals need to set themselves as able to
561        // writeback if we haven't had a fault by here.
562        storeQueue[store_idx].canWB = true;
563
564        ++storesToWB;
565    }
566
567    assert(store_inst->effAddrValid);
568    while (load_idx != loadTail) {
569        // Really only need to check loads that have actually executed
570        // It's safe to check all loads because effAddr is set to
571        // InvalAddr when the dyn inst is created.
572
573        // @todo: For now this is extra conservative, detecting a
574        // violation if the addresses match assuming all accesses
575        // are quad word accesses.
576
577        // @todo: Fix this, magic number being used here
578
579        // @todo: Uncachable load is not executed until it reaches
580        // the head of the ROB. Once this if checks only the executed
581        // loads(as noted above), this check can be removed
582        if (loadQueue[load_idx]->effAddrValid &&
583            ((loadQueue[load_idx]->effAddr >> 8)
584             == (store_inst->effAddr >> 8)) &&
585            !loadQueue[load_idx]->uncacheable()) {
586            // A load incorrectly passed this store.  Squash and refetch.
587            // For now return a fault to show that it was unsuccessful.
588            DynInstPtr violator = loadQueue[load_idx];
589            if (!memDepViolator ||
590                (violator->seqNum < memDepViolator->seqNum)) {
591                memDepViolator = violator;
592            } else {
593                break;
594            }
595
596            ++lsqMemOrderViolation;
597
598            return genMachineCheckFault();
599        }
600
601        incrLdIdx(load_idx);
602    }
603
604    return store_fault;
605}
606
607template <class Impl>
608void
609LSQUnit<Impl>::commitLoad()
610{
611    assert(loadQueue[loadHead]);
612
613    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
614            loadQueue[loadHead]->pcState());
615
616    loadQueue[loadHead] = NULL;
617
618    incrLdIdx(loadHead);
619
620    --loads;
621}
622
623template <class Impl>
624void
625LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
626{
627    assert(loads == 0 || loadQueue[loadHead]);
628
629    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
630        commitLoad();
631    }
632}
633
634template <class Impl>
635void
636LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
637{
638    assert(stores == 0 || storeQueue[storeHead].inst);
639
640    int store_idx = storeHead;
641
642    while (store_idx != storeTail) {
643        assert(storeQueue[store_idx].inst);
644        // Mark any stores that are now committed and have not yet
645        // been marked as able to write back.
646        if (!storeQueue[store_idx].canWB) {
647            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
648                break;
649            }
650            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
651                    "%s [sn:%lli]\n",
652                    storeQueue[store_idx].inst->pcState(),
653                    storeQueue[store_idx].inst->seqNum);
654
655            storeQueue[store_idx].canWB = true;
656
657            ++storesToWB;
658        }
659
660        incrStIdx(store_idx);
661    }
662}
663
664template <class Impl>
665void
666LSQUnit<Impl>::writebackPendingStore()
667{
668    if (hasPendingPkt) {
669        assert(pendingPkt != NULL);
670
671        // If the cache is blocked, this will store the packet for retry.
672        if (sendStore(pendingPkt)) {
673            storePostSend(pendingPkt);
674        }
675        pendingPkt = NULL;
676        hasPendingPkt = false;
677    }
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::writebackStores()
683{
684    // First writeback the second packet from any split store that didn't
685    // complete last cycle because there weren't enough cache ports available.
686    if (TheISA::HasUnalignedMemAcc) {
687        writebackPendingStore();
688    }
689
690    while (storesToWB > 0 &&
691           storeWBIdx != storeTail &&
692           storeQueue[storeWBIdx].inst &&
693           storeQueue[storeWBIdx].canWB &&
694           usedPorts < cachePorts) {
695
696        if (isStoreBlocked || lsq->cacheBlocked()) {
697            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
698                    " is blocked!\n");
699            break;
700        }
701
702        // Store didn't write any data so no need to write it back to
703        // memory.
704        if (storeQueue[storeWBIdx].size == 0) {
705            completeStore(storeWBIdx);
706
707            incrStIdx(storeWBIdx);
708
709            continue;
710        }
711
712        ++usedPorts;
713
714        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
715            incrStIdx(storeWBIdx);
716
717            continue;
718        }
719
720        assert(storeQueue[storeWBIdx].req);
721        assert(!storeQueue[storeWBIdx].committed);
722
723        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
724            assert(storeQueue[storeWBIdx].sreqLow);
725            assert(storeQueue[storeWBIdx].sreqHigh);
726        }
727
728        DynInstPtr inst = storeQueue[storeWBIdx].inst;
729
730        Request *req = storeQueue[storeWBIdx].req;
731        storeQueue[storeWBIdx].committed = true;
732
733        assert(!inst->memData);
734        inst->memData = new uint8_t[64];
735
736        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
737
738        MemCmd command =
739            req->isSwap() ? MemCmd::SwapReq :
740            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
741        PacketPtr data_pkt;
742        PacketPtr snd_data_pkt = NULL;
743
744        LSQSenderState *state = new LSQSenderState;
745        state->isLoad = false;
746        state->idx = storeWBIdx;
747        state->inst = inst;
748
749        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
750
751            // Build a single data packet if the store isn't split.
752            data_pkt = new Packet(req, command, Packet::Broadcast);
753            data_pkt->dataStatic(inst->memData);
754            data_pkt->senderState = state;
755        } else {
756            RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
757            RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
758
759            // Create two packets if the store is split in two.
760            data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
761            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
762
763            data_pkt->dataStatic(inst->memData);
764            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
765
766            data_pkt->senderState = state;
767            snd_data_pkt->senderState = state;
768
769            state->isSplit = true;
770            state->outstanding = 2;
771
772            // Can delete the main request now.
773            delete req;
774            req = sreqLow;
775        }
776
777        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
778                "to Addr:%#x, data:%#x [sn:%lli]\n",
779                storeWBIdx, inst->pcState(),
780                req->getPaddr(), (int)*(inst->memData),
781                inst->seqNum);
782
783        // @todo: Remove this SC hack once the memory system handles it.
784        if (inst->isStoreConditional()) {
785            assert(!storeQueue[storeWBIdx].isSplit);
786            // Disable recording the result temporarily.  Writing to
787            // misc regs normally updates the result, but this is not
788            // the desired behavior when handling store conditionals.
789            inst->recordResult = false;
790            bool success = TheISA::handleLockedWrite(inst.get(), req);
791            inst->recordResult = true;
792
793            if (!success) {
794                // Instantly complete this store.
795                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
796                        "Instantly completing it.\n",
797                        inst->seqNum);
798                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
799                cpu->schedule(wb, curTick() + 1);
800                completeStore(storeWBIdx);
801                incrStIdx(storeWBIdx);
802                continue;
803            }
804        } else {
805            // Non-store conditionals do not need a writeback.
806            state->noWB = true;
807        }
808
809        if (!sendStore(data_pkt)) {
810            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
811                    "retry later\n",
812                    inst->seqNum);
813
814            // Need to store the second packet, if split.
815            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
816                state->pktToSend = true;
817                state->pendingPacket = snd_data_pkt;
818            }
819        } else {
820
821            // If split, try to send the second packet too
822            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
823                assert(snd_data_pkt);
824
825                // Ensure there are enough ports to use.
826                if (usedPorts < cachePorts) {
827                    ++usedPorts;
828                    if (sendStore(snd_data_pkt)) {
829                        storePostSend(snd_data_pkt);
830                    } else {
831                        DPRINTF(IEW, "D-Cache became blocked when writing"
832                                " [sn:%lli] second packet, will retry later\n",
833                                inst->seqNum);
834                    }
835                } else {
836
837                    // Store the packet for when there's free ports.
838                    assert(pendingPkt == NULL);
839                    pendingPkt = snd_data_pkt;
840                    hasPendingPkt = true;
841                }
842            } else {
843
844                // Not a split store.
845                storePostSend(data_pkt);
846            }
847        }
848    }
849
850    // Not sure this should set it to 0.
851    usedPorts = 0;
852
853    assert(stores >= 0 && storesToWB >= 0);
854}
855
856/*template <class Impl>
857void
858LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
859{
860    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
861                                              mshrSeqNums.end(),
862                                              seqNum);
863
864    if (mshr_it != mshrSeqNums.end()) {
865        mshrSeqNums.erase(mshr_it);
866        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
867    }
868}*/
869
870template <class Impl>
871void
872LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
873{
874    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
875            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
876
877    int load_idx = loadTail;
878    decrLdIdx(load_idx);
879
880    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
881        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
882                "[sn:%lli]\n",
883                loadQueue[load_idx]->pcState(),
884                loadQueue[load_idx]->seqNum);
885
886        if (isStalled() && load_idx == stallingLoadIdx) {
887            stalled = false;
888            stallingStoreIsn = 0;
889            stallingLoadIdx = 0;
890        }
891
892        // Clear the smart pointer to make sure it is decremented.
893        loadQueue[load_idx]->setSquashed();
894        loadQueue[load_idx] = NULL;
895        --loads;
896
897        // Inefficient!
898        loadTail = load_idx;
899
900        decrLdIdx(load_idx);
901        ++lsqSquashedLoads;
902    }
903
904    if (isLoadBlocked) {
905        if (squashed_num < blockedLoadSeqNum) {
906            isLoadBlocked = false;
907            loadBlockedHandled = false;
908            blockedLoadSeqNum = 0;
909        }
910    }
911
912    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
913        memDepViolator = NULL;
914    }
915
916    int store_idx = storeTail;
917    decrStIdx(store_idx);
918
919    while (stores != 0 &&
920           storeQueue[store_idx].inst->seqNum > squashed_num) {
921        // Instructions marked as can WB are already committed.
922        if (storeQueue[store_idx].canWB) {
923            break;
924        }
925
926        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
927                "idx:%i [sn:%lli]\n",
928                storeQueue[store_idx].inst->pcState(),
929                store_idx, storeQueue[store_idx].inst->seqNum);
930
931        // I don't think this can happen.  It should have been cleared
932        // by the stalling load.
933        if (isStalled() &&
934            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
935            panic("Is stalled should have been cleared by stalling load!\n");
936            stalled = false;
937            stallingStoreIsn = 0;
938        }
939
940        // Clear the smart pointer to make sure it is decremented.
941        storeQueue[store_idx].inst->setSquashed();
942        storeQueue[store_idx].inst = NULL;
943        storeQueue[store_idx].canWB = 0;
944
945        // Must delete request now that it wasn't handed off to
946        // memory.  This is quite ugly.  @todo: Figure out the proper
947        // place to really handle request deletes.
948        delete storeQueue[store_idx].req;
949        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
950            delete storeQueue[store_idx].sreqLow;
951            delete storeQueue[store_idx].sreqHigh;
952
953            storeQueue[store_idx].sreqLow = NULL;
954            storeQueue[store_idx].sreqHigh = NULL;
955        }
956
957        storeQueue[store_idx].req = NULL;
958        --stores;
959
960        // Inefficient!
961        storeTail = store_idx;
962
963        decrStIdx(store_idx);
964        ++lsqSquashedStores;
965    }
966}
967
968template <class Impl>
969void
970LSQUnit<Impl>::storePostSend(PacketPtr pkt)
971{
972    if (isStalled() &&
973        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
974        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
975                "load idx:%i\n",
976                stallingStoreIsn, stallingLoadIdx);
977        stalled = false;
978        stallingStoreIsn = 0;
979        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
980    }
981
982    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
983        // The store is basically completed at this time. This
984        // only works so long as the checker doesn't try to
985        // verify the value in memory for stores.
986        storeQueue[storeWBIdx].inst->setCompleted();
987#if USE_CHECKER
988        if (cpu->checker) {
989            cpu->checker->verify(storeQueue[storeWBIdx].inst);
990        }
991#endif
992    }
993
994    incrStIdx(storeWBIdx);
995}
996
997template <class Impl>
998void
999LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1000{
1001    iewStage->wakeCPU();
1002
1003    // Squashed instructions do not need to complete their access.
1004    if (inst->isSquashed()) {
1005        iewStage->decrWb(inst->seqNum);
1006        assert(!inst->isStore());
1007        ++lsqIgnoredResponses;
1008        return;
1009    }
1010
1011    if (!inst->isExecuted()) {
1012        inst->setExecuted();
1013
1014        // Complete access to copy data to proper place.
1015        inst->completeAcc(pkt);
1016    }
1017
1018    // Need to insert instruction into queue to commit
1019    iewStage->instToCommit(inst);
1020
1021    iewStage->activityThisCycle();
1022
1023    // see if this load changed the PC
1024    iewStage->checkMisprediction(inst);
1025}
1026
1027template <class Impl>
1028void
1029LSQUnit<Impl>::completeStore(int store_idx)
1030{
1031    assert(storeQueue[store_idx].inst);
1032    storeQueue[store_idx].completed = true;
1033    --storesToWB;
1034    // A bit conservative because a store completion may not free up entries,
1035    // but hopefully avoids two store completions in one cycle from making
1036    // the CPU tick twice.
1037    cpu->wakeCPU();
1038    cpu->activityThisCycle();
1039
1040    if (store_idx == storeHead) {
1041        do {
1042            incrStIdx(storeHead);
1043
1044            --stores;
1045        } while (storeQueue[storeHead].completed &&
1046                 storeHead != storeTail);
1047
1048        iewStage->updateLSQNextCycle = true;
1049    }
1050
1051    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1052            "idx:%i\n",
1053            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1054
1055    if (isStalled() &&
1056        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1057        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1058                "load idx:%i\n",
1059                stallingStoreIsn, stallingLoadIdx);
1060        stalled = false;
1061        stallingStoreIsn = 0;
1062        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1063    }
1064
1065    storeQueue[store_idx].inst->setCompleted();
1066
1067    // Tell the checker we've completed this instruction.  Some stores
1068    // may get reported twice to the checker, but the checker can
1069    // handle that case.
1070#if USE_CHECKER
1071    if (cpu->checker) {
1072        cpu->checker->verify(storeQueue[store_idx].inst);
1073    }
1074#endif
1075}
1076
1077template <class Impl>
1078bool
1079LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1080{
1081    if (!dcachePort->sendTiming(data_pkt)) {
1082        // Need to handle becoming blocked on a store.
1083        isStoreBlocked = true;
1084        ++lsqCacheBlocked;
1085        assert(retryPkt == NULL);
1086        retryPkt = data_pkt;
1087        lsq->setRetryTid(lsqID);
1088        return false;
1089    }
1090    return true;
1091}
1092
1093template <class Impl>
1094void
1095LSQUnit<Impl>::recvRetry()
1096{
1097    if (isStoreBlocked) {
1098        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1099        assert(retryPkt != NULL);
1100
1101        if (dcachePort->sendTiming(retryPkt)) {
1102            LSQSenderState *state =
1103                dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1104
1105            // Don't finish the store unless this is the last packet.
1106            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1107                storePostSend(retryPkt);
1108            }
1109            retryPkt = NULL;
1110            isStoreBlocked = false;
1111            lsq->setRetryTid(InvalidThreadID);
1112
1113            // Send any outstanding packet.
1114            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1115                assert(state->pendingPacket);
1116                if (sendStore(state->pendingPacket)) {
1117                    storePostSend(state->pendingPacket);
1118                }
1119            }
1120        } else {
1121            // Still blocked!
1122            ++lsqCacheBlocked;
1123            lsq->setRetryTid(lsqID);
1124        }
1125    } else if (isLoadBlocked) {
1126        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1127                "no need to resend packet.\n");
1128    } else {
1129        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1130    }
1131}
1132
1133template <class Impl>
1134inline void
1135LSQUnit<Impl>::incrStIdx(int &store_idx)
1136{
1137    if (++store_idx >= SQEntries)
1138        store_idx = 0;
1139}
1140
1141template <class Impl>
1142inline void
1143LSQUnit<Impl>::decrStIdx(int &store_idx)
1144{
1145    if (--store_idx < 0)
1146        store_idx += SQEntries;
1147}
1148
1149template <class Impl>
1150inline void
1151LSQUnit<Impl>::incrLdIdx(int &load_idx)
1152{
1153    if (++load_idx >= LQEntries)
1154        load_idx = 0;
1155}
1156
1157template <class Impl>
1158inline void
1159LSQUnit<Impl>::decrLdIdx(int &load_idx)
1160{
1161    if (--load_idx < 0)
1162        load_idx += LQEntries;
1163}
1164
1165template <class Impl>
1166void
1167LSQUnit<Impl>::dumpInsts()
1168{
1169    cprintf("Load store queue: Dumping instructions.\n");
1170    cprintf("Load queue size: %i\n", loads);
1171    cprintf("Load queue: ");
1172
1173    int load_idx = loadHead;
1174
1175    while (load_idx != loadTail && loadQueue[load_idx]) {
1176        cprintf("%s ", loadQueue[load_idx]->pcState());
1177
1178        incrLdIdx(load_idx);
1179    }
1180
1181    cprintf("Store queue size: %i\n", stores);
1182    cprintf("Store queue: ");
1183
1184    int store_idx = storeHead;
1185
1186    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1187        cprintf("%s ", storeQueue[store_idx].inst->pcState());
1188
1189        incrStIdx(store_idx);
1190    }
1191
1192    cprintf("\n");
1193}
1194