lsq_unit_impl.hh revision 7848
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62    this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    if (!lsqPtr->isSwitchedOut()) {
70        lsqPtr->writeback(inst, pkt);
71    }
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    assert(!pkt->wasNacked());
99
100    // If this is a split access, wait until all packets are received.
101    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102        delete pkt->req;
103        delete pkt;
104        return;
105    }
106
107    if (isSwitchedOut() || inst->isSquashed()) {
108        iewStage->decrWb(inst->seqNum);
109    } else {
110        if (!state->noWB) {
111            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112                !state->isLoad) {
113                writeback(inst, pkt);
114            } else {
115                writeback(inst, state->mainPkt);
116            }
117        }
118
119        if (inst->isStore()) {
120            completeStore(state->idx);
121        }
122    }
123
124    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125        delete state->mainPkt->req;
126        delete state->mainPkt;
127    }
128    delete state;
129    delete pkt->req;
130    delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135    : loads(0), stores(0), storesToWB(0), stalled(false),
136      isStoreBlocked(false), isLoadBlocked(false),
137      loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145        unsigned id)
146{
147    cpu = cpu_ptr;
148    iewStage = iew_ptr;
149
150    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152    switchedOut = false;
153
154    lsq = lsq_ptr;
155
156    lsqID = id;
157
158    // Add 1 for the sentinel entry (they are circular queues).
159    LQEntries = maxLQEntries + 1;
160    SQEntries = maxSQEntries + 1;
161
162    loadQueue.resize(LQEntries);
163    storeQueue.resize(SQEntries);
164
165    loadHead = loadTail = 0;
166
167    storeHead = storeWBIdx = storeTail = 0;
168
169    usedPorts = 0;
170    cachePorts = params->cachePorts;
171
172    retryPkt = NULL;
173    memDepViolator = NULL;
174
175    blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182    if (Impl::MaxThreads == 1) {
183        return iewStage->name() + ".lsq";
184    } else {
185        return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186    }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193    lsqForwLoads
194        .name(name() + ".forwLoads")
195        .desc("Number of loads that had data forwarded from stores");
196
197    invAddrLoads
198        .name(name() + ".invAddrLoads")
199        .desc("Number of loads ignored due to an invalid address");
200
201    lsqSquashedLoads
202        .name(name() + ".squashedLoads")
203        .desc("Number of loads squashed");
204
205    lsqIgnoredResponses
206        .name(name() + ".ignoredResponses")
207        .desc("Number of memory responses ignored because the instruction is squashed");
208
209    lsqMemOrderViolation
210        .name(name() + ".memOrderViolation")
211        .desc("Number of memory ordering violations");
212
213    lsqSquashedStores
214        .name(name() + ".squashedStores")
215        .desc("Number of stores squashed");
216
217    invAddrSwpfs
218        .name(name() + ".invAddrSwpfs")
219        .desc("Number of software prefetches ignored due to an invalid address");
220
221    lsqBlockedLoads
222        .name(name() + ".blockedLoads")
223        .desc("Number of blocked loads due to partial load-store forwarding");
224
225    lsqRescheduledLoads
226        .name(name() + ".rescheduledLoads")
227        .desc("Number of loads that were rescheduled");
228
229    lsqCacheBlocked
230        .name(name() + ".cacheBlocked")
231        .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238    dcachePort = dcache_port;
239
240#if USE_CHECKER
241    if (cpu->checker) {
242        cpu->checker->setDcachePort(dcachePort);
243    }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251    loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258    storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265    switchedOut = true;
266    for (int i = 0; i < loadQueue.size(); ++i) {
267        assert(!loadQueue[i]);
268        loadQueue[i] = NULL;
269    }
270
271    assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278    switchedOut = false;
279    loads = stores = storesToWB = 0;
280
281    loadHead = loadTail = 0;
282
283    storeHead = storeWBIdx = storeTail = 0;
284
285    usedPorts = 0;
286
287    memDepViolator = NULL;
288
289    blockedLoadSeqNum = 0;
290
291    stalled = false;
292    isLoadBlocked = false;
293    loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300    unsigned size_plus_sentinel = size + 1;
301    assert(size_plus_sentinel >= LQEntries);
302
303    if (size_plus_sentinel > LQEntries) {
304        while (size_plus_sentinel > loadQueue.size()) {
305            DynInstPtr dummy;
306            loadQueue.push_back(dummy);
307            LQEntries++;
308        }
309    } else {
310        LQEntries = size_plus_sentinel;
311    }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319    unsigned size_plus_sentinel = size + 1;
320    if (size_plus_sentinel > SQEntries) {
321        while (size_plus_sentinel > storeQueue.size()) {
322            SQEntry dummy;
323            storeQueue.push_back(dummy);
324            SQEntries++;
325        }
326    } else {
327        SQEntries = size_plus_sentinel;
328    }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335    assert(inst->isMemRef());
336
337    assert(inst->isLoad() || inst->isStore());
338
339    if (inst->isLoad()) {
340        insertLoad(inst);
341    } else {
342        insertStore(inst);
343    }
344
345    inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352    assert((loadTail + 1) % LQEntries != loadHead);
353    assert(loads < LQEntries);
354
355    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356            load_inst->pcState(), loadTail, load_inst->seqNum);
357
358    load_inst->lqIdx = loadTail;
359
360    if (stores == 0) {
361        load_inst->sqIdx = -1;
362    } else {
363        load_inst->sqIdx = storeTail;
364    }
365
366    loadQueue[loadTail] = load_inst;
367
368    incrLdIdx(loadTail);
369
370    ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377    // Make sure it is not full before inserting an instruction.
378    assert((storeTail + 1) % SQEntries != storeHead);
379    assert(stores < SQEntries);
380
381    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382            store_inst->pcState(), storeTail, store_inst->seqNum);
383
384    store_inst->sqIdx = storeTail;
385    store_inst->lqIdx = loadTail;
386
387    storeQueue[storeTail] = SQEntry(store_inst);
388
389    incrStIdx(storeTail);
390
391    ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398    DynInstPtr temp = memDepViolator;
399
400    memDepViolator = NULL;
401
402    return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409    unsigned free_lq_entries = LQEntries - loads;
410    unsigned free_sq_entries = SQEntries - stores;
411
412    // Both the LQ and SQ entries have an extra dummy entry to differentiate
413    // empty/full conditions.  Subtract 1 from the free entries.
414    if (free_lq_entries < free_sq_entries) {
415        return free_lq_entries - 1;
416    } else {
417        return free_sq_entries - 1;
418    }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425    int load_idx = loadHead;
426    int retval = 0;
427
428    while (load_idx != loadTail) {
429        assert(loadQueue[load_idx]);
430
431        if (loadQueue[load_idx]->readyToIssue()) {
432            ++retval;
433        }
434    }
435
436    return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443    using namespace TheISA;
444    // Execute a specific load.
445    Fault load_fault = NoFault;
446
447    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448            inst->pcState(),inst->seqNum);
449
450    assert(!inst->isSquashed());
451
452    load_fault = inst->initiateAcc();
453
454    // If the instruction faulted or predicated false, then we need to send it
455    // along to commit without the instruction completing.
456    if (load_fault != NoFault || inst->readPredicate() == false) {
457        // Send this instruction to commit, also make sure iew stage
458        // realizes there is activity.
459        // Mark it as executed unless it is an uncached load that
460        // needs to hit the head of commit.
461        if (inst->readPredicate() == false)
462            inst->forwardOldRegs();
463        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
464                inst->seqNum,
465                (load_fault != NoFault ? "fault" : "predication"));
466        if (!(inst->hasRequest() && inst->uncacheable()) ||
467            inst->isAtCommit()) {
468            inst->setExecuted();
469        }
470        iewStage->instToCommit(inst);
471        iewStage->activityThisCycle();
472    } else if (!loadBlocked()) {
473        assert(inst->effAddrValid);
474        int load_idx = inst->lqIdx;
475        incrLdIdx(load_idx);
476        while (load_idx != loadTail) {
477            // Really only need to check loads that have actually executed
478
479            // @todo: For now this is extra conservative, detecting a
480            // violation if the addresses match assuming all accesses
481            // are quad word accesses.
482
483            // @todo: Fix this, magic number being used here
484
485            // @todo: Uncachable load is not executed until it reaches
486            // the head of the ROB. Once this if checks only the executed
487            // loads(as noted above), this check can be removed
488            if (loadQueue[load_idx]->effAddrValid &&
489                ((loadQueue[load_idx]->effAddr >> 8)
490                 == (inst->effAddr >> 8)) &&
491                !loadQueue[load_idx]->uncacheable()) {
492                // A load incorrectly passed this load.  Squash and refetch.
493                // For now return a fault to show that it was unsuccessful.
494                DynInstPtr violator = loadQueue[load_idx];
495                if (!memDepViolator ||
496                    (violator->seqNum < memDepViolator->seqNum)) {
497                    memDepViolator = violator;
498                } else {
499                    break;
500                }
501
502                ++lsqMemOrderViolation;
503
504                return genMachineCheckFault();
505            }
506
507            incrLdIdx(load_idx);
508        }
509    }
510
511    return load_fault;
512}
513
514template <class Impl>
515Fault
516LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
517{
518    using namespace TheISA;
519    // Make sure that a store exists.
520    assert(stores != 0);
521
522    int store_idx = store_inst->sqIdx;
523
524    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
525            store_inst->pcState(), store_inst->seqNum);
526
527    assert(!store_inst->isSquashed());
528
529    // Check the recently completed loads to see if any match this store's
530    // address.  If so, then we have a memory ordering violation.
531    int load_idx = store_inst->lqIdx;
532
533    Fault store_fault = store_inst->initiateAcc();
534
535    if (store_inst->readPredicate() == false)
536        store_inst->forwardOldRegs();
537
538    if (storeQueue[store_idx].size == 0) {
539        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
540                store_inst->pcState(), store_inst->seqNum);
541
542        return store_fault;
543    } else if (store_inst->readPredicate() == false) {
544        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
545                store_inst->seqNum);
546        return store_fault;
547    }
548
549    assert(store_fault == NoFault);
550
551    if (store_inst->isStoreConditional()) {
552        // Store conditionals need to set themselves as able to
553        // writeback if we haven't had a fault by here.
554        storeQueue[store_idx].canWB = true;
555
556        ++storesToWB;
557    }
558
559    assert(store_inst->effAddrValid);
560    while (load_idx != loadTail) {
561        // Really only need to check loads that have actually executed
562        // It's safe to check all loads because effAddr is set to
563        // InvalAddr when the dyn inst is created.
564
565        // @todo: For now this is extra conservative, detecting a
566        // violation if the addresses match assuming all accesses
567        // are quad word accesses.
568
569        // @todo: Fix this, magic number being used here
570
571        // @todo: Uncachable load is not executed until it reaches
572        // the head of the ROB. Once this if checks only the executed
573        // loads(as noted above), this check can be removed
574        if (loadQueue[load_idx]->effAddrValid &&
575            ((loadQueue[load_idx]->effAddr >> 8)
576             == (store_inst->effAddr >> 8)) &&
577            !loadQueue[load_idx]->uncacheable()) {
578            // A load incorrectly passed this store.  Squash and refetch.
579            // For now return a fault to show that it was unsuccessful.
580            DynInstPtr violator = loadQueue[load_idx];
581            if (!memDepViolator ||
582                (violator->seqNum < memDepViolator->seqNum)) {
583                memDepViolator = violator;
584            } else {
585                break;
586            }
587
588            ++lsqMemOrderViolation;
589
590            return genMachineCheckFault();
591        }
592
593        incrLdIdx(load_idx);
594    }
595
596    return store_fault;
597}
598
599template <class Impl>
600void
601LSQUnit<Impl>::commitLoad()
602{
603    assert(loadQueue[loadHead]);
604
605    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
606            loadQueue[loadHead]->pcState());
607
608    loadQueue[loadHead] = NULL;
609
610    incrLdIdx(loadHead);
611
612    --loads;
613}
614
615template <class Impl>
616void
617LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
618{
619    assert(loads == 0 || loadQueue[loadHead]);
620
621    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
622        commitLoad();
623    }
624}
625
626template <class Impl>
627void
628LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
629{
630    assert(stores == 0 || storeQueue[storeHead].inst);
631
632    int store_idx = storeHead;
633
634    while (store_idx != storeTail) {
635        assert(storeQueue[store_idx].inst);
636        // Mark any stores that are now committed and have not yet
637        // been marked as able to write back.
638        if (!storeQueue[store_idx].canWB) {
639            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
640                break;
641            }
642            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
643                    "%s [sn:%lli]\n",
644                    storeQueue[store_idx].inst->pcState(),
645                    storeQueue[store_idx].inst->seqNum);
646
647            storeQueue[store_idx].canWB = true;
648
649            ++storesToWB;
650        }
651
652        incrStIdx(store_idx);
653    }
654}
655
656template <class Impl>
657void
658LSQUnit<Impl>::writebackPendingStore()
659{
660    if (hasPendingPkt) {
661        assert(pendingPkt != NULL);
662
663        // If the cache is blocked, this will store the packet for retry.
664        if (sendStore(pendingPkt)) {
665            storePostSend(pendingPkt);
666        }
667        pendingPkt = NULL;
668        hasPendingPkt = false;
669    }
670}
671
672template <class Impl>
673void
674LSQUnit<Impl>::writebackStores()
675{
676    // First writeback the second packet from any split store that didn't
677    // complete last cycle because there weren't enough cache ports available.
678    if (TheISA::HasUnalignedMemAcc) {
679        writebackPendingStore();
680    }
681
682    while (storesToWB > 0 &&
683           storeWBIdx != storeTail &&
684           storeQueue[storeWBIdx].inst &&
685           storeQueue[storeWBIdx].canWB &&
686           usedPorts < cachePorts) {
687
688        if (isStoreBlocked || lsq->cacheBlocked()) {
689            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
690                    " is blocked!\n");
691            break;
692        }
693
694        // Store didn't write any data so no need to write it back to
695        // memory.
696        if (storeQueue[storeWBIdx].size == 0) {
697            completeStore(storeWBIdx);
698
699            incrStIdx(storeWBIdx);
700
701            continue;
702        }
703
704        ++usedPorts;
705
706        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
707            incrStIdx(storeWBIdx);
708
709            continue;
710        }
711
712        assert(storeQueue[storeWBIdx].req);
713        assert(!storeQueue[storeWBIdx].committed);
714
715        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
716            assert(storeQueue[storeWBIdx].sreqLow);
717            assert(storeQueue[storeWBIdx].sreqHigh);
718        }
719
720        DynInstPtr inst = storeQueue[storeWBIdx].inst;
721
722        Request *req = storeQueue[storeWBIdx].req;
723        storeQueue[storeWBIdx].committed = true;
724
725        assert(!inst->memData);
726        inst->memData = new uint8_t[64];
727
728        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
729
730        MemCmd command =
731            req->isSwap() ? MemCmd::SwapReq :
732            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
733        PacketPtr data_pkt;
734        PacketPtr snd_data_pkt = NULL;
735
736        LSQSenderState *state = new LSQSenderState;
737        state->isLoad = false;
738        state->idx = storeWBIdx;
739        state->inst = inst;
740
741        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
742
743            // Build a single data packet if the store isn't split.
744            data_pkt = new Packet(req, command, Packet::Broadcast);
745            data_pkt->dataStatic(inst->memData);
746            data_pkt->senderState = state;
747        } else {
748            RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
749            RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
750
751            // Create two packets if the store is split in two.
752            data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
753            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
754
755            data_pkt->dataStatic(inst->memData);
756            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
757
758            data_pkt->senderState = state;
759            snd_data_pkt->senderState = state;
760
761            state->isSplit = true;
762            state->outstanding = 2;
763
764            // Can delete the main request now.
765            delete req;
766            req = sreqLow;
767        }
768
769        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
770                "to Addr:%#x, data:%#x [sn:%lli]\n",
771                storeWBIdx, inst->pcState(),
772                req->getPaddr(), (int)*(inst->memData),
773                inst->seqNum);
774
775        // @todo: Remove this SC hack once the memory system handles it.
776        if (inst->isStoreConditional()) {
777            assert(!storeQueue[storeWBIdx].isSplit);
778            // Disable recording the result temporarily.  Writing to
779            // misc regs normally updates the result, but this is not
780            // the desired behavior when handling store conditionals.
781            inst->recordResult = false;
782            bool success = TheISA::handleLockedWrite(inst.get(), req);
783            inst->recordResult = true;
784
785            if (!success) {
786                // Instantly complete this store.
787                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
788                        "Instantly completing it.\n",
789                        inst->seqNum);
790                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
791                cpu->schedule(wb, curTick() + 1);
792                completeStore(storeWBIdx);
793                incrStIdx(storeWBIdx);
794                continue;
795            }
796        } else {
797            // Non-store conditionals do not need a writeback.
798            state->noWB = true;
799        }
800
801        if (!sendStore(data_pkt)) {
802            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
803                    "retry later\n",
804                    inst->seqNum);
805
806            // Need to store the second packet, if split.
807            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
808                state->pktToSend = true;
809                state->pendingPacket = snd_data_pkt;
810            }
811        } else {
812
813            // If split, try to send the second packet too
814            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
815                assert(snd_data_pkt);
816
817                // Ensure there are enough ports to use.
818                if (usedPorts < cachePorts) {
819                    ++usedPorts;
820                    if (sendStore(snd_data_pkt)) {
821                        storePostSend(snd_data_pkt);
822                    } else {
823                        DPRINTF(IEW, "D-Cache became blocked when writing"
824                                " [sn:%lli] second packet, will retry later\n",
825                                inst->seqNum);
826                    }
827                } else {
828
829                    // Store the packet for when there's free ports.
830                    assert(pendingPkt == NULL);
831                    pendingPkt = snd_data_pkt;
832                    hasPendingPkt = true;
833                }
834            } else {
835
836                // Not a split store.
837                storePostSend(data_pkt);
838            }
839        }
840    }
841
842    // Not sure this should set it to 0.
843    usedPorts = 0;
844
845    assert(stores >= 0 && storesToWB >= 0);
846}
847
848/*template <class Impl>
849void
850LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
851{
852    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
853                                              mshrSeqNums.end(),
854                                              seqNum);
855
856    if (mshr_it != mshrSeqNums.end()) {
857        mshrSeqNums.erase(mshr_it);
858        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
859    }
860}*/
861
862template <class Impl>
863void
864LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
865{
866    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
867            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
868
869    int load_idx = loadTail;
870    decrLdIdx(load_idx);
871
872    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
873        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
874                "[sn:%lli]\n",
875                loadQueue[load_idx]->pcState(),
876                loadQueue[load_idx]->seqNum);
877
878        if (isStalled() && load_idx == stallingLoadIdx) {
879            stalled = false;
880            stallingStoreIsn = 0;
881            stallingLoadIdx = 0;
882        }
883
884        // Clear the smart pointer to make sure it is decremented.
885        loadQueue[load_idx]->setSquashed();
886        loadQueue[load_idx] = NULL;
887        --loads;
888
889        // Inefficient!
890        loadTail = load_idx;
891
892        decrLdIdx(load_idx);
893        ++lsqSquashedLoads;
894    }
895
896    if (isLoadBlocked) {
897        if (squashed_num < blockedLoadSeqNum) {
898            isLoadBlocked = false;
899            loadBlockedHandled = false;
900            blockedLoadSeqNum = 0;
901        }
902    }
903
904    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
905        memDepViolator = NULL;
906    }
907
908    int store_idx = storeTail;
909    decrStIdx(store_idx);
910
911    while (stores != 0 &&
912           storeQueue[store_idx].inst->seqNum > squashed_num) {
913        // Instructions marked as can WB are already committed.
914        if (storeQueue[store_idx].canWB) {
915            break;
916        }
917
918        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
919                "idx:%i [sn:%lli]\n",
920                storeQueue[store_idx].inst->pcState(),
921                store_idx, storeQueue[store_idx].inst->seqNum);
922
923        // I don't think this can happen.  It should have been cleared
924        // by the stalling load.
925        if (isStalled() &&
926            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
927            panic("Is stalled should have been cleared by stalling load!\n");
928            stalled = false;
929            stallingStoreIsn = 0;
930        }
931
932        // Clear the smart pointer to make sure it is decremented.
933        storeQueue[store_idx].inst->setSquashed();
934        storeQueue[store_idx].inst = NULL;
935        storeQueue[store_idx].canWB = 0;
936
937        // Must delete request now that it wasn't handed off to
938        // memory.  This is quite ugly.  @todo: Figure out the proper
939        // place to really handle request deletes.
940        delete storeQueue[store_idx].req;
941        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
942            delete storeQueue[store_idx].sreqLow;
943            delete storeQueue[store_idx].sreqHigh;
944
945            storeQueue[store_idx].sreqLow = NULL;
946            storeQueue[store_idx].sreqHigh = NULL;
947        }
948
949        storeQueue[store_idx].req = NULL;
950        --stores;
951
952        // Inefficient!
953        storeTail = store_idx;
954
955        decrStIdx(store_idx);
956        ++lsqSquashedStores;
957    }
958}
959
960template <class Impl>
961void
962LSQUnit<Impl>::storePostSend(PacketPtr pkt)
963{
964    if (isStalled() &&
965        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
966        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
967                "load idx:%i\n",
968                stallingStoreIsn, stallingLoadIdx);
969        stalled = false;
970        stallingStoreIsn = 0;
971        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
972    }
973
974    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
975        // The store is basically completed at this time. This
976        // only works so long as the checker doesn't try to
977        // verify the value in memory for stores.
978        storeQueue[storeWBIdx].inst->setCompleted();
979#if USE_CHECKER
980        if (cpu->checker) {
981            cpu->checker->verify(storeQueue[storeWBIdx].inst);
982        }
983#endif
984    }
985
986    incrStIdx(storeWBIdx);
987}
988
989template <class Impl>
990void
991LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
992{
993    iewStage->wakeCPU();
994
995    // Squashed instructions do not need to complete their access.
996    if (inst->isSquashed()) {
997        iewStage->decrWb(inst->seqNum);
998        assert(!inst->isStore());
999        ++lsqIgnoredResponses;
1000        return;
1001    }
1002
1003    if (!inst->isExecuted()) {
1004        inst->setExecuted();
1005
1006        // Complete access to copy data to proper place.
1007        inst->completeAcc(pkt);
1008    }
1009
1010    // Need to insert instruction into queue to commit
1011    iewStage->instToCommit(inst);
1012
1013    iewStage->activityThisCycle();
1014
1015    // see if this load changed the PC
1016    iewStage->checkMisprediction(inst);
1017}
1018
1019template <class Impl>
1020void
1021LSQUnit<Impl>::completeStore(int store_idx)
1022{
1023    assert(storeQueue[store_idx].inst);
1024    storeQueue[store_idx].completed = true;
1025    --storesToWB;
1026    // A bit conservative because a store completion may not free up entries,
1027    // but hopefully avoids two store completions in one cycle from making
1028    // the CPU tick twice.
1029    cpu->wakeCPU();
1030    cpu->activityThisCycle();
1031
1032    if (store_idx == storeHead) {
1033        do {
1034            incrStIdx(storeHead);
1035
1036            --stores;
1037        } while (storeQueue[storeHead].completed &&
1038                 storeHead != storeTail);
1039
1040        iewStage->updateLSQNextCycle = true;
1041    }
1042
1043    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1044            "idx:%i\n",
1045            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1046
1047    if (isStalled() &&
1048        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1049        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1050                "load idx:%i\n",
1051                stallingStoreIsn, stallingLoadIdx);
1052        stalled = false;
1053        stallingStoreIsn = 0;
1054        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1055    }
1056
1057    storeQueue[store_idx].inst->setCompleted();
1058
1059    // Tell the checker we've completed this instruction.  Some stores
1060    // may get reported twice to the checker, but the checker can
1061    // handle that case.
1062#if USE_CHECKER
1063    if (cpu->checker) {
1064        cpu->checker->verify(storeQueue[store_idx].inst);
1065    }
1066#endif
1067}
1068
1069template <class Impl>
1070bool
1071LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1072{
1073    if (!dcachePort->sendTiming(data_pkt)) {
1074        // Need to handle becoming blocked on a store.
1075        isStoreBlocked = true;
1076        ++lsqCacheBlocked;
1077        assert(retryPkt == NULL);
1078        retryPkt = data_pkt;
1079        lsq->setRetryTid(lsqID);
1080        return false;
1081    }
1082    return true;
1083}
1084
1085template <class Impl>
1086void
1087LSQUnit<Impl>::recvRetry()
1088{
1089    if (isStoreBlocked) {
1090        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1091        assert(retryPkt != NULL);
1092
1093        if (dcachePort->sendTiming(retryPkt)) {
1094            LSQSenderState *state =
1095                dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1096
1097            // Don't finish the store unless this is the last packet.
1098            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1099                storePostSend(retryPkt);
1100            }
1101            retryPkt = NULL;
1102            isStoreBlocked = false;
1103            lsq->setRetryTid(InvalidThreadID);
1104
1105            // Send any outstanding packet.
1106            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1107                assert(state->pendingPacket);
1108                if (sendStore(state->pendingPacket)) {
1109                    storePostSend(state->pendingPacket);
1110                }
1111            }
1112        } else {
1113            // Still blocked!
1114            ++lsqCacheBlocked;
1115            lsq->setRetryTid(lsqID);
1116        }
1117    } else if (isLoadBlocked) {
1118        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1119                "no need to resend packet.\n");
1120    } else {
1121        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1122    }
1123}
1124
1125template <class Impl>
1126inline void
1127LSQUnit<Impl>::incrStIdx(int &store_idx)
1128{
1129    if (++store_idx >= SQEntries)
1130        store_idx = 0;
1131}
1132
1133template <class Impl>
1134inline void
1135LSQUnit<Impl>::decrStIdx(int &store_idx)
1136{
1137    if (--store_idx < 0)
1138        store_idx += SQEntries;
1139}
1140
1141template <class Impl>
1142inline void
1143LSQUnit<Impl>::incrLdIdx(int &load_idx)
1144{
1145    if (++load_idx >= LQEntries)
1146        load_idx = 0;
1147}
1148
1149template <class Impl>
1150inline void
1151LSQUnit<Impl>::decrLdIdx(int &load_idx)
1152{
1153    if (--load_idx < 0)
1154        load_idx += LQEntries;
1155}
1156
1157template <class Impl>
1158void
1159LSQUnit<Impl>::dumpInsts()
1160{
1161    cprintf("Load store queue: Dumping instructions.\n");
1162    cprintf("Load queue size: %i\n", loads);
1163    cprintf("Load queue: ");
1164
1165    int load_idx = loadHead;
1166
1167    while (load_idx != loadTail && loadQueue[load_idx]) {
1168        cprintf("%s ", loadQueue[load_idx]->pcState());
1169
1170        incrLdIdx(load_idx);
1171    }
1172
1173    cprintf("Store queue size: %i\n", stores);
1174    cprintf("Store queue: ");
1175
1176    int store_idx = storeHead;
1177
1178    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1179        cprintf("%s ", storeQueue[store_idx].inst->pcState());
1180
1181        incrStIdx(store_idx);
1182    }
1183
1184    cprintf("\n");
1185}
1186