lsq_unit_impl.hh revision 7600:eff7f79f7dfd
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62    this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    if (!lsqPtr->isSwitchedOut()) {
70        lsqPtr->writeback(inst, pkt);
71    }
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    assert(!pkt->wasNacked());
99
100    // If this is a split access, wait until all packets are received.
101    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102        delete pkt->req;
103        delete pkt;
104        return;
105    }
106
107    if (isSwitchedOut() || inst->isSquashed()) {
108        iewStage->decrWb(inst->seqNum);
109    } else {
110        if (!state->noWB) {
111            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112                !state->isLoad) {
113                writeback(inst, pkt);
114            } else {
115                writeback(inst, state->mainPkt);
116            }
117        }
118
119        if (inst->isStore()) {
120            completeStore(state->idx);
121        }
122    }
123
124    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125        delete state->mainPkt->req;
126        delete state->mainPkt;
127    }
128    delete state;
129    delete pkt->req;
130    delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135    : loads(0), stores(0), storesToWB(0), stalled(false),
136      isStoreBlocked(false), isLoadBlocked(false),
137      loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145        unsigned id)
146{
147    cpu = cpu_ptr;
148    iewStage = iew_ptr;
149
150    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152    switchedOut = false;
153
154    lsq = lsq_ptr;
155
156    lsqID = id;
157
158    // Add 1 for the sentinel entry (they are circular queues).
159    LQEntries = maxLQEntries + 1;
160    SQEntries = maxSQEntries + 1;
161
162    loadQueue.resize(LQEntries);
163    storeQueue.resize(SQEntries);
164
165    loadHead = loadTail = 0;
166
167    storeHead = storeWBIdx = storeTail = 0;
168
169    usedPorts = 0;
170    cachePorts = params->cachePorts;
171
172    retryPkt = NULL;
173    memDepViolator = NULL;
174
175    blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182    if (Impl::MaxThreads == 1) {
183        return iewStage->name() + ".lsq";
184    } else {
185        return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186    }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193    lsqForwLoads
194        .name(name() + ".forwLoads")
195        .desc("Number of loads that had data forwarded from stores");
196
197    invAddrLoads
198        .name(name() + ".invAddrLoads")
199        .desc("Number of loads ignored due to an invalid address");
200
201    lsqSquashedLoads
202        .name(name() + ".squashedLoads")
203        .desc("Number of loads squashed");
204
205    lsqIgnoredResponses
206        .name(name() + ".ignoredResponses")
207        .desc("Number of memory responses ignored because the instruction is squashed");
208
209    lsqMemOrderViolation
210        .name(name() + ".memOrderViolation")
211        .desc("Number of memory ordering violations");
212
213    lsqSquashedStores
214        .name(name() + ".squashedStores")
215        .desc("Number of stores squashed");
216
217    invAddrSwpfs
218        .name(name() + ".invAddrSwpfs")
219        .desc("Number of software prefetches ignored due to an invalid address");
220
221    lsqBlockedLoads
222        .name(name() + ".blockedLoads")
223        .desc("Number of blocked loads due to partial load-store forwarding");
224
225    lsqRescheduledLoads
226        .name(name() + ".rescheduledLoads")
227        .desc("Number of loads that were rescheduled");
228
229    lsqCacheBlocked
230        .name(name() + ".cacheBlocked")
231        .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238    dcachePort = dcache_port;
239
240#if USE_CHECKER
241    if (cpu->checker) {
242        cpu->checker->setDcachePort(dcachePort);
243    }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251    loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258    storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265    switchedOut = true;
266    for (int i = 0; i < loadQueue.size(); ++i) {
267        assert(!loadQueue[i]);
268        loadQueue[i] = NULL;
269    }
270
271    assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278    switchedOut = false;
279    loads = stores = storesToWB = 0;
280
281    loadHead = loadTail = 0;
282
283    storeHead = storeWBIdx = storeTail = 0;
284
285    usedPorts = 0;
286
287    memDepViolator = NULL;
288
289    blockedLoadSeqNum = 0;
290
291    stalled = false;
292    isLoadBlocked = false;
293    loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300    unsigned size_plus_sentinel = size + 1;
301    assert(size_plus_sentinel >= LQEntries);
302
303    if (size_plus_sentinel > LQEntries) {
304        while (size_plus_sentinel > loadQueue.size()) {
305            DynInstPtr dummy;
306            loadQueue.push_back(dummy);
307            LQEntries++;
308        }
309    } else {
310        LQEntries = size_plus_sentinel;
311    }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319    unsigned size_plus_sentinel = size + 1;
320    if (size_plus_sentinel > SQEntries) {
321        while (size_plus_sentinel > storeQueue.size()) {
322            SQEntry dummy;
323            storeQueue.push_back(dummy);
324            SQEntries++;
325        }
326    } else {
327        SQEntries = size_plus_sentinel;
328    }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335    assert(inst->isMemRef());
336
337    assert(inst->isLoad() || inst->isStore());
338
339    if (inst->isLoad()) {
340        insertLoad(inst);
341    } else {
342        insertStore(inst);
343    }
344
345    inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352    assert((loadTail + 1) % LQEntries != loadHead);
353    assert(loads < LQEntries);
354
355    DPRINTF(LSQUnit, "Inserting load PC %#x, idx:%i [sn:%lli]\n",
356            load_inst->readPC(), loadTail, load_inst->seqNum);
357
358    load_inst->lqIdx = loadTail;
359
360    if (stores == 0) {
361        load_inst->sqIdx = -1;
362    } else {
363        load_inst->sqIdx = storeTail;
364    }
365
366    loadQueue[loadTail] = load_inst;
367
368    incrLdIdx(loadTail);
369
370    ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377    // Make sure it is not full before inserting an instruction.
378    assert((storeTail + 1) % SQEntries != storeHead);
379    assert(stores < SQEntries);
380
381    DPRINTF(LSQUnit, "Inserting store PC %#x, idx:%i [sn:%lli]\n",
382            store_inst->readPC(), storeTail, store_inst->seqNum);
383
384    store_inst->sqIdx = storeTail;
385    store_inst->lqIdx = loadTail;
386
387    storeQueue[storeTail] = SQEntry(store_inst);
388
389    incrStIdx(storeTail);
390
391    ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398    DynInstPtr temp = memDepViolator;
399
400    memDepViolator = NULL;
401
402    return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409    unsigned free_lq_entries = LQEntries - loads;
410    unsigned free_sq_entries = SQEntries - stores;
411
412    // Both the LQ and SQ entries have an extra dummy entry to differentiate
413    // empty/full conditions.  Subtract 1 from the free entries.
414    if (free_lq_entries < free_sq_entries) {
415        return free_lq_entries - 1;
416    } else {
417        return free_sq_entries - 1;
418    }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425    int load_idx = loadHead;
426    int retval = 0;
427
428    while (load_idx != loadTail) {
429        assert(loadQueue[load_idx]);
430
431        if (loadQueue[load_idx]->readyToIssue()) {
432            ++retval;
433        }
434    }
435
436    return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443    using namespace TheISA;
444    // Execute a specific load.
445    Fault load_fault = NoFault;
446
447    DPRINTF(LSQUnit, "Executing load PC %#x, [sn:%lli]\n",
448            inst->readPC(),inst->seqNum);
449
450    assert(!inst->isSquashed());
451
452    load_fault = inst->initiateAcc();
453
454    // If the instruction faulted or predicated false, then we need to send it
455    // along to commit without the instruction completing.
456    if (load_fault != NoFault || inst->readPredicate() == false) {
457        // Send this instruction to commit, also make sure iew stage
458        // realizes there is activity.
459        // Mark it as executed unless it is an uncached load that
460        // needs to hit the head of commit.
461        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
462                inst->seqNum,
463                (load_fault != NoFault ? "fault" : "predication"));
464        if (!(inst->hasRequest() && inst->uncacheable()) ||
465            inst->isAtCommit()) {
466            inst->setExecuted();
467        }
468        iewStage->instToCommit(inst);
469        iewStage->activityThisCycle();
470    } else if (!loadBlocked()) {
471        assert(inst->effAddrValid);
472        int load_idx = inst->lqIdx;
473        incrLdIdx(load_idx);
474        while (load_idx != loadTail) {
475            // Really only need to check loads that have actually executed
476
477            // @todo: For now this is extra conservative, detecting a
478            // violation if the addresses match assuming all accesses
479            // are quad word accesses.
480
481            // @todo: Fix this, magic number being used here
482            if (loadQueue[load_idx]->effAddrValid &&
483                (loadQueue[load_idx]->effAddr >> 8) ==
484                (inst->effAddr >> 8)) {
485                // A load incorrectly passed this load.  Squash and refetch.
486                // For now return a fault to show that it was unsuccessful.
487                DynInstPtr violator = loadQueue[load_idx];
488                if (!memDepViolator ||
489                    (violator->seqNum < memDepViolator->seqNum)) {
490                    memDepViolator = violator;
491                } else {
492                    break;
493                }
494
495                ++lsqMemOrderViolation;
496
497                return genMachineCheckFault();
498            }
499
500            incrLdIdx(load_idx);
501        }
502    }
503
504    return load_fault;
505}
506
507template <class Impl>
508Fault
509LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
510{
511    using namespace TheISA;
512    // Make sure that a store exists.
513    assert(stores != 0);
514
515    int store_idx = store_inst->sqIdx;
516
517    DPRINTF(LSQUnit, "Executing store PC %#x [sn:%lli]\n",
518            store_inst->readPC(), store_inst->seqNum);
519
520    assert(!store_inst->isSquashed());
521
522    // Check the recently completed loads to see if any match this store's
523    // address.  If so, then we have a memory ordering violation.
524    int load_idx = store_inst->lqIdx;
525
526    Fault store_fault = store_inst->initiateAcc();
527
528    if (storeQueue[store_idx].size == 0) {
529        DPRINTF(LSQUnit,"Fault on Store PC %#x, [sn:%lli],Size = 0\n",
530                store_inst->readPC(),store_inst->seqNum);
531
532        return store_fault;
533    }
534
535    assert(store_fault == NoFault);
536
537    if (store_inst->isStoreConditional()) {
538        // Store conditionals need to set themselves as able to
539        // writeback if we haven't had a fault by here.
540        storeQueue[store_idx].canWB = true;
541
542        ++storesToWB;
543    }
544
545    assert(store_inst->effAddrValid);
546    while (load_idx != loadTail) {
547        // Really only need to check loads that have actually executed
548        // It's safe to check all loads because effAddr is set to
549        // InvalAddr when the dyn inst is created.
550
551        // @todo: For now this is extra conservative, detecting a
552        // violation if the addresses match assuming all accesses
553        // are quad word accesses.
554
555        // @todo: Fix this, magic number being used here
556        if (loadQueue[load_idx]->effAddrValid &&
557            (loadQueue[load_idx]->effAddr >> 8) ==
558            (store_inst->effAddr >> 8)) {
559            // A load incorrectly passed this store.  Squash and refetch.
560            // For now return a fault to show that it was unsuccessful.
561            DynInstPtr violator = loadQueue[load_idx];
562            if (!memDepViolator ||
563                (violator->seqNum < memDepViolator->seqNum)) {
564                memDepViolator = violator;
565            } else {
566                break;
567            }
568
569            ++lsqMemOrderViolation;
570
571            return genMachineCheckFault();
572        }
573
574        incrLdIdx(load_idx);
575    }
576
577    return store_fault;
578}
579
580template <class Impl>
581void
582LSQUnit<Impl>::commitLoad()
583{
584    assert(loadQueue[loadHead]);
585
586    DPRINTF(LSQUnit, "Committing head load instruction, PC %#x\n",
587            loadQueue[loadHead]->readPC());
588
589    loadQueue[loadHead] = NULL;
590
591    incrLdIdx(loadHead);
592
593    --loads;
594}
595
596template <class Impl>
597void
598LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
599{
600    assert(loads == 0 || loadQueue[loadHead]);
601
602    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
603        commitLoad();
604    }
605}
606
607template <class Impl>
608void
609LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
610{
611    assert(stores == 0 || storeQueue[storeHead].inst);
612
613    int store_idx = storeHead;
614
615    while (store_idx != storeTail) {
616        assert(storeQueue[store_idx].inst);
617        // Mark any stores that are now committed and have not yet
618        // been marked as able to write back.
619        if (!storeQueue[store_idx].canWB) {
620            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
621                break;
622            }
623            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
624                    "%#x [sn:%lli]\n",
625                    storeQueue[store_idx].inst->readPC(),
626                    storeQueue[store_idx].inst->seqNum);
627
628            storeQueue[store_idx].canWB = true;
629
630            ++storesToWB;
631        }
632
633        incrStIdx(store_idx);
634    }
635}
636
637template <class Impl>
638void
639LSQUnit<Impl>::writebackPendingStore()
640{
641    if (hasPendingPkt) {
642        assert(pendingPkt != NULL);
643
644        // If the cache is blocked, this will store the packet for retry.
645        if (sendStore(pendingPkt)) {
646            storePostSend(pendingPkt);
647        }
648        pendingPkt = NULL;
649        hasPendingPkt = false;
650    }
651}
652
653template <class Impl>
654void
655LSQUnit<Impl>::writebackStores()
656{
657    // First writeback the second packet from any split store that didn't
658    // complete last cycle because there weren't enough cache ports available.
659    if (TheISA::HasUnalignedMemAcc) {
660        writebackPendingStore();
661    }
662
663    while (storesToWB > 0 &&
664           storeWBIdx != storeTail &&
665           storeQueue[storeWBIdx].inst &&
666           storeQueue[storeWBIdx].canWB &&
667           usedPorts < cachePorts) {
668
669        if (isStoreBlocked || lsq->cacheBlocked()) {
670            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
671                    " is blocked!\n");
672            break;
673        }
674
675        // Store didn't write any data so no need to write it back to
676        // memory.
677        if (storeQueue[storeWBIdx].size == 0) {
678            completeStore(storeWBIdx);
679
680            incrStIdx(storeWBIdx);
681
682            continue;
683        }
684
685        ++usedPorts;
686
687        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
688            incrStIdx(storeWBIdx);
689
690            continue;
691        }
692
693        assert(storeQueue[storeWBIdx].req);
694        assert(!storeQueue[storeWBIdx].committed);
695
696        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
697            assert(storeQueue[storeWBIdx].sreqLow);
698            assert(storeQueue[storeWBIdx].sreqHigh);
699        }
700
701        DynInstPtr inst = storeQueue[storeWBIdx].inst;
702
703        Request *req = storeQueue[storeWBIdx].req;
704        storeQueue[storeWBIdx].committed = true;
705
706        assert(!inst->memData);
707        inst->memData = new uint8_t[64];
708
709        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
710
711        MemCmd command =
712            req->isSwap() ? MemCmd::SwapReq :
713            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
714        PacketPtr data_pkt;
715        PacketPtr snd_data_pkt = NULL;
716
717        LSQSenderState *state = new LSQSenderState;
718        state->isLoad = false;
719        state->idx = storeWBIdx;
720        state->inst = inst;
721
722        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
723
724            // Build a single data packet if the store isn't split.
725            data_pkt = new Packet(req, command, Packet::Broadcast);
726            data_pkt->dataStatic(inst->memData);
727            data_pkt->senderState = state;
728        } else {
729            RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
730            RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
731
732            // Create two packets if the store is split in two.
733            data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
734            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
735
736            data_pkt->dataStatic(inst->memData);
737            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
738
739            data_pkt->senderState = state;
740            snd_data_pkt->senderState = state;
741
742            state->isSplit = true;
743            state->outstanding = 2;
744
745            // Can delete the main request now.
746            delete req;
747            req = sreqLow;
748        }
749
750        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x "
751                "to Addr:%#x, data:%#x [sn:%lli]\n",
752                storeWBIdx, inst->readPC(),
753                req->getPaddr(), (int)*(inst->memData),
754                inst->seqNum);
755
756        // @todo: Remove this SC hack once the memory system handles it.
757        if (inst->isStoreConditional()) {
758            assert(!storeQueue[storeWBIdx].isSplit);
759            // Disable recording the result temporarily.  Writing to
760            // misc regs normally updates the result, but this is not
761            // the desired behavior when handling store conditionals.
762            inst->recordResult = false;
763            bool success = TheISA::handleLockedWrite(inst.get(), req);
764            inst->recordResult = true;
765
766            if (!success) {
767                // Instantly complete this store.
768                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
769                        "Instantly completing it.\n",
770                        inst->seqNum);
771                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
772                cpu->schedule(wb, curTick + 1);
773                completeStore(storeWBIdx);
774                incrStIdx(storeWBIdx);
775                continue;
776            }
777        } else {
778            // Non-store conditionals do not need a writeback.
779            state->noWB = true;
780        }
781
782        if (!sendStore(data_pkt)) {
783            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
784                    "retry later\n",
785                    inst->seqNum);
786
787            // Need to store the second packet, if split.
788            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
789                state->pktToSend = true;
790                state->pendingPacket = snd_data_pkt;
791            }
792        } else {
793
794            // If split, try to send the second packet too
795            if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
796                assert(snd_data_pkt);
797
798                // Ensure there are enough ports to use.
799                if (usedPorts < cachePorts) {
800                    ++usedPorts;
801                    if (sendStore(snd_data_pkt)) {
802                        storePostSend(snd_data_pkt);
803                    } else {
804                        DPRINTF(IEW, "D-Cache became blocked when writing"
805                                " [sn:%lli] second packet, will retry later\n",
806                                inst->seqNum);
807                    }
808                } else {
809
810                    // Store the packet for when there's free ports.
811                    assert(pendingPkt == NULL);
812                    pendingPkt = snd_data_pkt;
813                    hasPendingPkt = true;
814                }
815            } else {
816
817                // Not a split store.
818                storePostSend(data_pkt);
819            }
820        }
821    }
822
823    // Not sure this should set it to 0.
824    usedPorts = 0;
825
826    assert(stores >= 0 && storesToWB >= 0);
827}
828
829/*template <class Impl>
830void
831LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
832{
833    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
834                                              mshrSeqNums.end(),
835                                              seqNum);
836
837    if (mshr_it != mshrSeqNums.end()) {
838        mshrSeqNums.erase(mshr_it);
839        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
840    }
841}*/
842
843template <class Impl>
844void
845LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
846{
847    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
848            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
849
850    int load_idx = loadTail;
851    decrLdIdx(load_idx);
852
853    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
854        DPRINTF(LSQUnit,"Load Instruction PC %#x squashed, "
855                "[sn:%lli]\n",
856                loadQueue[load_idx]->readPC(),
857                loadQueue[load_idx]->seqNum);
858
859        if (isStalled() && load_idx == stallingLoadIdx) {
860            stalled = false;
861            stallingStoreIsn = 0;
862            stallingLoadIdx = 0;
863        }
864
865        // Clear the smart pointer to make sure it is decremented.
866        loadQueue[load_idx]->setSquashed();
867        loadQueue[load_idx] = NULL;
868        --loads;
869
870        // Inefficient!
871        loadTail = load_idx;
872
873        decrLdIdx(load_idx);
874        ++lsqSquashedLoads;
875    }
876
877    if (isLoadBlocked) {
878        if (squashed_num < blockedLoadSeqNum) {
879            isLoadBlocked = false;
880            loadBlockedHandled = false;
881            blockedLoadSeqNum = 0;
882        }
883    }
884
885    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
886        memDepViolator = NULL;
887    }
888
889    int store_idx = storeTail;
890    decrStIdx(store_idx);
891
892    while (stores != 0 &&
893           storeQueue[store_idx].inst->seqNum > squashed_num) {
894        // Instructions marked as can WB are already committed.
895        if (storeQueue[store_idx].canWB) {
896            break;
897        }
898
899        DPRINTF(LSQUnit,"Store Instruction PC %#x squashed, "
900                "idx:%i [sn:%lli]\n",
901                storeQueue[store_idx].inst->readPC(),
902                store_idx, storeQueue[store_idx].inst->seqNum);
903
904        // I don't think this can happen.  It should have been cleared
905        // by the stalling load.
906        if (isStalled() &&
907            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
908            panic("Is stalled should have been cleared by stalling load!\n");
909            stalled = false;
910            stallingStoreIsn = 0;
911        }
912
913        // Clear the smart pointer to make sure it is decremented.
914        storeQueue[store_idx].inst->setSquashed();
915        storeQueue[store_idx].inst = NULL;
916        storeQueue[store_idx].canWB = 0;
917
918        // Must delete request now that it wasn't handed off to
919        // memory.  This is quite ugly.  @todo: Figure out the proper
920        // place to really handle request deletes.
921        delete storeQueue[store_idx].req;
922        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
923            delete storeQueue[store_idx].sreqLow;
924            delete storeQueue[store_idx].sreqHigh;
925
926            storeQueue[store_idx].sreqLow = NULL;
927            storeQueue[store_idx].sreqHigh = NULL;
928        }
929
930        storeQueue[store_idx].req = NULL;
931        --stores;
932
933        // Inefficient!
934        storeTail = store_idx;
935
936        decrStIdx(store_idx);
937        ++lsqSquashedStores;
938    }
939}
940
941template <class Impl>
942void
943LSQUnit<Impl>::storePostSend(PacketPtr pkt)
944{
945    if (isStalled() &&
946        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
947        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
948                "load idx:%i\n",
949                stallingStoreIsn, stallingLoadIdx);
950        stalled = false;
951        stallingStoreIsn = 0;
952        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
953    }
954
955    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
956        // The store is basically completed at this time. This
957        // only works so long as the checker doesn't try to
958        // verify the value in memory for stores.
959        storeQueue[storeWBIdx].inst->setCompleted();
960#if USE_CHECKER
961        if (cpu->checker) {
962            cpu->checker->verify(storeQueue[storeWBIdx].inst);
963        }
964#endif
965    }
966
967    incrStIdx(storeWBIdx);
968}
969
970template <class Impl>
971void
972LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
973{
974    iewStage->wakeCPU();
975
976    // Squashed instructions do not need to complete their access.
977    if (inst->isSquashed()) {
978        iewStage->decrWb(inst->seqNum);
979        assert(!inst->isStore());
980        ++lsqIgnoredResponses;
981        return;
982    }
983
984    if (!inst->isExecuted()) {
985        inst->setExecuted();
986
987        // Complete access to copy data to proper place.
988        inst->completeAcc(pkt);
989    }
990
991    // Need to insert instruction into queue to commit
992    iewStage->instToCommit(inst);
993
994    iewStage->activityThisCycle();
995
996    // see if this load changed the PC
997    iewStage->checkMisprediction(inst);
998}
999
1000template <class Impl>
1001void
1002LSQUnit<Impl>::completeStore(int store_idx)
1003{
1004    assert(storeQueue[store_idx].inst);
1005    storeQueue[store_idx].completed = true;
1006    --storesToWB;
1007    // A bit conservative because a store completion may not free up entries,
1008    // but hopefully avoids two store completions in one cycle from making
1009    // the CPU tick twice.
1010    cpu->wakeCPU();
1011    cpu->activityThisCycle();
1012
1013    if (store_idx == storeHead) {
1014        do {
1015            incrStIdx(storeHead);
1016
1017            --stores;
1018        } while (storeQueue[storeHead].completed &&
1019                 storeHead != storeTail);
1020
1021        iewStage->updateLSQNextCycle = true;
1022    }
1023
1024    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1025            "idx:%i\n",
1026            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1027
1028    if (isStalled() &&
1029        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1030        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1031                "load idx:%i\n",
1032                stallingStoreIsn, stallingLoadIdx);
1033        stalled = false;
1034        stallingStoreIsn = 0;
1035        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1036    }
1037
1038    storeQueue[store_idx].inst->setCompleted();
1039
1040    // Tell the checker we've completed this instruction.  Some stores
1041    // may get reported twice to the checker, but the checker can
1042    // handle that case.
1043#if USE_CHECKER
1044    if (cpu->checker) {
1045        cpu->checker->verify(storeQueue[store_idx].inst);
1046    }
1047#endif
1048}
1049
1050template <class Impl>
1051bool
1052LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1053{
1054    if (!dcachePort->sendTiming(data_pkt)) {
1055        // Need to handle becoming blocked on a store.
1056        isStoreBlocked = true;
1057        ++lsqCacheBlocked;
1058        assert(retryPkt == NULL);
1059        retryPkt = data_pkt;
1060        lsq->setRetryTid(lsqID);
1061        return false;
1062    }
1063    return true;
1064}
1065
1066template <class Impl>
1067void
1068LSQUnit<Impl>::recvRetry()
1069{
1070    if (isStoreBlocked) {
1071        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1072        assert(retryPkt != NULL);
1073
1074        if (dcachePort->sendTiming(retryPkt)) {
1075            LSQSenderState *state =
1076                dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1077
1078            // Don't finish the store unless this is the last packet.
1079            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1080                storePostSend(retryPkt);
1081            }
1082            retryPkt = NULL;
1083            isStoreBlocked = false;
1084            lsq->setRetryTid(InvalidThreadID);
1085
1086            // Send any outstanding packet.
1087            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1088                assert(state->pendingPacket);
1089                if (sendStore(state->pendingPacket)) {
1090                    storePostSend(state->pendingPacket);
1091                }
1092            }
1093        } else {
1094            // Still blocked!
1095            ++lsqCacheBlocked;
1096            lsq->setRetryTid(lsqID);
1097        }
1098    } else if (isLoadBlocked) {
1099        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1100                "no need to resend packet.\n");
1101    } else {
1102        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1103    }
1104}
1105
1106template <class Impl>
1107inline void
1108LSQUnit<Impl>::incrStIdx(int &store_idx)
1109{
1110    if (++store_idx >= SQEntries)
1111        store_idx = 0;
1112}
1113
1114template <class Impl>
1115inline void
1116LSQUnit<Impl>::decrStIdx(int &store_idx)
1117{
1118    if (--store_idx < 0)
1119        store_idx += SQEntries;
1120}
1121
1122template <class Impl>
1123inline void
1124LSQUnit<Impl>::incrLdIdx(int &load_idx)
1125{
1126    if (++load_idx >= LQEntries)
1127        load_idx = 0;
1128}
1129
1130template <class Impl>
1131inline void
1132LSQUnit<Impl>::decrLdIdx(int &load_idx)
1133{
1134    if (--load_idx < 0)
1135        load_idx += LQEntries;
1136}
1137
1138template <class Impl>
1139void
1140LSQUnit<Impl>::dumpInsts()
1141{
1142    cprintf("Load store queue: Dumping instructions.\n");
1143    cprintf("Load queue size: %i\n", loads);
1144    cprintf("Load queue: ");
1145
1146    int load_idx = loadHead;
1147
1148    while (load_idx != loadTail && loadQueue[load_idx]) {
1149        cprintf("%#x ", loadQueue[load_idx]->readPC());
1150
1151        incrLdIdx(load_idx);
1152    }
1153
1154    cprintf("Store queue size: %i\n", stores);
1155    cprintf("Store queue: ");
1156
1157    int store_idx = storeHead;
1158
1159    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1160        cprintf("%#x ", storeQueue[store_idx].inst->readPC());
1161
1162        incrStIdx(store_idx);
1163    }
1164
1165    cprintf("\n");
1166}
1167