lsq_unit_impl.hh revision 11097
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        return;
109    }
110
111    // If this is a split access, wait until all packets are received.
112    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113        return;
114    }
115
116    assert(!cpu->switchedOut());
117    if (!inst->isSquashed()) {
118        if (!state->noWB) {
119            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120                !state->isLoad) {
121                writeback(inst, pkt);
122            } else {
123                writeback(inst, state->mainPkt);
124            }
125        }
126
127        if (inst->isStore()) {
128            completeStore(state->idx);
129        }
130    }
131
132    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133        delete state->mainPkt->req;
134        delete state->mainPkt;
135    }
136
137    pkt->req->setAccessLatency();
138    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140    delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
146      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false)
147{
148}
149
150template<class Impl>
151void
152LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
153        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
154        unsigned id)
155{
156    cpu = cpu_ptr;
157    iewStage = iew_ptr;
158
159    lsq = lsq_ptr;
160
161    lsqID = id;
162
163    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
164
165    // Add 1 for the sentinel entry (they are circular queues).
166    LQEntries = maxLQEntries + 1;
167    SQEntries = maxSQEntries + 1;
168
169    //Due to uint8_t index in LSQSenderState
170    assert(LQEntries <= 256);
171    assert(SQEntries <= 256);
172
173    loadQueue.resize(LQEntries);
174    storeQueue.resize(SQEntries);
175
176    depCheckShift = params->LSQDepCheckShift;
177    checkLoads = params->LSQCheckLoads;
178    cachePorts = params->cachePorts;
179    needsTSO = params->needsTSO;
180
181    resetState();
182}
183
184
185template<class Impl>
186void
187LSQUnit<Impl>::resetState()
188{
189    loads = stores = storesToWB = 0;
190
191    loadHead = loadTail = 0;
192
193    storeHead = storeWBIdx = storeTail = 0;
194
195    usedPorts = 0;
196
197    retryPkt = NULL;
198    memDepViolator = NULL;
199
200    stalled = false;
201
202    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
203}
204
205template<class Impl>
206std::string
207LSQUnit<Impl>::name() const
208{
209    if (Impl::MaxThreads == 1) {
210        return iewStage->name() + ".lsq";
211    } else {
212        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
213    }
214}
215
216template<class Impl>
217void
218LSQUnit<Impl>::regStats()
219{
220    lsqForwLoads
221        .name(name() + ".forwLoads")
222        .desc("Number of loads that had data forwarded from stores");
223
224    invAddrLoads
225        .name(name() + ".invAddrLoads")
226        .desc("Number of loads ignored due to an invalid address");
227
228    lsqSquashedLoads
229        .name(name() + ".squashedLoads")
230        .desc("Number of loads squashed");
231
232    lsqIgnoredResponses
233        .name(name() + ".ignoredResponses")
234        .desc("Number of memory responses ignored because the instruction is squashed");
235
236    lsqMemOrderViolation
237        .name(name() + ".memOrderViolation")
238        .desc("Number of memory ordering violations");
239
240    lsqSquashedStores
241        .name(name() + ".squashedStores")
242        .desc("Number of stores squashed");
243
244    invAddrSwpfs
245        .name(name() + ".invAddrSwpfs")
246        .desc("Number of software prefetches ignored due to an invalid address");
247
248    lsqBlockedLoads
249        .name(name() + ".blockedLoads")
250        .desc("Number of blocked loads due to partial load-store forwarding");
251
252    lsqRescheduledLoads
253        .name(name() + ".rescheduledLoads")
254        .desc("Number of loads that were rescheduled");
255
256    lsqCacheBlocked
257        .name(name() + ".cacheBlocked")
258        .desc("Number of times an access to memory failed due to the cache being blocked");
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
264{
265    dcachePort = dcache_port;
266}
267
268template<class Impl>
269void
270LSQUnit<Impl>::clearLQ()
271{
272    loadQueue.clear();
273}
274
275template<class Impl>
276void
277LSQUnit<Impl>::clearSQ()
278{
279    storeQueue.clear();
280}
281
282template<class Impl>
283void
284LSQUnit<Impl>::drainSanityCheck() const
285{
286    for (int i = 0; i < loadQueue.size(); ++i)
287        assert(!loadQueue[i]);
288
289    assert(storesToWB == 0);
290    assert(!retryPkt);
291}
292
293template<class Impl>
294void
295LSQUnit<Impl>::takeOverFrom()
296{
297    resetState();
298}
299
300template<class Impl>
301void
302LSQUnit<Impl>::resizeLQ(unsigned size)
303{
304    unsigned size_plus_sentinel = size + 1;
305    assert(size_plus_sentinel >= LQEntries);
306
307    if (size_plus_sentinel > LQEntries) {
308        while (size_plus_sentinel > loadQueue.size()) {
309            DynInstPtr dummy;
310            loadQueue.push_back(dummy);
311            LQEntries++;
312        }
313    } else {
314        LQEntries = size_plus_sentinel;
315    }
316
317    assert(LQEntries <= 256);
318}
319
320template<class Impl>
321void
322LSQUnit<Impl>::resizeSQ(unsigned size)
323{
324    unsigned size_plus_sentinel = size + 1;
325    if (size_plus_sentinel > SQEntries) {
326        while (size_plus_sentinel > storeQueue.size()) {
327            SQEntry dummy;
328            storeQueue.push_back(dummy);
329            SQEntries++;
330        }
331    } else {
332        SQEntries = size_plus_sentinel;
333    }
334
335    assert(SQEntries <= 256);
336}
337
338template <class Impl>
339void
340LSQUnit<Impl>::insert(DynInstPtr &inst)
341{
342    assert(inst->isMemRef());
343
344    assert(inst->isLoad() || inst->isStore());
345
346    if (inst->isLoad()) {
347        insertLoad(inst);
348    } else {
349        insertStore(inst);
350    }
351
352    inst->setInLSQ();
353}
354
355template <class Impl>
356void
357LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
358{
359    assert((loadTail + 1) % LQEntries != loadHead);
360    assert(loads < LQEntries);
361
362    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
363            load_inst->pcState(), loadTail, load_inst->seqNum);
364
365    load_inst->lqIdx = loadTail;
366
367    if (stores == 0) {
368        load_inst->sqIdx = -1;
369    } else {
370        load_inst->sqIdx = storeTail;
371    }
372
373    loadQueue[loadTail] = load_inst;
374
375    incrLdIdx(loadTail);
376
377    ++loads;
378}
379
380template <class Impl>
381void
382LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
383{
384    // Make sure it is not full before inserting an instruction.
385    assert((storeTail + 1) % SQEntries != storeHead);
386    assert(stores < SQEntries);
387
388    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
389            store_inst->pcState(), storeTail, store_inst->seqNum);
390
391    store_inst->sqIdx = storeTail;
392    store_inst->lqIdx = loadTail;
393
394    storeQueue[storeTail] = SQEntry(store_inst);
395
396    incrStIdx(storeTail);
397
398    ++stores;
399}
400
401template <class Impl>
402typename Impl::DynInstPtr
403LSQUnit<Impl>::getMemDepViolator()
404{
405    DynInstPtr temp = memDepViolator;
406
407    memDepViolator = NULL;
408
409    return temp;
410}
411
412template <class Impl>
413unsigned
414LSQUnit<Impl>::numFreeLoadEntries()
415{
416        //LQ has an extra dummy entry to differentiate
417        //empty/full conditions. Subtract 1 from the free entries.
418        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
419        return LQEntries - loads - 1;
420}
421
422template <class Impl>
423unsigned
424LSQUnit<Impl>::numFreeStoreEntries()
425{
426        //SQ has an extra dummy entry to differentiate
427        //empty/full conditions. Subtract 1 from the free entries.
428        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
429        return SQEntries - stores - 1;
430
431 }
432
433template <class Impl>
434void
435LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
436{
437    int load_idx = loadHead;
438    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
439
440    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
441    // address. The CPU can speculatively execute a LL operation after a pending
442    // SC operation in the pipeline and that can make the cache monitor the CPU
443    // is connected to valid while it really shouldn't be.
444    for (int x = 0; x < cpu->numContexts(); x++) {
445        ThreadContext *tc = cpu->getContext(x);
446        bool no_squash = cpu->thread[x]->noSquashFromTC;
447        cpu->thread[x]->noSquashFromTC = true;
448        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
449        cpu->thread[x]->noSquashFromTC = no_squash;
450    }
451
452    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
453
454    DynInstPtr ld_inst = loadQueue[load_idx];
455    if (ld_inst) {
456        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
457        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
458
459        // Check that this snoop didn't just invalidate our lock flag
460        if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
461                                        || load_addr_high == invalidate_addr)
462            && ld_inst->memReqFlags & Request::LLSC)
463            TheISA::handleLockedSnoopHit(ld_inst.get());
464    }
465
466    // If this is the only load in the LSQ we don't care
467    if (load_idx == loadTail)
468        return;
469
470    incrLdIdx(load_idx);
471
472    bool force_squash = false;
473
474    while (load_idx != loadTail) {
475        DynInstPtr ld_inst = loadQueue[load_idx];
476
477        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
478            incrLdIdx(load_idx);
479            continue;
480        }
481
482        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
483        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
484
485        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
486                    ld_inst->seqNum, load_addr_low, invalidate_addr);
487
488        if ((load_addr_low == invalidate_addr
489             || load_addr_high == invalidate_addr) || force_squash) {
490            if (needsTSO) {
491                // If we have a TSO system, as all loads must be ordered with
492                // all other loads, this load as well as *all* subsequent loads
493                // need to be squashed to prevent possible load reordering.
494                force_squash = true;
495            }
496            if (ld_inst->possibleLoadViolation() || force_squash) {
497                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
498                        pkt->getAddr(), ld_inst->seqNum);
499
500                // Mark the load for re-execution
501                ld_inst->fault = std::make_shared<ReExec>();
502            } else {
503                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
504                        pkt->getAddr(), ld_inst->seqNum);
505
506                // Make sure that we don't lose a snoop hitting a LOCKED
507                // address since the LOCK* flags don't get updated until
508                // commit.
509                if (ld_inst->memReqFlags & Request::LLSC)
510                    TheISA::handleLockedSnoopHit(ld_inst.get());
511
512                // If a older load checks this and it's true
513                // then we might have missed the snoop
514                // in which case we need to invalidate to be sure
515                ld_inst->hitExternalSnoop(true);
516            }
517        }
518        incrLdIdx(load_idx);
519    }
520    return;
521}
522
523template <class Impl>
524Fault
525LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
526{
527    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
528    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
529
530    /** @todo in theory you only need to check an instruction that has executed
531     * however, there isn't a good way in the pipeline at the moment to check
532     * all instructions that will execute before the store writes back. Thus,
533     * like the implementation that came before it, we're overly conservative.
534     */
535    while (load_idx != loadTail) {
536        DynInstPtr ld_inst = loadQueue[load_idx];
537        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
538            incrLdIdx(load_idx);
539            continue;
540        }
541
542        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
543        Addr ld_eff_addr2 =
544            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
545
546        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
547            if (inst->isLoad()) {
548                // If this load is to the same block as an external snoop
549                // invalidate that we've observed then the load needs to be
550                // squashed as it could have newer data
551                if (ld_inst->hitExternalSnoop()) {
552                    if (!memDepViolator ||
553                            ld_inst->seqNum < memDepViolator->seqNum) {
554                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
555                                "and [sn:%lli] at address %#x\n",
556                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557                        memDepViolator = ld_inst;
558
559                        ++lsqMemOrderViolation;
560
561                        return std::make_shared<GenericISA::M5PanicFault>(
562                            "Detected fault with inst [sn:%lli] and "
563                            "[sn:%lli] at address %#x\n",
564                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
565                    }
566                }
567
568                // Otherwise, mark the load has a possible load violation
569                // and if we see a snoop before it's commited, we need to squash
570                ld_inst->possibleLoadViolation(true);
571                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
572                        " between instructions [sn:%lli] and [sn:%lli]\n",
573                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
574            } else {
575                // A load/store incorrectly passed this store.
576                // Check if we already have a violator, or if it's newer
577                // squash and refetch.
578                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
579                    break;
580
581                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
582                        "[sn:%lli] at address %#x\n",
583                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
584                memDepViolator = ld_inst;
585
586                ++lsqMemOrderViolation;
587
588                return std::make_shared<GenericISA::M5PanicFault>(
589                    "Detected fault with "
590                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
591                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
592            }
593        }
594
595        incrLdIdx(load_idx);
596    }
597    return NoFault;
598}
599
600
601
602
603template <class Impl>
604Fault
605LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
606{
607    using namespace TheISA;
608    // Execute a specific load.
609    Fault load_fault = NoFault;
610
611    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
612            inst->pcState(), inst->seqNum);
613
614    assert(!inst->isSquashed());
615
616    load_fault = inst->initiateAcc();
617
618    if (inst->isTranslationDelayed() &&
619        load_fault == NoFault)
620        return load_fault;
621
622    // If the instruction faulted or predicated false, then we need to send it
623    // along to commit without the instruction completing.
624    if (load_fault != NoFault || !inst->readPredicate()) {
625        // Send this instruction to commit, also make sure iew stage
626        // realizes there is activity.  Mark it as executed unless it
627        // is a strictly ordered load that needs to hit the head of
628        // commit.
629        if (!inst->readPredicate())
630            inst->forwardOldRegs();
631        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
632                inst->seqNum,
633                (load_fault != NoFault ? "fault" : "predication"));
634        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
635            inst->isAtCommit()) {
636            inst->setExecuted();
637        }
638        iewStage->instToCommit(inst);
639        iewStage->activityThisCycle();
640    } else {
641        assert(inst->effAddrValid());
642        int load_idx = inst->lqIdx;
643        incrLdIdx(load_idx);
644
645        if (checkLoads)
646            return checkViolations(load_idx, inst);
647    }
648
649    return load_fault;
650}
651
652template <class Impl>
653Fault
654LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
655{
656    using namespace TheISA;
657    // Make sure that a store exists.
658    assert(stores != 0);
659
660    int store_idx = store_inst->sqIdx;
661
662    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
663            store_inst->pcState(), store_inst->seqNum);
664
665    assert(!store_inst->isSquashed());
666
667    // Check the recently completed loads to see if any match this store's
668    // address.  If so, then we have a memory ordering violation.
669    int load_idx = store_inst->lqIdx;
670
671    Fault store_fault = store_inst->initiateAcc();
672
673    if (store_inst->isTranslationDelayed() &&
674        store_fault == NoFault)
675        return store_fault;
676
677    if (!store_inst->readPredicate())
678        store_inst->forwardOldRegs();
679
680    if (storeQueue[store_idx].size == 0) {
681        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
682                store_inst->pcState(), store_inst->seqNum);
683
684        return store_fault;
685    } else if (!store_inst->readPredicate()) {
686        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
687                store_inst->seqNum);
688        return store_fault;
689    }
690
691    assert(store_fault == NoFault);
692
693    if (store_inst->isStoreConditional()) {
694        // Store conditionals need to set themselves as able to
695        // writeback if we haven't had a fault by here.
696        storeQueue[store_idx].canWB = true;
697
698        ++storesToWB;
699    }
700
701    return checkViolations(load_idx, store_inst);
702
703}
704
705template <class Impl>
706void
707LSQUnit<Impl>::commitLoad()
708{
709    assert(loadQueue[loadHead]);
710
711    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
712            loadQueue[loadHead]->pcState());
713
714    loadQueue[loadHead] = NULL;
715
716    incrLdIdx(loadHead);
717
718    --loads;
719}
720
721template <class Impl>
722void
723LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
724{
725    assert(loads == 0 || loadQueue[loadHead]);
726
727    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
728        commitLoad();
729    }
730}
731
732template <class Impl>
733void
734LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
735{
736    assert(stores == 0 || storeQueue[storeHead].inst);
737
738    int store_idx = storeHead;
739
740    while (store_idx != storeTail) {
741        assert(storeQueue[store_idx].inst);
742        // Mark any stores that are now committed and have not yet
743        // been marked as able to write back.
744        if (!storeQueue[store_idx].canWB) {
745            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
746                break;
747            }
748            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
749                    "%s [sn:%lli]\n",
750                    storeQueue[store_idx].inst->pcState(),
751                    storeQueue[store_idx].inst->seqNum);
752
753            storeQueue[store_idx].canWB = true;
754
755            ++storesToWB;
756        }
757
758        incrStIdx(store_idx);
759    }
760}
761
762template <class Impl>
763void
764LSQUnit<Impl>::writebackPendingStore()
765{
766    if (hasPendingPkt) {
767        assert(pendingPkt != NULL);
768
769        // If the cache is blocked, this will store the packet for retry.
770        if (sendStore(pendingPkt)) {
771            storePostSend(pendingPkt);
772        }
773        pendingPkt = NULL;
774        hasPendingPkt = false;
775    }
776}
777
778template <class Impl>
779void
780LSQUnit<Impl>::writebackStores()
781{
782    // First writeback the second packet from any split store that didn't
783    // complete last cycle because there weren't enough cache ports available.
784    if (TheISA::HasUnalignedMemAcc) {
785        writebackPendingStore();
786    }
787
788    while (storesToWB > 0 &&
789           storeWBIdx != storeTail &&
790           storeQueue[storeWBIdx].inst &&
791           storeQueue[storeWBIdx].canWB &&
792           ((!needsTSO) || (!storeInFlight)) &&
793           usedPorts < cachePorts) {
794
795        if (isStoreBlocked) {
796            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
797                    " is blocked!\n");
798            break;
799        }
800
801        // Store didn't write any data so no need to write it back to
802        // memory.
803        if (storeQueue[storeWBIdx].size == 0) {
804            completeStore(storeWBIdx);
805
806            incrStIdx(storeWBIdx);
807
808            continue;
809        }
810
811        ++usedPorts;
812
813        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
814            incrStIdx(storeWBIdx);
815
816            continue;
817        }
818
819        assert(storeQueue[storeWBIdx].req);
820        assert(!storeQueue[storeWBIdx].committed);
821
822        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
823            assert(storeQueue[storeWBIdx].sreqLow);
824            assert(storeQueue[storeWBIdx].sreqHigh);
825        }
826
827        DynInstPtr inst = storeQueue[storeWBIdx].inst;
828
829        Request *req = storeQueue[storeWBIdx].req;
830        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
831        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
832
833        storeQueue[storeWBIdx].committed = true;
834
835        assert(!inst->memData);
836        inst->memData = new uint8_t[req->getSize()];
837
838        if (storeQueue[storeWBIdx].isAllZeros)
839            memset(inst->memData, 0, req->getSize());
840        else
841            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
842
843        PacketPtr data_pkt;
844        PacketPtr snd_data_pkt = NULL;
845
846        LSQSenderState *state = new LSQSenderState;
847        state->isLoad = false;
848        state->idx = storeWBIdx;
849        state->inst = inst;
850
851        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
852
853            // Build a single data packet if the store isn't split.
854            data_pkt = Packet::createWrite(req);
855            data_pkt->dataStatic(inst->memData);
856            data_pkt->senderState = state;
857        } else {
858            // Create two packets if the store is split in two.
859            data_pkt = Packet::createWrite(sreqLow);
860            snd_data_pkt = Packet::createWrite(sreqHigh);
861
862            data_pkt->dataStatic(inst->memData);
863            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
864
865            data_pkt->senderState = state;
866            snd_data_pkt->senderState = state;
867
868            state->isSplit = true;
869            state->outstanding = 2;
870
871            // Can delete the main request now.
872            delete req;
873            req = sreqLow;
874        }
875
876        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
877                "to Addr:%#x, data:%#x [sn:%lli]\n",
878                storeWBIdx, inst->pcState(),
879                req->getPaddr(), (int)*(inst->memData),
880                inst->seqNum);
881
882        // @todo: Remove this SC hack once the memory system handles it.
883        if (inst->isStoreConditional()) {
884            assert(!storeQueue[storeWBIdx].isSplit);
885            // Disable recording the result temporarily.  Writing to
886            // misc regs normally updates the result, but this is not
887            // the desired behavior when handling store conditionals.
888            inst->recordResult(false);
889            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
890            inst->recordResult(true);
891
892            if (!success) {
893                // Instantly complete this store.
894                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
895                        "Instantly completing it.\n",
896                        inst->seqNum);
897                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
898                cpu->schedule(wb, curTick() + 1);
899                if (cpu->checker) {
900                    // Make sure to set the LLSC data for verification
901                    // if checker is loaded
902                    inst->reqToVerify->setExtraData(0);
903                    inst->completeAcc(data_pkt);
904                }
905                completeStore(storeWBIdx);
906                incrStIdx(storeWBIdx);
907                continue;
908            }
909        } else {
910            // Non-store conditionals do not need a writeback.
911            state->noWB = true;
912        }
913
914        bool split =
915            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
916
917        ThreadContext *thread = cpu->tcBase(lsqID);
918
919        if (req->isMmappedIpr()) {
920            assert(!inst->isStoreConditional());
921            TheISA::handleIprWrite(thread, data_pkt);
922            delete data_pkt;
923            if (split) {
924                assert(snd_data_pkt->req->isMmappedIpr());
925                TheISA::handleIprWrite(thread, snd_data_pkt);
926                delete snd_data_pkt;
927                delete sreqLow;
928                delete sreqHigh;
929            }
930            delete state;
931            delete req;
932            completeStore(storeWBIdx);
933            incrStIdx(storeWBIdx);
934        } else if (!sendStore(data_pkt)) {
935            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
936                    "retry later\n",
937                    inst->seqNum);
938
939            // Need to store the second packet, if split.
940            if (split) {
941                state->pktToSend = true;
942                state->pendingPacket = snd_data_pkt;
943            }
944        } else {
945
946            // If split, try to send the second packet too
947            if (split) {
948                assert(snd_data_pkt);
949
950                // Ensure there are enough ports to use.
951                if (usedPorts < cachePorts) {
952                    ++usedPorts;
953                    if (sendStore(snd_data_pkt)) {
954                        storePostSend(snd_data_pkt);
955                    } else {
956                        DPRINTF(IEW, "D-Cache became blocked when writing"
957                                " [sn:%lli] second packet, will retry later\n",
958                                inst->seqNum);
959                    }
960                } else {
961
962                    // Store the packet for when there's free ports.
963                    assert(pendingPkt == NULL);
964                    pendingPkt = snd_data_pkt;
965                    hasPendingPkt = true;
966                }
967            } else {
968
969                // Not a split store.
970                storePostSend(data_pkt);
971            }
972        }
973    }
974
975    // Not sure this should set it to 0.
976    usedPorts = 0;
977
978    assert(stores >= 0 && storesToWB >= 0);
979}
980
981/*template <class Impl>
982void
983LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
984{
985    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
986                                              mshrSeqNums.end(),
987                                              seqNum);
988
989    if (mshr_it != mshrSeqNums.end()) {
990        mshrSeqNums.erase(mshr_it);
991        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
992    }
993}*/
994
995template <class Impl>
996void
997LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
998{
999    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1000            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1001
1002    int load_idx = loadTail;
1003    decrLdIdx(load_idx);
1004
1005    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1006        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1007                "[sn:%lli]\n",
1008                loadQueue[load_idx]->pcState(),
1009                loadQueue[load_idx]->seqNum);
1010
1011        if (isStalled() && load_idx == stallingLoadIdx) {
1012            stalled = false;
1013            stallingStoreIsn = 0;
1014            stallingLoadIdx = 0;
1015        }
1016
1017        // Clear the smart pointer to make sure it is decremented.
1018        loadQueue[load_idx]->setSquashed();
1019        loadQueue[load_idx] = NULL;
1020        --loads;
1021
1022        // Inefficient!
1023        loadTail = load_idx;
1024
1025        decrLdIdx(load_idx);
1026        ++lsqSquashedLoads;
1027    }
1028
1029    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1030        memDepViolator = NULL;
1031    }
1032
1033    int store_idx = storeTail;
1034    decrStIdx(store_idx);
1035
1036    while (stores != 0 &&
1037           storeQueue[store_idx].inst->seqNum > squashed_num) {
1038        // Instructions marked as can WB are already committed.
1039        if (storeQueue[store_idx].canWB) {
1040            break;
1041        }
1042
1043        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1044                "idx:%i [sn:%lli]\n",
1045                storeQueue[store_idx].inst->pcState(),
1046                store_idx, storeQueue[store_idx].inst->seqNum);
1047
1048        // I don't think this can happen.  It should have been cleared
1049        // by the stalling load.
1050        if (isStalled() &&
1051            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1052            panic("Is stalled should have been cleared by stalling load!\n");
1053            stalled = false;
1054            stallingStoreIsn = 0;
1055        }
1056
1057        // Clear the smart pointer to make sure it is decremented.
1058        storeQueue[store_idx].inst->setSquashed();
1059        storeQueue[store_idx].inst = NULL;
1060        storeQueue[store_idx].canWB = 0;
1061
1062        // Must delete request now that it wasn't handed off to
1063        // memory.  This is quite ugly.  @todo: Figure out the proper
1064        // place to really handle request deletes.
1065        delete storeQueue[store_idx].req;
1066        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1067            delete storeQueue[store_idx].sreqLow;
1068            delete storeQueue[store_idx].sreqHigh;
1069
1070            storeQueue[store_idx].sreqLow = NULL;
1071            storeQueue[store_idx].sreqHigh = NULL;
1072        }
1073
1074        storeQueue[store_idx].req = NULL;
1075        --stores;
1076
1077        // Inefficient!
1078        storeTail = store_idx;
1079
1080        decrStIdx(store_idx);
1081        ++lsqSquashedStores;
1082    }
1083}
1084
1085template <class Impl>
1086void
1087LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1088{
1089    if (isStalled() &&
1090        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1091        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1092                "load idx:%i\n",
1093                stallingStoreIsn, stallingLoadIdx);
1094        stalled = false;
1095        stallingStoreIsn = 0;
1096        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1097    }
1098
1099    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1100        // The store is basically completed at this time. This
1101        // only works so long as the checker doesn't try to
1102        // verify the value in memory for stores.
1103        storeQueue[storeWBIdx].inst->setCompleted();
1104
1105        if (cpu->checker) {
1106            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1107        }
1108    }
1109
1110    if (needsTSO) {
1111        storeInFlight = true;
1112    }
1113
1114    incrStIdx(storeWBIdx);
1115}
1116
1117template <class Impl>
1118void
1119LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1120{
1121    iewStage->wakeCPU();
1122
1123    // Squashed instructions do not need to complete their access.
1124    if (inst->isSquashed()) {
1125        assert(!inst->isStore());
1126        ++lsqIgnoredResponses;
1127        return;
1128    }
1129
1130    if (!inst->isExecuted()) {
1131        inst->setExecuted();
1132
1133        if (inst->fault == NoFault) {
1134            // Complete access to copy data to proper place.
1135            inst->completeAcc(pkt);
1136        } else {
1137            // If the instruction has an outstanding fault, we cannot complete
1138            // the access as this discards the current fault.
1139
1140            // If we have an outstanding fault, the fault should only be of
1141            // type ReExec.
1142            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1143
1144            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1145                    "due to pending fault.\n", inst->seqNum);
1146        }
1147    }
1148
1149    // Need to insert instruction into queue to commit
1150    iewStage->instToCommit(inst);
1151
1152    iewStage->activityThisCycle();
1153
1154    // see if this load changed the PC
1155    iewStage->checkMisprediction(inst);
1156}
1157
1158template <class Impl>
1159void
1160LSQUnit<Impl>::completeStore(int store_idx)
1161{
1162    assert(storeQueue[store_idx].inst);
1163    storeQueue[store_idx].completed = true;
1164    --storesToWB;
1165    // A bit conservative because a store completion may not free up entries,
1166    // but hopefully avoids two store completions in one cycle from making
1167    // the CPU tick twice.
1168    cpu->wakeCPU();
1169    cpu->activityThisCycle();
1170
1171    if (store_idx == storeHead) {
1172        do {
1173            incrStIdx(storeHead);
1174
1175            --stores;
1176        } while (storeQueue[storeHead].completed &&
1177                 storeHead != storeTail);
1178
1179        iewStage->updateLSQNextCycle = true;
1180    }
1181
1182    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1183            "idx:%i\n",
1184            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1185
1186#if TRACING_ON
1187    if (DTRACE(O3PipeView)) {
1188        storeQueue[store_idx].inst->storeTick =
1189            curTick() - storeQueue[store_idx].inst->fetchTick;
1190    }
1191#endif
1192
1193    if (isStalled() &&
1194        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1195        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1196                "load idx:%i\n",
1197                stallingStoreIsn, stallingLoadIdx);
1198        stalled = false;
1199        stallingStoreIsn = 0;
1200        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1201    }
1202
1203    storeQueue[store_idx].inst->setCompleted();
1204
1205    if (needsTSO) {
1206        storeInFlight = false;
1207    }
1208
1209    // Tell the checker we've completed this instruction.  Some stores
1210    // may get reported twice to the checker, but the checker can
1211    // handle that case.
1212    if (cpu->checker) {
1213        cpu->checker->verify(storeQueue[store_idx].inst);
1214    }
1215}
1216
1217template <class Impl>
1218bool
1219LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1220{
1221    if (!dcachePort->sendTimingReq(data_pkt)) {
1222        // Need to handle becoming blocked on a store.
1223        isStoreBlocked = true;
1224        ++lsqCacheBlocked;
1225        assert(retryPkt == NULL);
1226        retryPkt = data_pkt;
1227        return false;
1228    }
1229    return true;
1230}
1231
1232template <class Impl>
1233void
1234LSQUnit<Impl>::recvRetry()
1235{
1236    if (isStoreBlocked) {
1237        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1238        assert(retryPkt != NULL);
1239
1240        LSQSenderState *state =
1241            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1242
1243        if (dcachePort->sendTimingReq(retryPkt)) {
1244            // Don't finish the store unless this is the last packet.
1245            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1246                    state->pendingPacket == retryPkt) {
1247                state->pktToSend = false;
1248                storePostSend(retryPkt);
1249            }
1250            retryPkt = NULL;
1251            isStoreBlocked = false;
1252
1253            // Send any outstanding packet.
1254            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1255                assert(state->pendingPacket);
1256                if (sendStore(state->pendingPacket)) {
1257                    storePostSend(state->pendingPacket);
1258                }
1259            }
1260        } else {
1261            // Still blocked!
1262            ++lsqCacheBlocked;
1263        }
1264    }
1265}
1266
1267template <class Impl>
1268inline void
1269LSQUnit<Impl>::incrStIdx(int &store_idx) const
1270{
1271    if (++store_idx >= SQEntries)
1272        store_idx = 0;
1273}
1274
1275template <class Impl>
1276inline void
1277LSQUnit<Impl>::decrStIdx(int &store_idx) const
1278{
1279    if (--store_idx < 0)
1280        store_idx += SQEntries;
1281}
1282
1283template <class Impl>
1284inline void
1285LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1286{
1287    if (++load_idx >= LQEntries)
1288        load_idx = 0;
1289}
1290
1291template <class Impl>
1292inline void
1293LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1294{
1295    if (--load_idx < 0)
1296        load_idx += LQEntries;
1297}
1298
1299template <class Impl>
1300void
1301LSQUnit<Impl>::dumpInsts() const
1302{
1303    cprintf("Load store queue: Dumping instructions.\n");
1304    cprintf("Load queue size: %i\n", loads);
1305    cprintf("Load queue: ");
1306
1307    int load_idx = loadHead;
1308
1309    while (load_idx != loadTail && loadQueue[load_idx]) {
1310        const DynInstPtr &inst(loadQueue[load_idx]);
1311        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1312
1313        incrLdIdx(load_idx);
1314    }
1315    cprintf("\n");
1316
1317    cprintf("Store queue size: %i\n", stores);
1318    cprintf("Store queue: ");
1319
1320    int store_idx = storeHead;
1321
1322    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1323        const DynInstPtr &inst(storeQueue[store_idx].inst);
1324        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1325
1326        incrStIdx(store_idx);
1327    }
1328
1329    cprintf("\n");
1330}
1331
1332#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1333