lsq_unit_impl.hh revision 10824:308771bd2647
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        return;
109    }
110
111    // If this is a split access, wait until all packets are received.
112    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113        return;
114    }
115
116    assert(!cpu->switchedOut());
117    if (!inst->isSquashed()) {
118        if (!state->noWB) {
119            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120                !state->isLoad) {
121                writeback(inst, pkt);
122            } else {
123                writeback(inst, state->mainPkt);
124            }
125        }
126
127        if (inst->isStore()) {
128            completeStore(state->idx);
129        }
130    }
131
132    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133        delete state->mainPkt->req;
134        delete state->mainPkt;
135    }
136
137    pkt->req->setAccessLatency();
138    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140    delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
146      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false)
147{
148}
149
150template<class Impl>
151void
152LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
153        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
154        unsigned id)
155{
156    cpu = cpu_ptr;
157    iewStage = iew_ptr;
158
159    lsq = lsq_ptr;
160
161    lsqID = id;
162
163    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
164
165    // Add 1 for the sentinel entry (they are circular queues).
166    LQEntries = maxLQEntries + 1;
167    SQEntries = maxSQEntries + 1;
168
169    //Due to uint8_t index in LSQSenderState
170    assert(LQEntries <= 256);
171    assert(SQEntries <= 256);
172
173    loadQueue.resize(LQEntries);
174    storeQueue.resize(SQEntries);
175
176    depCheckShift = params->LSQDepCheckShift;
177    checkLoads = params->LSQCheckLoads;
178    cachePorts = params->cachePorts;
179    needsTSO = params->needsTSO;
180
181    resetState();
182}
183
184
185template<class Impl>
186void
187LSQUnit<Impl>::resetState()
188{
189    loads = stores = storesToWB = 0;
190
191    loadHead = loadTail = 0;
192
193    storeHead = storeWBIdx = storeTail = 0;
194
195    usedPorts = 0;
196
197    retryPkt = NULL;
198    memDepViolator = NULL;
199
200    stalled = false;
201
202    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
203}
204
205template<class Impl>
206std::string
207LSQUnit<Impl>::name() const
208{
209    if (Impl::MaxThreads == 1) {
210        return iewStage->name() + ".lsq";
211    } else {
212        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
213    }
214}
215
216template<class Impl>
217void
218LSQUnit<Impl>::regStats()
219{
220    lsqForwLoads
221        .name(name() + ".forwLoads")
222        .desc("Number of loads that had data forwarded from stores");
223
224    invAddrLoads
225        .name(name() + ".invAddrLoads")
226        .desc("Number of loads ignored due to an invalid address");
227
228    lsqSquashedLoads
229        .name(name() + ".squashedLoads")
230        .desc("Number of loads squashed");
231
232    lsqIgnoredResponses
233        .name(name() + ".ignoredResponses")
234        .desc("Number of memory responses ignored because the instruction is squashed");
235
236    lsqMemOrderViolation
237        .name(name() + ".memOrderViolation")
238        .desc("Number of memory ordering violations");
239
240    lsqSquashedStores
241        .name(name() + ".squashedStores")
242        .desc("Number of stores squashed");
243
244    invAddrSwpfs
245        .name(name() + ".invAddrSwpfs")
246        .desc("Number of software prefetches ignored due to an invalid address");
247
248    lsqBlockedLoads
249        .name(name() + ".blockedLoads")
250        .desc("Number of blocked loads due to partial load-store forwarding");
251
252    lsqRescheduledLoads
253        .name(name() + ".rescheduledLoads")
254        .desc("Number of loads that were rescheduled");
255
256    lsqCacheBlocked
257        .name(name() + ".cacheBlocked")
258        .desc("Number of times an access to memory failed due to the cache being blocked");
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
264{
265    dcachePort = dcache_port;
266}
267
268template<class Impl>
269void
270LSQUnit<Impl>::clearLQ()
271{
272    loadQueue.clear();
273}
274
275template<class Impl>
276void
277LSQUnit<Impl>::clearSQ()
278{
279    storeQueue.clear();
280}
281
282template<class Impl>
283void
284LSQUnit<Impl>::drainSanityCheck() const
285{
286    for (int i = 0; i < loadQueue.size(); ++i)
287        assert(!loadQueue[i]);
288
289    assert(storesToWB == 0);
290    assert(!retryPkt);
291}
292
293template<class Impl>
294void
295LSQUnit<Impl>::takeOverFrom()
296{
297    resetState();
298}
299
300template<class Impl>
301void
302LSQUnit<Impl>::resizeLQ(unsigned size)
303{
304    unsigned size_plus_sentinel = size + 1;
305    assert(size_plus_sentinel >= LQEntries);
306
307    if (size_plus_sentinel > LQEntries) {
308        while (size_plus_sentinel > loadQueue.size()) {
309            DynInstPtr dummy;
310            loadQueue.push_back(dummy);
311            LQEntries++;
312        }
313    } else {
314        LQEntries = size_plus_sentinel;
315    }
316
317    assert(LQEntries <= 256);
318}
319
320template<class Impl>
321void
322LSQUnit<Impl>::resizeSQ(unsigned size)
323{
324    unsigned size_plus_sentinel = size + 1;
325    if (size_plus_sentinel > SQEntries) {
326        while (size_plus_sentinel > storeQueue.size()) {
327            SQEntry dummy;
328            storeQueue.push_back(dummy);
329            SQEntries++;
330        }
331    } else {
332        SQEntries = size_plus_sentinel;
333    }
334
335    assert(SQEntries <= 256);
336}
337
338template <class Impl>
339void
340LSQUnit<Impl>::insert(DynInstPtr &inst)
341{
342    assert(inst->isMemRef());
343
344    assert(inst->isLoad() || inst->isStore());
345
346    if (inst->isLoad()) {
347        insertLoad(inst);
348    } else {
349        insertStore(inst);
350    }
351
352    inst->setInLSQ();
353}
354
355template <class Impl>
356void
357LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
358{
359    assert((loadTail + 1) % LQEntries != loadHead);
360    assert(loads < LQEntries);
361
362    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
363            load_inst->pcState(), loadTail, load_inst->seqNum);
364
365    load_inst->lqIdx = loadTail;
366
367    if (stores == 0) {
368        load_inst->sqIdx = -1;
369    } else {
370        load_inst->sqIdx = storeTail;
371    }
372
373    loadQueue[loadTail] = load_inst;
374
375    incrLdIdx(loadTail);
376
377    ++loads;
378}
379
380template <class Impl>
381void
382LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
383{
384    // Make sure it is not full before inserting an instruction.
385    assert((storeTail + 1) % SQEntries != storeHead);
386    assert(stores < SQEntries);
387
388    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
389            store_inst->pcState(), storeTail, store_inst->seqNum);
390
391    store_inst->sqIdx = storeTail;
392    store_inst->lqIdx = loadTail;
393
394    storeQueue[storeTail] = SQEntry(store_inst);
395
396    incrStIdx(storeTail);
397
398    ++stores;
399}
400
401template <class Impl>
402typename Impl::DynInstPtr
403LSQUnit<Impl>::getMemDepViolator()
404{
405    DynInstPtr temp = memDepViolator;
406
407    memDepViolator = NULL;
408
409    return temp;
410}
411
412template <class Impl>
413unsigned
414LSQUnit<Impl>::numFreeLoadEntries()
415{
416        //LQ has an extra dummy entry to differentiate
417        //empty/full conditions. Subtract 1 from the free entries.
418        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
419        return LQEntries - loads - 1;
420}
421
422template <class Impl>
423unsigned
424LSQUnit<Impl>::numFreeStoreEntries()
425{
426        //SQ has an extra dummy entry to differentiate
427        //empty/full conditions. Subtract 1 from the free entries.
428        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
429        return SQEntries - stores - 1;
430
431 }
432
433template <class Impl>
434void
435LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
436{
437    int load_idx = loadHead;
438    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
439
440    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
441    // address. The CPU can speculatively execute a LL operation after a pending
442    // SC operation in the pipeline and that can make the cache monitor the CPU
443    // is connected to valid while it really shouldn't be.
444    for (int x = 0; x < cpu->numContexts(); x++) {
445        ThreadContext *tc = cpu->getContext(x);
446        bool no_squash = cpu->thread[x]->noSquashFromTC;
447        cpu->thread[x]->noSquashFromTC = true;
448        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
449        cpu->thread[x]->noSquashFromTC = no_squash;
450    }
451
452    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
453
454    DynInstPtr ld_inst = loadQueue[load_idx];
455    if (ld_inst) {
456        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
457        // Check that this snoop didn't just invalidate our lock flag
458        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
459            ld_inst->memReqFlags & Request::LLSC)
460            TheISA::handleLockedSnoopHit(ld_inst.get());
461    }
462
463    // If this is the only load in the LSQ we don't care
464    if (load_idx == loadTail)
465        return;
466
467    incrLdIdx(load_idx);
468
469    bool force_squash = false;
470
471    while (load_idx != loadTail) {
472        DynInstPtr ld_inst = loadQueue[load_idx];
473
474        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
475            incrLdIdx(load_idx);
476            continue;
477        }
478
479        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
480        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
481                    ld_inst->seqNum, load_addr, invalidate_addr);
482
483        if (load_addr == invalidate_addr || force_squash) {
484            if (needsTSO) {
485                // If we have a TSO system, as all loads must be ordered with
486                // all other loads, this load as well as *all* subsequent loads
487                // need to be squashed to prevent possible load reordering.
488                force_squash = true;
489            }
490            if (ld_inst->possibleLoadViolation() || force_squash) {
491                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
492                        pkt->getAddr(), ld_inst->seqNum);
493
494                // Mark the load for re-execution
495                ld_inst->fault = std::make_shared<ReExec>();
496            } else {
497                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
498                        pkt->getAddr(), ld_inst->seqNum);
499
500                // Make sure that we don't lose a snoop hitting a LOCKED
501                // address since the LOCK* flags don't get updated until
502                // commit.
503                if (ld_inst->memReqFlags & Request::LLSC)
504                    TheISA::handleLockedSnoopHit(ld_inst.get());
505
506                // If a older load checks this and it's true
507                // then we might have missed the snoop
508                // in which case we need to invalidate to be sure
509                ld_inst->hitExternalSnoop(true);
510            }
511        }
512        incrLdIdx(load_idx);
513    }
514    return;
515}
516
517template <class Impl>
518Fault
519LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
520{
521    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
522    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
523
524    /** @todo in theory you only need to check an instruction that has executed
525     * however, there isn't a good way in the pipeline at the moment to check
526     * all instructions that will execute before the store writes back. Thus,
527     * like the implementation that came before it, we're overly conservative.
528     */
529    while (load_idx != loadTail) {
530        DynInstPtr ld_inst = loadQueue[load_idx];
531        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
532            incrLdIdx(load_idx);
533            continue;
534        }
535
536        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
537        Addr ld_eff_addr2 =
538            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
539
540        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
541            if (inst->isLoad()) {
542                // If this load is to the same block as an external snoop
543                // invalidate that we've observed then the load needs to be
544                // squashed as it could have newer data
545                if (ld_inst->hitExternalSnoop()) {
546                    if (!memDepViolator ||
547                            ld_inst->seqNum < memDepViolator->seqNum) {
548                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
549                                "and [sn:%lli] at address %#x\n",
550                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
551                        memDepViolator = ld_inst;
552
553                        ++lsqMemOrderViolation;
554
555                        return std::make_shared<GenericISA::M5PanicFault>(
556                            "Detected fault with inst [sn:%lli] and "
557                            "[sn:%lli] at address %#x\n",
558                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
559                    }
560                }
561
562                // Otherwise, mark the load has a possible load violation
563                // and if we see a snoop before it's commited, we need to squash
564                ld_inst->possibleLoadViolation(true);
565                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
566                        " between instructions [sn:%lli] and [sn:%lli]\n",
567                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
568            } else {
569                // A load/store incorrectly passed this store.
570                // Check if we already have a violator, or if it's newer
571                // squash and refetch.
572                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
573                    break;
574
575                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
576                        "[sn:%lli] at address %#x\n",
577                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
578                memDepViolator = ld_inst;
579
580                ++lsqMemOrderViolation;
581
582                return std::make_shared<GenericISA::M5PanicFault>(
583                    "Detected fault with "
584                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
585                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
586            }
587        }
588
589        incrLdIdx(load_idx);
590    }
591    return NoFault;
592}
593
594
595
596
597template <class Impl>
598Fault
599LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
600{
601    using namespace TheISA;
602    // Execute a specific load.
603    Fault load_fault = NoFault;
604
605    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
606            inst->pcState(), inst->seqNum);
607
608    assert(!inst->isSquashed());
609
610    load_fault = inst->initiateAcc();
611
612    if (inst->isTranslationDelayed() &&
613        load_fault == NoFault)
614        return load_fault;
615
616    // If the instruction faulted or predicated false, then we need to send it
617    // along to commit without the instruction completing.
618    if (load_fault != NoFault || !inst->readPredicate()) {
619        // Send this instruction to commit, also make sure iew stage
620        // realizes there is activity.  Mark it as executed unless it
621        // is a strictly ordered load that needs to hit the head of
622        // commit.
623        if (!inst->readPredicate())
624            inst->forwardOldRegs();
625        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
626                inst->seqNum,
627                (load_fault != NoFault ? "fault" : "predication"));
628        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
629            inst->isAtCommit()) {
630            inst->setExecuted();
631        }
632        iewStage->instToCommit(inst);
633        iewStage->activityThisCycle();
634    } else {
635        assert(inst->effAddrValid());
636        int load_idx = inst->lqIdx;
637        incrLdIdx(load_idx);
638
639        if (checkLoads)
640            return checkViolations(load_idx, inst);
641    }
642
643    return load_fault;
644}
645
646template <class Impl>
647Fault
648LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
649{
650    using namespace TheISA;
651    // Make sure that a store exists.
652    assert(stores != 0);
653
654    int store_idx = store_inst->sqIdx;
655
656    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
657            store_inst->pcState(), store_inst->seqNum);
658
659    assert(!store_inst->isSquashed());
660
661    // Check the recently completed loads to see if any match this store's
662    // address.  If so, then we have a memory ordering violation.
663    int load_idx = store_inst->lqIdx;
664
665    Fault store_fault = store_inst->initiateAcc();
666
667    if (store_inst->isTranslationDelayed() &&
668        store_fault == NoFault)
669        return store_fault;
670
671    if (!store_inst->readPredicate())
672        store_inst->forwardOldRegs();
673
674    if (storeQueue[store_idx].size == 0) {
675        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
676                store_inst->pcState(), store_inst->seqNum);
677
678        return store_fault;
679    } else if (!store_inst->readPredicate()) {
680        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
681                store_inst->seqNum);
682        return store_fault;
683    }
684
685    assert(store_fault == NoFault);
686
687    if (store_inst->isStoreConditional()) {
688        // Store conditionals need to set themselves as able to
689        // writeback if we haven't had a fault by here.
690        storeQueue[store_idx].canWB = true;
691
692        ++storesToWB;
693    }
694
695    return checkViolations(load_idx, store_inst);
696
697}
698
699template <class Impl>
700void
701LSQUnit<Impl>::commitLoad()
702{
703    assert(loadQueue[loadHead]);
704
705    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
706            loadQueue[loadHead]->pcState());
707
708    loadQueue[loadHead] = NULL;
709
710    incrLdIdx(loadHead);
711
712    --loads;
713}
714
715template <class Impl>
716void
717LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
718{
719    assert(loads == 0 || loadQueue[loadHead]);
720
721    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
722        commitLoad();
723    }
724}
725
726template <class Impl>
727void
728LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
729{
730    assert(stores == 0 || storeQueue[storeHead].inst);
731
732    int store_idx = storeHead;
733
734    while (store_idx != storeTail) {
735        assert(storeQueue[store_idx].inst);
736        // Mark any stores that are now committed and have not yet
737        // been marked as able to write back.
738        if (!storeQueue[store_idx].canWB) {
739            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
740                break;
741            }
742            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
743                    "%s [sn:%lli]\n",
744                    storeQueue[store_idx].inst->pcState(),
745                    storeQueue[store_idx].inst->seqNum);
746
747            storeQueue[store_idx].canWB = true;
748
749            ++storesToWB;
750        }
751
752        incrStIdx(store_idx);
753    }
754}
755
756template <class Impl>
757void
758LSQUnit<Impl>::writebackPendingStore()
759{
760    if (hasPendingPkt) {
761        assert(pendingPkt != NULL);
762
763        // If the cache is blocked, this will store the packet for retry.
764        if (sendStore(pendingPkt)) {
765            storePostSend(pendingPkt);
766        }
767        pendingPkt = NULL;
768        hasPendingPkt = false;
769    }
770}
771
772template <class Impl>
773void
774LSQUnit<Impl>::writebackStores()
775{
776    // First writeback the second packet from any split store that didn't
777    // complete last cycle because there weren't enough cache ports available.
778    if (TheISA::HasUnalignedMemAcc) {
779        writebackPendingStore();
780    }
781
782    while (storesToWB > 0 &&
783           storeWBIdx != storeTail &&
784           storeQueue[storeWBIdx].inst &&
785           storeQueue[storeWBIdx].canWB &&
786           ((!needsTSO) || (!storeInFlight)) &&
787           usedPorts < cachePorts) {
788
789        if (isStoreBlocked) {
790            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
791                    " is blocked!\n");
792            break;
793        }
794
795        // Store didn't write any data so no need to write it back to
796        // memory.
797        if (storeQueue[storeWBIdx].size == 0) {
798            completeStore(storeWBIdx);
799
800            incrStIdx(storeWBIdx);
801
802            continue;
803        }
804
805        ++usedPorts;
806
807        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
808            incrStIdx(storeWBIdx);
809
810            continue;
811        }
812
813        assert(storeQueue[storeWBIdx].req);
814        assert(!storeQueue[storeWBIdx].committed);
815
816        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
817            assert(storeQueue[storeWBIdx].sreqLow);
818            assert(storeQueue[storeWBIdx].sreqHigh);
819        }
820
821        DynInstPtr inst = storeQueue[storeWBIdx].inst;
822
823        Request *req = storeQueue[storeWBIdx].req;
824        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
825        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
826
827        storeQueue[storeWBIdx].committed = true;
828
829        assert(!inst->memData);
830        inst->memData = new uint8_t[req->getSize()];
831
832        if (storeQueue[storeWBIdx].isAllZeros)
833            memset(inst->memData, 0, req->getSize());
834        else
835            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
836
837        PacketPtr data_pkt;
838        PacketPtr snd_data_pkt = NULL;
839
840        LSQSenderState *state = new LSQSenderState;
841        state->isLoad = false;
842        state->idx = storeWBIdx;
843        state->inst = inst;
844
845        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
846
847            // Build a single data packet if the store isn't split.
848            data_pkt = Packet::createWrite(req);
849            data_pkt->dataStatic(inst->memData);
850            data_pkt->senderState = state;
851        } else {
852            // Create two packets if the store is split in two.
853            data_pkt = Packet::createWrite(sreqLow);
854            snd_data_pkt = Packet::createWrite(sreqHigh);
855
856            data_pkt->dataStatic(inst->memData);
857            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
858
859            data_pkt->senderState = state;
860            snd_data_pkt->senderState = state;
861
862            state->isSplit = true;
863            state->outstanding = 2;
864
865            // Can delete the main request now.
866            delete req;
867            req = sreqLow;
868        }
869
870        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
871                "to Addr:%#x, data:%#x [sn:%lli]\n",
872                storeWBIdx, inst->pcState(),
873                req->getPaddr(), (int)*(inst->memData),
874                inst->seqNum);
875
876        // @todo: Remove this SC hack once the memory system handles it.
877        if (inst->isStoreConditional()) {
878            assert(!storeQueue[storeWBIdx].isSplit);
879            // Disable recording the result temporarily.  Writing to
880            // misc regs normally updates the result, but this is not
881            // the desired behavior when handling store conditionals.
882            inst->recordResult(false);
883            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
884            inst->recordResult(true);
885
886            if (!success) {
887                // Instantly complete this store.
888                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
889                        "Instantly completing it.\n",
890                        inst->seqNum);
891                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
892                cpu->schedule(wb, curTick() + 1);
893                if (cpu->checker) {
894                    // Make sure to set the LLSC data for verification
895                    // if checker is loaded
896                    inst->reqToVerify->setExtraData(0);
897                    inst->completeAcc(data_pkt);
898                }
899                completeStore(storeWBIdx);
900                incrStIdx(storeWBIdx);
901                continue;
902            }
903        } else {
904            // Non-store conditionals do not need a writeback.
905            state->noWB = true;
906        }
907
908        bool split =
909            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
910
911        ThreadContext *thread = cpu->tcBase(lsqID);
912
913        if (req->isMmappedIpr()) {
914            assert(!inst->isStoreConditional());
915            TheISA::handleIprWrite(thread, data_pkt);
916            delete data_pkt;
917            if (split) {
918                assert(snd_data_pkt->req->isMmappedIpr());
919                TheISA::handleIprWrite(thread, snd_data_pkt);
920                delete snd_data_pkt;
921                delete sreqLow;
922                delete sreqHigh;
923            }
924            delete state;
925            delete req;
926            completeStore(storeWBIdx);
927            incrStIdx(storeWBIdx);
928        } else if (!sendStore(data_pkt)) {
929            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
930                    "retry later\n",
931                    inst->seqNum);
932
933            // Need to store the second packet, if split.
934            if (split) {
935                state->pktToSend = true;
936                state->pendingPacket = snd_data_pkt;
937            }
938        } else {
939
940            // If split, try to send the second packet too
941            if (split) {
942                assert(snd_data_pkt);
943
944                // Ensure there are enough ports to use.
945                if (usedPorts < cachePorts) {
946                    ++usedPorts;
947                    if (sendStore(snd_data_pkt)) {
948                        storePostSend(snd_data_pkt);
949                    } else {
950                        DPRINTF(IEW, "D-Cache became blocked when writing"
951                                " [sn:%lli] second packet, will retry later\n",
952                                inst->seqNum);
953                    }
954                } else {
955
956                    // Store the packet for when there's free ports.
957                    assert(pendingPkt == NULL);
958                    pendingPkt = snd_data_pkt;
959                    hasPendingPkt = true;
960                }
961            } else {
962
963                // Not a split store.
964                storePostSend(data_pkt);
965            }
966        }
967    }
968
969    // Not sure this should set it to 0.
970    usedPorts = 0;
971
972    assert(stores >= 0 && storesToWB >= 0);
973}
974
975/*template <class Impl>
976void
977LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
978{
979    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
980                                              mshrSeqNums.end(),
981                                              seqNum);
982
983    if (mshr_it != mshrSeqNums.end()) {
984        mshrSeqNums.erase(mshr_it);
985        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
986    }
987}*/
988
989template <class Impl>
990void
991LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
992{
993    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
994            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
995
996    int load_idx = loadTail;
997    decrLdIdx(load_idx);
998
999    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1000        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1001                "[sn:%lli]\n",
1002                loadQueue[load_idx]->pcState(),
1003                loadQueue[load_idx]->seqNum);
1004
1005        if (isStalled() && load_idx == stallingLoadIdx) {
1006            stalled = false;
1007            stallingStoreIsn = 0;
1008            stallingLoadIdx = 0;
1009        }
1010
1011        // Clear the smart pointer to make sure it is decremented.
1012        loadQueue[load_idx]->setSquashed();
1013        loadQueue[load_idx] = NULL;
1014        --loads;
1015
1016        // Inefficient!
1017        loadTail = load_idx;
1018
1019        decrLdIdx(load_idx);
1020        ++lsqSquashedLoads;
1021    }
1022
1023    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1024        memDepViolator = NULL;
1025    }
1026
1027    int store_idx = storeTail;
1028    decrStIdx(store_idx);
1029
1030    while (stores != 0 &&
1031           storeQueue[store_idx].inst->seqNum > squashed_num) {
1032        // Instructions marked as can WB are already committed.
1033        if (storeQueue[store_idx].canWB) {
1034            break;
1035        }
1036
1037        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1038                "idx:%i [sn:%lli]\n",
1039                storeQueue[store_idx].inst->pcState(),
1040                store_idx, storeQueue[store_idx].inst->seqNum);
1041
1042        // I don't think this can happen.  It should have been cleared
1043        // by the stalling load.
1044        if (isStalled() &&
1045            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1046            panic("Is stalled should have been cleared by stalling load!\n");
1047            stalled = false;
1048            stallingStoreIsn = 0;
1049        }
1050
1051        // Clear the smart pointer to make sure it is decremented.
1052        storeQueue[store_idx].inst->setSquashed();
1053        storeQueue[store_idx].inst = NULL;
1054        storeQueue[store_idx].canWB = 0;
1055
1056        // Must delete request now that it wasn't handed off to
1057        // memory.  This is quite ugly.  @todo: Figure out the proper
1058        // place to really handle request deletes.
1059        delete storeQueue[store_idx].req;
1060        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1061            delete storeQueue[store_idx].sreqLow;
1062            delete storeQueue[store_idx].sreqHigh;
1063
1064            storeQueue[store_idx].sreqLow = NULL;
1065            storeQueue[store_idx].sreqHigh = NULL;
1066        }
1067
1068        storeQueue[store_idx].req = NULL;
1069        --stores;
1070
1071        // Inefficient!
1072        storeTail = store_idx;
1073
1074        decrStIdx(store_idx);
1075        ++lsqSquashedStores;
1076    }
1077}
1078
1079template <class Impl>
1080void
1081LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1082{
1083    if (isStalled() &&
1084        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1085        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1086                "load idx:%i\n",
1087                stallingStoreIsn, stallingLoadIdx);
1088        stalled = false;
1089        stallingStoreIsn = 0;
1090        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1091    }
1092
1093    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1094        // The store is basically completed at this time. This
1095        // only works so long as the checker doesn't try to
1096        // verify the value in memory for stores.
1097        storeQueue[storeWBIdx].inst->setCompleted();
1098
1099        if (cpu->checker) {
1100            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1101        }
1102    }
1103
1104    if (needsTSO) {
1105        storeInFlight = true;
1106    }
1107
1108    incrStIdx(storeWBIdx);
1109}
1110
1111template <class Impl>
1112void
1113LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1114{
1115    iewStage->wakeCPU();
1116
1117    // Squashed instructions do not need to complete their access.
1118    if (inst->isSquashed()) {
1119        assert(!inst->isStore());
1120        ++lsqIgnoredResponses;
1121        return;
1122    }
1123
1124    if (!inst->isExecuted()) {
1125        inst->setExecuted();
1126
1127        if (inst->fault == NoFault) {
1128            // Complete access to copy data to proper place.
1129            inst->completeAcc(pkt);
1130        } else {
1131            // If the instruction has an outstanding fault, we cannot complete
1132            // the access as this discards the current fault.
1133
1134            // If we have an outstanding fault, the fault should only be of
1135            // type ReExec.
1136            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1137
1138            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1139                    "due to pending fault.\n", inst->seqNum);
1140        }
1141    }
1142
1143    // Need to insert instruction into queue to commit
1144    iewStage->instToCommit(inst);
1145
1146    iewStage->activityThisCycle();
1147
1148    // see if this load changed the PC
1149    iewStage->checkMisprediction(inst);
1150}
1151
1152template <class Impl>
1153void
1154LSQUnit<Impl>::completeStore(int store_idx)
1155{
1156    assert(storeQueue[store_idx].inst);
1157    storeQueue[store_idx].completed = true;
1158    --storesToWB;
1159    // A bit conservative because a store completion may not free up entries,
1160    // but hopefully avoids two store completions in one cycle from making
1161    // the CPU tick twice.
1162    cpu->wakeCPU();
1163    cpu->activityThisCycle();
1164
1165    if (store_idx == storeHead) {
1166        do {
1167            incrStIdx(storeHead);
1168
1169            --stores;
1170        } while (storeQueue[storeHead].completed &&
1171                 storeHead != storeTail);
1172
1173        iewStage->updateLSQNextCycle = true;
1174    }
1175
1176    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1177            "idx:%i\n",
1178            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1179
1180#if TRACING_ON
1181    if (DTRACE(O3PipeView)) {
1182        storeQueue[store_idx].inst->storeTick =
1183            curTick() - storeQueue[store_idx].inst->fetchTick;
1184    }
1185#endif
1186
1187    if (isStalled() &&
1188        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1189        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1190                "load idx:%i\n",
1191                stallingStoreIsn, stallingLoadIdx);
1192        stalled = false;
1193        stallingStoreIsn = 0;
1194        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1195    }
1196
1197    storeQueue[store_idx].inst->setCompleted();
1198
1199    if (needsTSO) {
1200        storeInFlight = false;
1201    }
1202
1203    // Tell the checker we've completed this instruction.  Some stores
1204    // may get reported twice to the checker, but the checker can
1205    // handle that case.
1206    if (cpu->checker) {
1207        cpu->checker->verify(storeQueue[store_idx].inst);
1208    }
1209}
1210
1211template <class Impl>
1212bool
1213LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1214{
1215    if (!dcachePort->sendTimingReq(data_pkt)) {
1216        // Need to handle becoming blocked on a store.
1217        isStoreBlocked = true;
1218        ++lsqCacheBlocked;
1219        assert(retryPkt == NULL);
1220        retryPkt = data_pkt;
1221        return false;
1222    }
1223    return true;
1224}
1225
1226template <class Impl>
1227void
1228LSQUnit<Impl>::recvRetry()
1229{
1230    if (isStoreBlocked) {
1231        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1232        assert(retryPkt != NULL);
1233
1234        LSQSenderState *state =
1235            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1236
1237        if (dcachePort->sendTimingReq(retryPkt)) {
1238            // Don't finish the store unless this is the last packet.
1239            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1240                    state->pendingPacket == retryPkt) {
1241                state->pktToSend = false;
1242                storePostSend(retryPkt);
1243            }
1244            retryPkt = NULL;
1245            isStoreBlocked = false;
1246
1247            // Send any outstanding packet.
1248            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1249                assert(state->pendingPacket);
1250                if (sendStore(state->pendingPacket)) {
1251                    storePostSend(state->pendingPacket);
1252                }
1253            }
1254        } else {
1255            // Still blocked!
1256            ++lsqCacheBlocked;
1257        }
1258    }
1259}
1260
1261template <class Impl>
1262inline void
1263LSQUnit<Impl>::incrStIdx(int &store_idx) const
1264{
1265    if (++store_idx >= SQEntries)
1266        store_idx = 0;
1267}
1268
1269template <class Impl>
1270inline void
1271LSQUnit<Impl>::decrStIdx(int &store_idx) const
1272{
1273    if (--store_idx < 0)
1274        store_idx += SQEntries;
1275}
1276
1277template <class Impl>
1278inline void
1279LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1280{
1281    if (++load_idx >= LQEntries)
1282        load_idx = 0;
1283}
1284
1285template <class Impl>
1286inline void
1287LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1288{
1289    if (--load_idx < 0)
1290        load_idx += LQEntries;
1291}
1292
1293template <class Impl>
1294void
1295LSQUnit<Impl>::dumpInsts() const
1296{
1297    cprintf("Load store queue: Dumping instructions.\n");
1298    cprintf("Load queue size: %i\n", loads);
1299    cprintf("Load queue: ");
1300
1301    int load_idx = loadHead;
1302
1303    while (load_idx != loadTail && loadQueue[load_idx]) {
1304        const DynInstPtr &inst(loadQueue[load_idx]);
1305        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1306
1307        incrLdIdx(load_idx);
1308    }
1309    cprintf("\n");
1310
1311    cprintf("Store queue size: %i\n", stores);
1312    cprintf("Store queue: ");
1313
1314    int store_idx = storeHead;
1315
1316    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1317        const DynInstPtr &inst(storeQueue[store_idx].inst);
1318        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1319
1320        incrStIdx(store_idx);
1321    }
1322
1323    cprintf("\n");
1324}
1325
1326#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1327