lsq_unit_impl.hh revision 10386
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        delete pkt->req;
109        delete pkt;
110        return;
111    }
112
113    // If this is a split access, wait until all packets are received.
114    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
115        delete pkt->req;
116        delete pkt;
117        return;
118    }
119
120    assert(!cpu->switchedOut());
121    if (!inst->isSquashed()) {
122        if (!state->noWB) {
123            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
124                !state->isLoad) {
125                writeback(inst, pkt);
126            } else {
127                writeback(inst, state->mainPkt);
128            }
129        }
130
131        if (inst->isStore()) {
132            completeStore(state->idx);
133        }
134    }
135
136    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
137        delete state->mainPkt->req;
138        delete state->mainPkt;
139    }
140
141    pkt->req->setAccessLatency();
142    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
143
144    delete state;
145    delete pkt->req;
146    delete pkt;
147}
148
149template <class Impl>
150LSQUnit<Impl>::LSQUnit()
151    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
152      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false)
153{
154}
155
156template<class Impl>
157void
158LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
159        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
160        unsigned id)
161{
162    cpu = cpu_ptr;
163    iewStage = iew_ptr;
164
165    lsq = lsq_ptr;
166
167    lsqID = id;
168
169    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
170
171    // Add 1 for the sentinel entry (they are circular queues).
172    LQEntries = maxLQEntries + 1;
173    SQEntries = maxSQEntries + 1;
174
175    //Due to uint8_t index in LSQSenderState
176    assert(LQEntries <= 256);
177    assert(SQEntries <= 256);
178
179    loadQueue.resize(LQEntries);
180    storeQueue.resize(SQEntries);
181
182    depCheckShift = params->LSQDepCheckShift;
183    checkLoads = params->LSQCheckLoads;
184    cachePorts = params->cachePorts;
185    needsTSO = params->needsTSO;
186
187    resetState();
188}
189
190
191template<class Impl>
192void
193LSQUnit<Impl>::resetState()
194{
195    loads = stores = storesToWB = 0;
196
197    loadHead = loadTail = 0;
198
199    storeHead = storeWBIdx = storeTail = 0;
200
201    usedPorts = 0;
202
203    retryPkt = NULL;
204    memDepViolator = NULL;
205
206    stalled = false;
207
208    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
209}
210
211template<class Impl>
212std::string
213LSQUnit<Impl>::name() const
214{
215    if (Impl::MaxThreads == 1) {
216        return iewStage->name() + ".lsq";
217    } else {
218        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
219    }
220}
221
222template<class Impl>
223void
224LSQUnit<Impl>::regStats()
225{
226    lsqForwLoads
227        .name(name() + ".forwLoads")
228        .desc("Number of loads that had data forwarded from stores");
229
230    invAddrLoads
231        .name(name() + ".invAddrLoads")
232        .desc("Number of loads ignored due to an invalid address");
233
234    lsqSquashedLoads
235        .name(name() + ".squashedLoads")
236        .desc("Number of loads squashed");
237
238    lsqIgnoredResponses
239        .name(name() + ".ignoredResponses")
240        .desc("Number of memory responses ignored because the instruction is squashed");
241
242    lsqMemOrderViolation
243        .name(name() + ".memOrderViolation")
244        .desc("Number of memory ordering violations");
245
246    lsqSquashedStores
247        .name(name() + ".squashedStores")
248        .desc("Number of stores squashed");
249
250    invAddrSwpfs
251        .name(name() + ".invAddrSwpfs")
252        .desc("Number of software prefetches ignored due to an invalid address");
253
254    lsqBlockedLoads
255        .name(name() + ".blockedLoads")
256        .desc("Number of blocked loads due to partial load-store forwarding");
257
258    lsqRescheduledLoads
259        .name(name() + ".rescheduledLoads")
260        .desc("Number of loads that were rescheduled");
261
262    lsqCacheBlocked
263        .name(name() + ".cacheBlocked")
264        .desc("Number of times an access to memory failed due to the cache being blocked");
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
270{
271    dcachePort = dcache_port;
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::clearLQ()
277{
278    loadQueue.clear();
279}
280
281template<class Impl>
282void
283LSQUnit<Impl>::clearSQ()
284{
285    storeQueue.clear();
286}
287
288template<class Impl>
289void
290LSQUnit<Impl>::drainSanityCheck() const
291{
292    for (int i = 0; i < loadQueue.size(); ++i)
293        assert(!loadQueue[i]);
294
295    assert(storesToWB == 0);
296    assert(!retryPkt);
297}
298
299template<class Impl>
300void
301LSQUnit<Impl>::takeOverFrom()
302{
303    resetState();
304}
305
306template<class Impl>
307void
308LSQUnit<Impl>::resizeLQ(unsigned size)
309{
310    unsigned size_plus_sentinel = size + 1;
311    assert(size_plus_sentinel >= LQEntries);
312
313    if (size_plus_sentinel > LQEntries) {
314        while (size_plus_sentinel > loadQueue.size()) {
315            DynInstPtr dummy;
316            loadQueue.push_back(dummy);
317            LQEntries++;
318        }
319    } else {
320        LQEntries = size_plus_sentinel;
321    }
322
323    assert(LQEntries <= 256);
324}
325
326template<class Impl>
327void
328LSQUnit<Impl>::resizeSQ(unsigned size)
329{
330    unsigned size_plus_sentinel = size + 1;
331    if (size_plus_sentinel > SQEntries) {
332        while (size_plus_sentinel > storeQueue.size()) {
333            SQEntry dummy;
334            storeQueue.push_back(dummy);
335            SQEntries++;
336        }
337    } else {
338        SQEntries = size_plus_sentinel;
339    }
340
341    assert(SQEntries <= 256);
342}
343
344template <class Impl>
345void
346LSQUnit<Impl>::insert(DynInstPtr &inst)
347{
348    assert(inst->isMemRef());
349
350    assert(inst->isLoad() || inst->isStore());
351
352    if (inst->isLoad()) {
353        insertLoad(inst);
354    } else {
355        insertStore(inst);
356    }
357
358    inst->setInLSQ();
359}
360
361template <class Impl>
362void
363LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
364{
365    assert((loadTail + 1) % LQEntries != loadHead);
366    assert(loads < LQEntries);
367
368    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
369            load_inst->pcState(), loadTail, load_inst->seqNum);
370
371    load_inst->lqIdx = loadTail;
372
373    if (stores == 0) {
374        load_inst->sqIdx = -1;
375    } else {
376        load_inst->sqIdx = storeTail;
377    }
378
379    loadQueue[loadTail] = load_inst;
380
381    incrLdIdx(loadTail);
382
383    ++loads;
384}
385
386template <class Impl>
387void
388LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
389{
390    // Make sure it is not full before inserting an instruction.
391    assert((storeTail + 1) % SQEntries != storeHead);
392    assert(stores < SQEntries);
393
394    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
395            store_inst->pcState(), storeTail, store_inst->seqNum);
396
397    store_inst->sqIdx = storeTail;
398    store_inst->lqIdx = loadTail;
399
400    storeQueue[storeTail] = SQEntry(store_inst);
401
402    incrStIdx(storeTail);
403
404    ++stores;
405}
406
407template <class Impl>
408typename Impl::DynInstPtr
409LSQUnit<Impl>::getMemDepViolator()
410{
411    DynInstPtr temp = memDepViolator;
412
413    memDepViolator = NULL;
414
415    return temp;
416}
417
418template <class Impl>
419unsigned
420LSQUnit<Impl>::numFreeLoadEntries()
421{
422        //LQ has an extra dummy entry to differentiate
423        //empty/full conditions. Subtract 1 from the free entries.
424        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
425        return LQEntries - loads - 1;
426}
427
428template <class Impl>
429unsigned
430LSQUnit<Impl>::numFreeStoreEntries()
431{
432        //SQ has an extra dummy entry to differentiate
433        //empty/full conditions. Subtract 1 from the free entries.
434        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
435        return SQEntries - stores - 1;
436
437 }
438
439template <class Impl>
440void
441LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
442{
443    int load_idx = loadHead;
444    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
445
446    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
447    // address. The CPU can speculatively execute a LL operation after a pending
448    // SC operation in the pipeline and that can make the cache monitor the CPU
449    // is connected to valid while it really shouldn't be.
450    for (int x = 0; x < cpu->numContexts(); x++) {
451        ThreadContext *tc = cpu->getContext(x);
452        bool no_squash = cpu->thread[x]->noSquashFromTC;
453        cpu->thread[x]->noSquashFromTC = true;
454        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
455        cpu->thread[x]->noSquashFromTC = no_squash;
456    }
457
458    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
459
460    DynInstPtr ld_inst = loadQueue[load_idx];
461    if (ld_inst) {
462        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
463        // Check that this snoop didn't just invalidate our lock flag
464        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
465            ld_inst->memReqFlags & Request::LLSC)
466            TheISA::handleLockedSnoopHit(ld_inst.get());
467    }
468
469    // If this is the only load in the LSQ we don't care
470    if (load_idx == loadTail)
471        return;
472
473    incrLdIdx(load_idx);
474
475    bool force_squash = false;
476
477    while (load_idx != loadTail) {
478        DynInstPtr ld_inst = loadQueue[load_idx];
479
480        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
481            incrLdIdx(load_idx);
482            continue;
483        }
484
485        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
486        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
487                    ld_inst->seqNum, load_addr, invalidate_addr);
488
489        if (load_addr == invalidate_addr || force_squash) {
490            if (needsTSO) {
491                // If we have a TSO system, as all loads must be ordered with
492                // all other loads, this load as well as *all* subsequent loads
493                // need to be squashed to prevent possible load reordering.
494                force_squash = true;
495            }
496            if (ld_inst->possibleLoadViolation() || force_squash) {
497                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
498                        pkt->getAddr(), ld_inst->seqNum);
499
500                // Mark the load for re-execution
501                ld_inst->fault = new ReExec;
502            } else {
503                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
504                        pkt->getAddr(), ld_inst->seqNum);
505
506                // Make sure that we don't lose a snoop hitting a LOCKED
507                // address since the LOCK* flags don't get updated until
508                // commit.
509                if (ld_inst->memReqFlags & Request::LLSC)
510                    TheISA::handleLockedSnoopHit(ld_inst.get());
511
512                // If a older load checks this and it's true
513                // then we might have missed the snoop
514                // in which case we need to invalidate to be sure
515                ld_inst->hitExternalSnoop(true);
516            }
517        }
518        incrLdIdx(load_idx);
519    }
520    return;
521}
522
523template <class Impl>
524Fault
525LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
526{
527    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
528    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
529
530    /** @todo in theory you only need to check an instruction that has executed
531     * however, there isn't a good way in the pipeline at the moment to check
532     * all instructions that will execute before the store writes back. Thus,
533     * like the implementation that came before it, we're overly conservative.
534     */
535    while (load_idx != loadTail) {
536        DynInstPtr ld_inst = loadQueue[load_idx];
537        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
538            incrLdIdx(load_idx);
539            continue;
540        }
541
542        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
543        Addr ld_eff_addr2 =
544            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
545
546        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
547            if (inst->isLoad()) {
548                // If this load is to the same block as an external snoop
549                // invalidate that we've observed then the load needs to be
550                // squashed as it could have newer data
551                if (ld_inst->hitExternalSnoop()) {
552                    if (!memDepViolator ||
553                            ld_inst->seqNum < memDepViolator->seqNum) {
554                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
555                                "and [sn:%lli] at address %#x\n",
556                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557                        memDepViolator = ld_inst;
558
559                        ++lsqMemOrderViolation;
560
561                        return new GenericISA::M5PanicFault(
562                                "Detected fault with inst [sn:%lli] and "
563                                "[sn:%lli] at address %#x\n",
564                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
565                    }
566                }
567
568                // Otherwise, mark the load has a possible load violation
569                // and if we see a snoop before it's commited, we need to squash
570                ld_inst->possibleLoadViolation(true);
571                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
572                        " between instructions [sn:%lli] and [sn:%lli]\n",
573                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
574            } else {
575                // A load/store incorrectly passed this store.
576                // Check if we already have a violator, or if it's newer
577                // squash and refetch.
578                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
579                    break;
580
581                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
582                        "[sn:%lli] at address %#x\n",
583                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
584                memDepViolator = ld_inst;
585
586                ++lsqMemOrderViolation;
587
588                return new GenericISA::M5PanicFault("Detected fault with "
589                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
590                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
591            }
592        }
593
594        incrLdIdx(load_idx);
595    }
596    return NoFault;
597}
598
599
600
601
602template <class Impl>
603Fault
604LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
605{
606    using namespace TheISA;
607    // Execute a specific load.
608    Fault load_fault = NoFault;
609
610    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
611            inst->pcState(), inst->seqNum);
612
613    assert(!inst->isSquashed());
614
615    load_fault = inst->initiateAcc();
616
617    if (inst->isTranslationDelayed() &&
618        load_fault == NoFault)
619        return load_fault;
620
621    // If the instruction faulted or predicated false, then we need to send it
622    // along to commit without the instruction completing.
623    if (load_fault != NoFault || !inst->readPredicate()) {
624        // Send this instruction to commit, also make sure iew stage
625        // realizes there is activity.
626        // Mark it as executed unless it is an uncached load that
627        // needs to hit the head of commit.
628        if (!inst->readPredicate())
629            inst->forwardOldRegs();
630        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
631                inst->seqNum,
632                (load_fault != NoFault ? "fault" : "predication"));
633        if (!(inst->hasRequest() && inst->uncacheable()) ||
634            inst->isAtCommit()) {
635            inst->setExecuted();
636        }
637        iewStage->instToCommit(inst);
638        iewStage->activityThisCycle();
639    } else {
640        assert(inst->effAddrValid());
641        int load_idx = inst->lqIdx;
642        incrLdIdx(load_idx);
643
644        if (checkLoads)
645            return checkViolations(load_idx, inst);
646    }
647
648    return load_fault;
649}
650
651template <class Impl>
652Fault
653LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
654{
655    using namespace TheISA;
656    // Make sure that a store exists.
657    assert(stores != 0);
658
659    int store_idx = store_inst->sqIdx;
660
661    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
662            store_inst->pcState(), store_inst->seqNum);
663
664    assert(!store_inst->isSquashed());
665
666    // Check the recently completed loads to see if any match this store's
667    // address.  If so, then we have a memory ordering violation.
668    int load_idx = store_inst->lqIdx;
669
670    Fault store_fault = store_inst->initiateAcc();
671
672    if (store_inst->isTranslationDelayed() &&
673        store_fault == NoFault)
674        return store_fault;
675
676    if (!store_inst->readPredicate())
677        store_inst->forwardOldRegs();
678
679    if (storeQueue[store_idx].size == 0) {
680        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
681                store_inst->pcState(), store_inst->seqNum);
682
683        return store_fault;
684    } else if (!store_inst->readPredicate()) {
685        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
686                store_inst->seqNum);
687        return store_fault;
688    }
689
690    assert(store_fault == NoFault);
691
692    if (store_inst->isStoreConditional()) {
693        // Store conditionals need to set themselves as able to
694        // writeback if we haven't had a fault by here.
695        storeQueue[store_idx].canWB = true;
696
697        ++storesToWB;
698    }
699
700    return checkViolations(load_idx, store_inst);
701
702}
703
704template <class Impl>
705void
706LSQUnit<Impl>::commitLoad()
707{
708    assert(loadQueue[loadHead]);
709
710    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
711            loadQueue[loadHead]->pcState());
712
713    loadQueue[loadHead] = NULL;
714
715    incrLdIdx(loadHead);
716
717    --loads;
718}
719
720template <class Impl>
721void
722LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
723{
724    assert(loads == 0 || loadQueue[loadHead]);
725
726    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
727        commitLoad();
728    }
729}
730
731template <class Impl>
732void
733LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
734{
735    assert(stores == 0 || storeQueue[storeHead].inst);
736
737    int store_idx = storeHead;
738
739    while (store_idx != storeTail) {
740        assert(storeQueue[store_idx].inst);
741        // Mark any stores that are now committed and have not yet
742        // been marked as able to write back.
743        if (!storeQueue[store_idx].canWB) {
744            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
745                break;
746            }
747            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
748                    "%s [sn:%lli]\n",
749                    storeQueue[store_idx].inst->pcState(),
750                    storeQueue[store_idx].inst->seqNum);
751
752            storeQueue[store_idx].canWB = true;
753
754            ++storesToWB;
755        }
756
757        incrStIdx(store_idx);
758    }
759}
760
761template <class Impl>
762void
763LSQUnit<Impl>::writebackPendingStore()
764{
765    if (hasPendingPkt) {
766        assert(pendingPkt != NULL);
767
768        // If the cache is blocked, this will store the packet for retry.
769        if (sendStore(pendingPkt)) {
770            storePostSend(pendingPkt);
771        }
772        pendingPkt = NULL;
773        hasPendingPkt = false;
774    }
775}
776
777template <class Impl>
778void
779LSQUnit<Impl>::writebackStores()
780{
781    // First writeback the second packet from any split store that didn't
782    // complete last cycle because there weren't enough cache ports available.
783    if (TheISA::HasUnalignedMemAcc) {
784        writebackPendingStore();
785    }
786
787    while (storesToWB > 0 &&
788           storeWBIdx != storeTail &&
789           storeQueue[storeWBIdx].inst &&
790           storeQueue[storeWBIdx].canWB &&
791           ((!needsTSO) || (!storeInFlight)) &&
792           usedPorts < cachePorts) {
793
794        if (isStoreBlocked) {
795            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
796                    " is blocked!\n");
797            break;
798        }
799
800        // Store didn't write any data so no need to write it back to
801        // memory.
802        if (storeQueue[storeWBIdx].size == 0) {
803            completeStore(storeWBIdx);
804
805            incrStIdx(storeWBIdx);
806
807            continue;
808        }
809
810        ++usedPorts;
811
812        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
813            incrStIdx(storeWBIdx);
814
815            continue;
816        }
817
818        assert(storeQueue[storeWBIdx].req);
819        assert(!storeQueue[storeWBIdx].committed);
820
821        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
822            assert(storeQueue[storeWBIdx].sreqLow);
823            assert(storeQueue[storeWBIdx].sreqHigh);
824        }
825
826        DynInstPtr inst = storeQueue[storeWBIdx].inst;
827
828        Request *req = storeQueue[storeWBIdx].req;
829        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
830        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
831
832        storeQueue[storeWBIdx].committed = true;
833
834        assert(!inst->memData);
835        inst->memData = new uint8_t[req->getSize()];
836
837        if (storeQueue[storeWBIdx].isAllZeros)
838            memset(inst->memData, 0, req->getSize());
839        else
840            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
841
842        PacketPtr data_pkt;
843        PacketPtr snd_data_pkt = NULL;
844
845        LSQSenderState *state = new LSQSenderState;
846        state->isLoad = false;
847        state->idx = storeWBIdx;
848        state->inst = inst;
849
850        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
851
852            // Build a single data packet if the store isn't split.
853            data_pkt = Packet::createWrite(req);
854            data_pkt->dataStatic(inst->memData);
855            data_pkt->senderState = state;
856        } else {
857            // Create two packets if the store is split in two.
858            data_pkt = Packet::createWrite(sreqLow);
859            snd_data_pkt = Packet::createWrite(sreqHigh);
860
861            data_pkt->dataStatic(inst->memData);
862            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
863
864            data_pkt->senderState = state;
865            snd_data_pkt->senderState = state;
866
867            state->isSplit = true;
868            state->outstanding = 2;
869
870            // Can delete the main request now.
871            delete req;
872            req = sreqLow;
873        }
874
875        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
876                "to Addr:%#x, data:%#x [sn:%lli]\n",
877                storeWBIdx, inst->pcState(),
878                req->getPaddr(), (int)*(inst->memData),
879                inst->seqNum);
880
881        // @todo: Remove this SC hack once the memory system handles it.
882        if (inst->isStoreConditional()) {
883            assert(!storeQueue[storeWBIdx].isSplit);
884            // Disable recording the result temporarily.  Writing to
885            // misc regs normally updates the result, but this is not
886            // the desired behavior when handling store conditionals.
887            inst->recordResult(false);
888            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
889            inst->recordResult(true);
890
891            if (!success) {
892                // Instantly complete this store.
893                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
894                        "Instantly completing it.\n",
895                        inst->seqNum);
896                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
897                cpu->schedule(wb, curTick() + 1);
898                if (cpu->checker) {
899                    // Make sure to set the LLSC data for verification
900                    // if checker is loaded
901                    inst->reqToVerify->setExtraData(0);
902                    inst->completeAcc(data_pkt);
903                }
904                completeStore(storeWBIdx);
905                incrStIdx(storeWBIdx);
906                continue;
907            }
908        } else {
909            // Non-store conditionals do not need a writeback.
910            state->noWB = true;
911        }
912
913        bool split =
914            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
915
916        ThreadContext *thread = cpu->tcBase(lsqID);
917
918        if (req->isMmappedIpr()) {
919            assert(!inst->isStoreConditional());
920            TheISA::handleIprWrite(thread, data_pkt);
921            delete data_pkt;
922            if (split) {
923                assert(snd_data_pkt->req->isMmappedIpr());
924                TheISA::handleIprWrite(thread, snd_data_pkt);
925                delete snd_data_pkt;
926                delete sreqLow;
927                delete sreqHigh;
928            }
929            delete state;
930            delete req;
931            completeStore(storeWBIdx);
932            incrStIdx(storeWBIdx);
933        } else if (!sendStore(data_pkt)) {
934            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
935                    "retry later\n",
936                    inst->seqNum);
937
938            // Need to store the second packet, if split.
939            if (split) {
940                state->pktToSend = true;
941                state->pendingPacket = snd_data_pkt;
942            }
943        } else {
944
945            // If split, try to send the second packet too
946            if (split) {
947                assert(snd_data_pkt);
948
949                // Ensure there are enough ports to use.
950                if (usedPorts < cachePorts) {
951                    ++usedPorts;
952                    if (sendStore(snd_data_pkt)) {
953                        storePostSend(snd_data_pkt);
954                    } else {
955                        DPRINTF(IEW, "D-Cache became blocked when writing"
956                                " [sn:%lli] second packet, will retry later\n",
957                                inst->seqNum);
958                    }
959                } else {
960
961                    // Store the packet for when there's free ports.
962                    assert(pendingPkt == NULL);
963                    pendingPkt = snd_data_pkt;
964                    hasPendingPkt = true;
965                }
966            } else {
967
968                // Not a split store.
969                storePostSend(data_pkt);
970            }
971        }
972    }
973
974    // Not sure this should set it to 0.
975    usedPorts = 0;
976
977    assert(stores >= 0 && storesToWB >= 0);
978}
979
980/*template <class Impl>
981void
982LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
983{
984    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
985                                              mshrSeqNums.end(),
986                                              seqNum);
987
988    if (mshr_it != mshrSeqNums.end()) {
989        mshrSeqNums.erase(mshr_it);
990        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
991    }
992}*/
993
994template <class Impl>
995void
996LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
997{
998    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
999            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1000
1001    int load_idx = loadTail;
1002    decrLdIdx(load_idx);
1003
1004    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1005        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1006                "[sn:%lli]\n",
1007                loadQueue[load_idx]->pcState(),
1008                loadQueue[load_idx]->seqNum);
1009
1010        if (isStalled() && load_idx == stallingLoadIdx) {
1011            stalled = false;
1012            stallingStoreIsn = 0;
1013            stallingLoadIdx = 0;
1014        }
1015
1016        // Clear the smart pointer to make sure it is decremented.
1017        loadQueue[load_idx]->setSquashed();
1018        loadQueue[load_idx] = NULL;
1019        --loads;
1020
1021        // Inefficient!
1022        loadTail = load_idx;
1023
1024        decrLdIdx(load_idx);
1025        ++lsqSquashedLoads;
1026    }
1027
1028    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1029        memDepViolator = NULL;
1030    }
1031
1032    int store_idx = storeTail;
1033    decrStIdx(store_idx);
1034
1035    while (stores != 0 &&
1036           storeQueue[store_idx].inst->seqNum > squashed_num) {
1037        // Instructions marked as can WB are already committed.
1038        if (storeQueue[store_idx].canWB) {
1039            break;
1040        }
1041
1042        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1043                "idx:%i [sn:%lli]\n",
1044                storeQueue[store_idx].inst->pcState(),
1045                store_idx, storeQueue[store_idx].inst->seqNum);
1046
1047        // I don't think this can happen.  It should have been cleared
1048        // by the stalling load.
1049        if (isStalled() &&
1050            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1051            panic("Is stalled should have been cleared by stalling load!\n");
1052            stalled = false;
1053            stallingStoreIsn = 0;
1054        }
1055
1056        // Clear the smart pointer to make sure it is decremented.
1057        storeQueue[store_idx].inst->setSquashed();
1058        storeQueue[store_idx].inst = NULL;
1059        storeQueue[store_idx].canWB = 0;
1060
1061        // Must delete request now that it wasn't handed off to
1062        // memory.  This is quite ugly.  @todo: Figure out the proper
1063        // place to really handle request deletes.
1064        delete storeQueue[store_idx].req;
1065        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1066            delete storeQueue[store_idx].sreqLow;
1067            delete storeQueue[store_idx].sreqHigh;
1068
1069            storeQueue[store_idx].sreqLow = NULL;
1070            storeQueue[store_idx].sreqHigh = NULL;
1071        }
1072
1073        storeQueue[store_idx].req = NULL;
1074        --stores;
1075
1076        // Inefficient!
1077        storeTail = store_idx;
1078
1079        decrStIdx(store_idx);
1080        ++lsqSquashedStores;
1081    }
1082}
1083
1084template <class Impl>
1085void
1086LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1087{
1088    if (isStalled() &&
1089        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1090        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1091                "load idx:%i\n",
1092                stallingStoreIsn, stallingLoadIdx);
1093        stalled = false;
1094        stallingStoreIsn = 0;
1095        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1096    }
1097
1098    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1099        // The store is basically completed at this time. This
1100        // only works so long as the checker doesn't try to
1101        // verify the value in memory for stores.
1102        storeQueue[storeWBIdx].inst->setCompleted();
1103
1104        if (cpu->checker) {
1105            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1106        }
1107    }
1108
1109    if (needsTSO) {
1110        storeInFlight = true;
1111    }
1112
1113    incrStIdx(storeWBIdx);
1114}
1115
1116template <class Impl>
1117void
1118LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1119{
1120    iewStage->wakeCPU();
1121
1122    // Squashed instructions do not need to complete their access.
1123    if (inst->isSquashed()) {
1124        assert(!inst->isStore());
1125        ++lsqIgnoredResponses;
1126        return;
1127    }
1128
1129    if (!inst->isExecuted()) {
1130        inst->setExecuted();
1131
1132        // Complete access to copy data to proper place.
1133        inst->completeAcc(pkt);
1134    }
1135
1136    // Need to insert instruction into queue to commit
1137    iewStage->instToCommit(inst);
1138
1139    iewStage->activityThisCycle();
1140
1141    // see if this load changed the PC
1142    iewStage->checkMisprediction(inst);
1143}
1144
1145template <class Impl>
1146void
1147LSQUnit<Impl>::completeStore(int store_idx)
1148{
1149    assert(storeQueue[store_idx].inst);
1150    storeQueue[store_idx].completed = true;
1151    --storesToWB;
1152    // A bit conservative because a store completion may not free up entries,
1153    // but hopefully avoids two store completions in one cycle from making
1154    // the CPU tick twice.
1155    cpu->wakeCPU();
1156    cpu->activityThisCycle();
1157
1158    if (store_idx == storeHead) {
1159        do {
1160            incrStIdx(storeHead);
1161
1162            --stores;
1163        } while (storeQueue[storeHead].completed &&
1164                 storeHead != storeTail);
1165
1166        iewStage->updateLSQNextCycle = true;
1167    }
1168
1169    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1170            "idx:%i\n",
1171            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1172
1173#if TRACING_ON
1174    if (DTRACE(O3PipeView)) {
1175        storeQueue[store_idx].inst->storeTick =
1176            curTick() - storeQueue[store_idx].inst->fetchTick;
1177    }
1178#endif
1179
1180    if (isStalled() &&
1181        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1182        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1183                "load idx:%i\n",
1184                stallingStoreIsn, stallingLoadIdx);
1185        stalled = false;
1186        stallingStoreIsn = 0;
1187        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1188    }
1189
1190    storeQueue[store_idx].inst->setCompleted();
1191
1192    if (needsTSO) {
1193        storeInFlight = false;
1194    }
1195
1196    // Tell the checker we've completed this instruction.  Some stores
1197    // may get reported twice to the checker, but the checker can
1198    // handle that case.
1199    if (cpu->checker) {
1200        cpu->checker->verify(storeQueue[store_idx].inst);
1201    }
1202}
1203
1204template <class Impl>
1205bool
1206LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1207{
1208    if (!dcachePort->sendTimingReq(data_pkt)) {
1209        // Need to handle becoming blocked on a store.
1210        isStoreBlocked = true;
1211        ++lsqCacheBlocked;
1212        assert(retryPkt == NULL);
1213        retryPkt = data_pkt;
1214        return false;
1215    }
1216    return true;
1217}
1218
1219template <class Impl>
1220void
1221LSQUnit<Impl>::recvRetry()
1222{
1223    if (isStoreBlocked) {
1224        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1225        assert(retryPkt != NULL);
1226
1227        LSQSenderState *state =
1228            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1229
1230        if (dcachePort->sendTimingReq(retryPkt)) {
1231            // Don't finish the store unless this is the last packet.
1232            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1233                    state->pendingPacket == retryPkt) {
1234                state->pktToSend = false;
1235                storePostSend(retryPkt);
1236            }
1237            retryPkt = NULL;
1238            isStoreBlocked = false;
1239
1240            // Send any outstanding packet.
1241            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1242                assert(state->pendingPacket);
1243                if (sendStore(state->pendingPacket)) {
1244                    storePostSend(state->pendingPacket);
1245                }
1246            }
1247        } else {
1248            // Still blocked!
1249            ++lsqCacheBlocked;
1250        }
1251    }
1252}
1253
1254template <class Impl>
1255inline void
1256LSQUnit<Impl>::incrStIdx(int &store_idx) const
1257{
1258    if (++store_idx >= SQEntries)
1259        store_idx = 0;
1260}
1261
1262template <class Impl>
1263inline void
1264LSQUnit<Impl>::decrStIdx(int &store_idx) const
1265{
1266    if (--store_idx < 0)
1267        store_idx += SQEntries;
1268}
1269
1270template <class Impl>
1271inline void
1272LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1273{
1274    if (++load_idx >= LQEntries)
1275        load_idx = 0;
1276}
1277
1278template <class Impl>
1279inline void
1280LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1281{
1282    if (--load_idx < 0)
1283        load_idx += LQEntries;
1284}
1285
1286template <class Impl>
1287void
1288LSQUnit<Impl>::dumpInsts() const
1289{
1290    cprintf("Load store queue: Dumping instructions.\n");
1291    cprintf("Load queue size: %i\n", loads);
1292    cprintf("Load queue: ");
1293
1294    int load_idx = loadHead;
1295
1296    while (load_idx != loadTail && loadQueue[load_idx]) {
1297        const DynInstPtr &inst(loadQueue[load_idx]);
1298        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1299
1300        incrLdIdx(load_idx);
1301    }
1302    cprintf("\n");
1303
1304    cprintf("Store queue size: %i\n", stores);
1305    cprintf("Store queue: ");
1306
1307    int store_idx = storeHead;
1308
1309    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1310        const DynInstPtr &inst(storeQueue[store_idx].inst);
1311        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1312
1313        incrStIdx(store_idx);
1314    }
1315
1316    cprintf("\n");
1317}
1318
1319#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1320