lsq_unit_impl.hh revision 10333
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        delete pkt->req;
109        delete pkt;
110        return;
111    }
112
113    // If this is a split access, wait until all packets are received.
114    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
115        delete pkt->req;
116        delete pkt;
117        return;
118    }
119
120    assert(!cpu->switchedOut());
121    if (!inst->isSquashed()) {
122        if (!state->noWB) {
123            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
124                !state->isLoad) {
125                writeback(inst, pkt);
126            } else {
127                writeback(inst, state->mainPkt);
128            }
129        }
130
131        if (inst->isStore()) {
132            completeStore(state->idx);
133        }
134    }
135
136    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
137        delete state->mainPkt->req;
138        delete state->mainPkt;
139    }
140
141    pkt->req->setAccessLatency();
142    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
143
144    delete state;
145    delete pkt->req;
146    delete pkt;
147}
148
149template <class Impl>
150LSQUnit<Impl>::LSQUnit()
151    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
152      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false)
153{
154}
155
156template<class Impl>
157void
158LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
159        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
160        unsigned id)
161{
162    cpu = cpu_ptr;
163    iewStage = iew_ptr;
164
165    lsq = lsq_ptr;
166
167    lsqID = id;
168
169    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
170
171    // Add 1 for the sentinel entry (they are circular queues).
172    LQEntries = maxLQEntries + 1;
173    SQEntries = maxSQEntries + 1;
174
175    //Due to uint8_t index in LSQSenderState
176    assert(LQEntries <= 256);
177    assert(SQEntries <= 256);
178
179    loadQueue.resize(LQEntries);
180    storeQueue.resize(SQEntries);
181
182    depCheckShift = params->LSQDepCheckShift;
183    checkLoads = params->LSQCheckLoads;
184    cachePorts = params->cachePorts;
185    needsTSO = params->needsTSO;
186
187    resetState();
188}
189
190
191template<class Impl>
192void
193LSQUnit<Impl>::resetState()
194{
195    loads = stores = storesToWB = 0;
196
197    loadHead = loadTail = 0;
198
199    storeHead = storeWBIdx = storeTail = 0;
200
201    usedPorts = 0;
202
203    retryPkt = NULL;
204    memDepViolator = NULL;
205
206    stalled = false;
207
208    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
209}
210
211template<class Impl>
212std::string
213LSQUnit<Impl>::name() const
214{
215    if (Impl::MaxThreads == 1) {
216        return iewStage->name() + ".lsq";
217    } else {
218        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
219    }
220}
221
222template<class Impl>
223void
224LSQUnit<Impl>::regStats()
225{
226    lsqForwLoads
227        .name(name() + ".forwLoads")
228        .desc("Number of loads that had data forwarded from stores");
229
230    invAddrLoads
231        .name(name() + ".invAddrLoads")
232        .desc("Number of loads ignored due to an invalid address");
233
234    lsqSquashedLoads
235        .name(name() + ".squashedLoads")
236        .desc("Number of loads squashed");
237
238    lsqIgnoredResponses
239        .name(name() + ".ignoredResponses")
240        .desc("Number of memory responses ignored because the instruction is squashed");
241
242    lsqMemOrderViolation
243        .name(name() + ".memOrderViolation")
244        .desc("Number of memory ordering violations");
245
246    lsqSquashedStores
247        .name(name() + ".squashedStores")
248        .desc("Number of stores squashed");
249
250    invAddrSwpfs
251        .name(name() + ".invAddrSwpfs")
252        .desc("Number of software prefetches ignored due to an invalid address");
253
254    lsqBlockedLoads
255        .name(name() + ".blockedLoads")
256        .desc("Number of blocked loads due to partial load-store forwarding");
257
258    lsqRescheduledLoads
259        .name(name() + ".rescheduledLoads")
260        .desc("Number of loads that were rescheduled");
261
262    lsqCacheBlocked
263        .name(name() + ".cacheBlocked")
264        .desc("Number of times an access to memory failed due to the cache being blocked");
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
270{
271    dcachePort = dcache_port;
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::clearLQ()
277{
278    loadQueue.clear();
279}
280
281template<class Impl>
282void
283LSQUnit<Impl>::clearSQ()
284{
285    storeQueue.clear();
286}
287
288template<class Impl>
289void
290LSQUnit<Impl>::drainSanityCheck() const
291{
292    for (int i = 0; i < loadQueue.size(); ++i)
293        assert(!loadQueue[i]);
294
295    assert(storesToWB == 0);
296    assert(!retryPkt);
297}
298
299template<class Impl>
300void
301LSQUnit<Impl>::takeOverFrom()
302{
303    resetState();
304}
305
306template<class Impl>
307void
308LSQUnit<Impl>::resizeLQ(unsigned size)
309{
310    unsigned size_plus_sentinel = size + 1;
311    assert(size_plus_sentinel >= LQEntries);
312
313    if (size_plus_sentinel > LQEntries) {
314        while (size_plus_sentinel > loadQueue.size()) {
315            DynInstPtr dummy;
316            loadQueue.push_back(dummy);
317            LQEntries++;
318        }
319    } else {
320        LQEntries = size_plus_sentinel;
321    }
322
323    assert(LQEntries <= 256);
324}
325
326template<class Impl>
327void
328LSQUnit<Impl>::resizeSQ(unsigned size)
329{
330    unsigned size_plus_sentinel = size + 1;
331    if (size_plus_sentinel > SQEntries) {
332        while (size_plus_sentinel > storeQueue.size()) {
333            SQEntry dummy;
334            storeQueue.push_back(dummy);
335            SQEntries++;
336        }
337    } else {
338        SQEntries = size_plus_sentinel;
339    }
340
341    assert(SQEntries <= 256);
342}
343
344template <class Impl>
345void
346LSQUnit<Impl>::insert(DynInstPtr &inst)
347{
348    assert(inst->isMemRef());
349
350    assert(inst->isLoad() || inst->isStore());
351
352    if (inst->isLoad()) {
353        insertLoad(inst);
354    } else {
355        insertStore(inst);
356    }
357
358    inst->setInLSQ();
359}
360
361template <class Impl>
362void
363LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
364{
365    assert((loadTail + 1) % LQEntries != loadHead);
366    assert(loads < LQEntries);
367
368    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
369            load_inst->pcState(), loadTail, load_inst->seqNum);
370
371    load_inst->lqIdx = loadTail;
372
373    if (stores == 0) {
374        load_inst->sqIdx = -1;
375    } else {
376        load_inst->sqIdx = storeTail;
377    }
378
379    loadQueue[loadTail] = load_inst;
380
381    incrLdIdx(loadTail);
382
383    ++loads;
384}
385
386template <class Impl>
387void
388LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
389{
390    // Make sure it is not full before inserting an instruction.
391    assert((storeTail + 1) % SQEntries != storeHead);
392    assert(stores < SQEntries);
393
394    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
395            store_inst->pcState(), storeTail, store_inst->seqNum);
396
397    store_inst->sqIdx = storeTail;
398    store_inst->lqIdx = loadTail;
399
400    storeQueue[storeTail] = SQEntry(store_inst);
401
402    incrStIdx(storeTail);
403
404    ++stores;
405}
406
407template <class Impl>
408typename Impl::DynInstPtr
409LSQUnit<Impl>::getMemDepViolator()
410{
411    DynInstPtr temp = memDepViolator;
412
413    memDepViolator = NULL;
414
415    return temp;
416}
417
418template <class Impl>
419unsigned
420LSQUnit<Impl>::numFreeLoadEntries()
421{
422        //LQ has an extra dummy entry to differentiate
423        //empty/full conditions. Subtract 1 from the free entries.
424        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
425        return LQEntries - loads - 1;
426}
427
428template <class Impl>
429unsigned
430LSQUnit<Impl>::numFreeStoreEntries()
431{
432        //SQ has an extra dummy entry to differentiate
433        //empty/full conditions. Subtract 1 from the free entries.
434        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
435        return SQEntries - stores - 1;
436
437 }
438
439template <class Impl>
440void
441LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
442{
443    int load_idx = loadHead;
444    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
445
446    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
447    // address. The CPU can speculatively execute a LL operation after a pending
448    // SC operation in the pipeline and that can make the cache monitor the CPU
449    // is connected to valid while it really shouldn't be.
450    for (int x = 0; x < cpu->numContexts(); x++) {
451        ThreadContext *tc = cpu->getContext(x);
452        bool no_squash = cpu->thread[x]->noSquashFromTC;
453        cpu->thread[x]->noSquashFromTC = true;
454        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
455        cpu->thread[x]->noSquashFromTC = no_squash;
456    }
457
458    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
459
460    DynInstPtr ld_inst = loadQueue[load_idx];
461    if (ld_inst) {
462        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
463        // Check that this snoop didn't just invalidate our lock flag
464        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
465            ld_inst->memReqFlags & Request::LLSC)
466            TheISA::handleLockedSnoopHit(ld_inst.get());
467    }
468
469    // If this is the only load in the LSQ we don't care
470    if (load_idx == loadTail)
471        return;
472
473    incrLdIdx(load_idx);
474
475    bool force_squash = false;
476
477    while (load_idx != loadTail) {
478        DynInstPtr ld_inst = loadQueue[load_idx];
479
480        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
481            incrLdIdx(load_idx);
482            continue;
483        }
484
485        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
486        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
487                    ld_inst->seqNum, load_addr, invalidate_addr);
488
489        if (load_addr == invalidate_addr || force_squash) {
490            if (needsTSO) {
491                // If we have a TSO system, as all loads must be ordered with
492                // all other loads, this load as well as *all* subsequent loads
493                // need to be squashed to prevent possible load reordering.
494                force_squash = true;
495            }
496            if (ld_inst->possibleLoadViolation() || force_squash) {
497                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
498                        pkt->getAddr(), ld_inst->seqNum);
499
500                // Mark the load for re-execution
501                ld_inst->fault = new ReExec;
502            } else {
503                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
504                        pkt->getAddr(), ld_inst->seqNum);
505
506                // Make sure that we don't lose a snoop hitting a LOCKED
507                // address since the LOCK* flags don't get updated until
508                // commit.
509                if (ld_inst->memReqFlags & Request::LLSC)
510                    TheISA::handleLockedSnoopHit(ld_inst.get());
511
512                // If a older load checks this and it's true
513                // then we might have missed the snoop
514                // in which case we need to invalidate to be sure
515                ld_inst->hitExternalSnoop(true);
516            }
517        }
518        incrLdIdx(load_idx);
519    }
520    return;
521}
522
523template <class Impl>
524Fault
525LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
526{
527    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
528    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
529
530    /** @todo in theory you only need to check an instruction that has executed
531     * however, there isn't a good way in the pipeline at the moment to check
532     * all instructions that will execute before the store writes back. Thus,
533     * like the implementation that came before it, we're overly conservative.
534     */
535    while (load_idx != loadTail) {
536        DynInstPtr ld_inst = loadQueue[load_idx];
537        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
538            incrLdIdx(load_idx);
539            continue;
540        }
541
542        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
543        Addr ld_eff_addr2 =
544            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
545
546        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
547            if (inst->isLoad()) {
548                // If this load is to the same block as an external snoop
549                // invalidate that we've observed then the load needs to be
550                // squashed as it could have newer data
551                if (ld_inst->hitExternalSnoop()) {
552                    if (!memDepViolator ||
553                            ld_inst->seqNum < memDepViolator->seqNum) {
554                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
555                                "and [sn:%lli] at address %#x\n",
556                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557                        memDepViolator = ld_inst;
558
559                        ++lsqMemOrderViolation;
560
561                        return new GenericISA::M5PanicFault(
562                                "Detected fault with inst [sn:%lli] and "
563                                "[sn:%lli] at address %#x\n",
564                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
565                    }
566                }
567
568                // Otherwise, mark the load has a possible load violation
569                // and if we see a snoop before it's commited, we need to squash
570                ld_inst->possibleLoadViolation(true);
571                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
572                        " between instructions [sn:%lli] and [sn:%lli]\n",
573                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
574            } else {
575                // A load/store incorrectly passed this store.
576                // Check if we already have a violator, or if it's newer
577                // squash and refetch.
578                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
579                    break;
580
581                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
582                        "[sn:%lli] at address %#x\n",
583                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
584                memDepViolator = ld_inst;
585
586                ++lsqMemOrderViolation;
587
588                return new GenericISA::M5PanicFault("Detected fault with "
589                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
590                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
591            }
592        }
593
594        incrLdIdx(load_idx);
595    }
596    return NoFault;
597}
598
599
600
601
602template <class Impl>
603Fault
604LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
605{
606    using namespace TheISA;
607    // Execute a specific load.
608    Fault load_fault = NoFault;
609
610    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
611            inst->pcState(), inst->seqNum);
612
613    assert(!inst->isSquashed());
614
615    load_fault = inst->initiateAcc();
616
617    if (inst->isTranslationDelayed() &&
618        load_fault == NoFault)
619        return load_fault;
620
621    // If the instruction faulted or predicated false, then we need to send it
622    // along to commit without the instruction completing.
623    if (load_fault != NoFault || !inst->readPredicate()) {
624        // Send this instruction to commit, also make sure iew stage
625        // realizes there is activity.
626        // Mark it as executed unless it is an uncached load that
627        // needs to hit the head of commit.
628        if (!inst->readPredicate())
629            inst->forwardOldRegs();
630        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
631                inst->seqNum,
632                (load_fault != NoFault ? "fault" : "predication"));
633        if (!(inst->hasRequest() && inst->uncacheable()) ||
634            inst->isAtCommit()) {
635            inst->setExecuted();
636        }
637        iewStage->instToCommit(inst);
638        iewStage->activityThisCycle();
639    } else {
640        assert(inst->effAddrValid());
641        int load_idx = inst->lqIdx;
642        incrLdIdx(load_idx);
643
644        if (checkLoads)
645            return checkViolations(load_idx, inst);
646    }
647
648    return load_fault;
649}
650
651template <class Impl>
652Fault
653LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
654{
655    using namespace TheISA;
656    // Make sure that a store exists.
657    assert(stores != 0);
658
659    int store_idx = store_inst->sqIdx;
660
661    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
662            store_inst->pcState(), store_inst->seqNum);
663
664    assert(!store_inst->isSquashed());
665
666    // Check the recently completed loads to see if any match this store's
667    // address.  If so, then we have a memory ordering violation.
668    int load_idx = store_inst->lqIdx;
669
670    Fault store_fault = store_inst->initiateAcc();
671
672    if (store_inst->isTranslationDelayed() &&
673        store_fault == NoFault)
674        return store_fault;
675
676    if (!store_inst->readPredicate())
677        store_inst->forwardOldRegs();
678
679    if (storeQueue[store_idx].size == 0) {
680        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
681                store_inst->pcState(), store_inst->seqNum);
682
683        return store_fault;
684    } else if (!store_inst->readPredicate()) {
685        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
686                store_inst->seqNum);
687        return store_fault;
688    }
689
690    assert(store_fault == NoFault);
691
692    if (store_inst->isStoreConditional()) {
693        // Store conditionals need to set themselves as able to
694        // writeback if we haven't had a fault by here.
695        storeQueue[store_idx].canWB = true;
696
697        ++storesToWB;
698    }
699
700    return checkViolations(load_idx, store_inst);
701
702}
703
704template <class Impl>
705void
706LSQUnit<Impl>::commitLoad()
707{
708    assert(loadQueue[loadHead]);
709
710    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
711            loadQueue[loadHead]->pcState());
712
713    loadQueue[loadHead] = NULL;
714
715    incrLdIdx(loadHead);
716
717    --loads;
718}
719
720template <class Impl>
721void
722LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
723{
724    assert(loads == 0 || loadQueue[loadHead]);
725
726    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
727        commitLoad();
728    }
729}
730
731template <class Impl>
732void
733LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
734{
735    assert(stores == 0 || storeQueue[storeHead].inst);
736
737    int store_idx = storeHead;
738
739    while (store_idx != storeTail) {
740        assert(storeQueue[store_idx].inst);
741        // Mark any stores that are now committed and have not yet
742        // been marked as able to write back.
743        if (!storeQueue[store_idx].canWB) {
744            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
745                break;
746            }
747            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
748                    "%s [sn:%lli]\n",
749                    storeQueue[store_idx].inst->pcState(),
750                    storeQueue[store_idx].inst->seqNum);
751
752            storeQueue[store_idx].canWB = true;
753
754            ++storesToWB;
755        }
756
757        incrStIdx(store_idx);
758    }
759}
760
761template <class Impl>
762void
763LSQUnit<Impl>::writebackPendingStore()
764{
765    if (hasPendingPkt) {
766        assert(pendingPkt != NULL);
767
768        // If the cache is blocked, this will store the packet for retry.
769        if (sendStore(pendingPkt)) {
770            storePostSend(pendingPkt);
771        }
772        pendingPkt = NULL;
773        hasPendingPkt = false;
774    }
775}
776
777template <class Impl>
778void
779LSQUnit<Impl>::writebackStores()
780{
781    // First writeback the second packet from any split store that didn't
782    // complete last cycle because there weren't enough cache ports available.
783    if (TheISA::HasUnalignedMemAcc) {
784        writebackPendingStore();
785    }
786
787    while (storesToWB > 0 &&
788           storeWBIdx != storeTail &&
789           storeQueue[storeWBIdx].inst &&
790           storeQueue[storeWBIdx].canWB &&
791           ((!needsTSO) || (!storeInFlight)) &&
792           usedPorts < cachePorts) {
793
794        if (isStoreBlocked) {
795            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
796                    " is blocked!\n");
797            break;
798        }
799
800        // Store didn't write any data so no need to write it back to
801        // memory.
802        if (storeQueue[storeWBIdx].size == 0) {
803            completeStore(storeWBIdx);
804
805            incrStIdx(storeWBIdx);
806
807            continue;
808        }
809
810        ++usedPorts;
811
812        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
813            incrStIdx(storeWBIdx);
814
815            continue;
816        }
817
818        assert(storeQueue[storeWBIdx].req);
819        assert(!storeQueue[storeWBIdx].committed);
820
821        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
822            assert(storeQueue[storeWBIdx].sreqLow);
823            assert(storeQueue[storeWBIdx].sreqHigh);
824        }
825
826        DynInstPtr inst = storeQueue[storeWBIdx].inst;
827
828        Request *req = storeQueue[storeWBIdx].req;
829        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
830        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
831
832        storeQueue[storeWBIdx].committed = true;
833
834        assert(!inst->memData);
835        inst->memData = new uint8_t[req->getSize()];
836
837        if (storeQueue[storeWBIdx].isAllZeros)
838            memset(inst->memData, 0, req->getSize());
839        else
840            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
841
842        MemCmd command =
843            req->isSwap() ? MemCmd::SwapReq :
844            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
845        PacketPtr data_pkt;
846        PacketPtr snd_data_pkt = NULL;
847
848        LSQSenderState *state = new LSQSenderState;
849        state->isLoad = false;
850        state->idx = storeWBIdx;
851        state->inst = inst;
852
853        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
854
855            // Build a single data packet if the store isn't split.
856            data_pkt = new Packet(req, command);
857            data_pkt->dataStatic(inst->memData);
858            data_pkt->senderState = state;
859        } else {
860            // Create two packets if the store is split in two.
861            data_pkt = new Packet(sreqLow, command);
862            snd_data_pkt = new Packet(sreqHigh, command);
863
864            data_pkt->dataStatic(inst->memData);
865            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
866
867            data_pkt->senderState = state;
868            snd_data_pkt->senderState = state;
869
870            state->isSplit = true;
871            state->outstanding = 2;
872
873            // Can delete the main request now.
874            delete req;
875            req = sreqLow;
876        }
877
878        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
879                "to Addr:%#x, data:%#x [sn:%lli]\n",
880                storeWBIdx, inst->pcState(),
881                req->getPaddr(), (int)*(inst->memData),
882                inst->seqNum);
883
884        // @todo: Remove this SC hack once the memory system handles it.
885        if (inst->isStoreConditional()) {
886            assert(!storeQueue[storeWBIdx].isSplit);
887            // Disable recording the result temporarily.  Writing to
888            // misc regs normally updates the result, but this is not
889            // the desired behavior when handling store conditionals.
890            inst->recordResult(false);
891            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
892            inst->recordResult(true);
893
894            if (!success) {
895                // Instantly complete this store.
896                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
897                        "Instantly completing it.\n",
898                        inst->seqNum);
899                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
900                cpu->schedule(wb, curTick() + 1);
901                if (cpu->checker) {
902                    // Make sure to set the LLSC data for verification
903                    // if checker is loaded
904                    inst->reqToVerify->setExtraData(0);
905                    inst->completeAcc(data_pkt);
906                }
907                completeStore(storeWBIdx);
908                incrStIdx(storeWBIdx);
909                continue;
910            }
911        } else {
912            // Non-store conditionals do not need a writeback.
913            state->noWB = true;
914        }
915
916        bool split =
917            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
918
919        ThreadContext *thread = cpu->tcBase(lsqID);
920
921        if (req->isMmappedIpr()) {
922            assert(!inst->isStoreConditional());
923            TheISA::handleIprWrite(thread, data_pkt);
924            delete data_pkt;
925            if (split) {
926                assert(snd_data_pkt->req->isMmappedIpr());
927                TheISA::handleIprWrite(thread, snd_data_pkt);
928                delete snd_data_pkt;
929                delete sreqLow;
930                delete sreqHigh;
931            }
932            delete state;
933            delete req;
934            completeStore(storeWBIdx);
935            incrStIdx(storeWBIdx);
936        } else if (!sendStore(data_pkt)) {
937            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
938                    "retry later\n",
939                    inst->seqNum);
940
941            // Need to store the second packet, if split.
942            if (split) {
943                state->pktToSend = true;
944                state->pendingPacket = snd_data_pkt;
945            }
946        } else {
947
948            // If split, try to send the second packet too
949            if (split) {
950                assert(snd_data_pkt);
951
952                // Ensure there are enough ports to use.
953                if (usedPorts < cachePorts) {
954                    ++usedPorts;
955                    if (sendStore(snd_data_pkt)) {
956                        storePostSend(snd_data_pkt);
957                    } else {
958                        DPRINTF(IEW, "D-Cache became blocked when writing"
959                                " [sn:%lli] second packet, will retry later\n",
960                                inst->seqNum);
961                    }
962                } else {
963
964                    // Store the packet for when there's free ports.
965                    assert(pendingPkt == NULL);
966                    pendingPkt = snd_data_pkt;
967                    hasPendingPkt = true;
968                }
969            } else {
970
971                // Not a split store.
972                storePostSend(data_pkt);
973            }
974        }
975    }
976
977    // Not sure this should set it to 0.
978    usedPorts = 0;
979
980    assert(stores >= 0 && storesToWB >= 0);
981}
982
983/*template <class Impl>
984void
985LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
986{
987    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
988                                              mshrSeqNums.end(),
989                                              seqNum);
990
991    if (mshr_it != mshrSeqNums.end()) {
992        mshrSeqNums.erase(mshr_it);
993        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
994    }
995}*/
996
997template <class Impl>
998void
999LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
1000{
1001    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1002            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1003
1004    int load_idx = loadTail;
1005    decrLdIdx(load_idx);
1006
1007    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1008        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1009                "[sn:%lli]\n",
1010                loadQueue[load_idx]->pcState(),
1011                loadQueue[load_idx]->seqNum);
1012
1013        if (isStalled() && load_idx == stallingLoadIdx) {
1014            stalled = false;
1015            stallingStoreIsn = 0;
1016            stallingLoadIdx = 0;
1017        }
1018
1019        // Clear the smart pointer to make sure it is decremented.
1020        loadQueue[load_idx]->setSquashed();
1021        loadQueue[load_idx] = NULL;
1022        --loads;
1023
1024        // Inefficient!
1025        loadTail = load_idx;
1026
1027        decrLdIdx(load_idx);
1028        ++lsqSquashedLoads;
1029    }
1030
1031    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1032        memDepViolator = NULL;
1033    }
1034
1035    int store_idx = storeTail;
1036    decrStIdx(store_idx);
1037
1038    while (stores != 0 &&
1039           storeQueue[store_idx].inst->seqNum > squashed_num) {
1040        // Instructions marked as can WB are already committed.
1041        if (storeQueue[store_idx].canWB) {
1042            break;
1043        }
1044
1045        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1046                "idx:%i [sn:%lli]\n",
1047                storeQueue[store_idx].inst->pcState(),
1048                store_idx, storeQueue[store_idx].inst->seqNum);
1049
1050        // I don't think this can happen.  It should have been cleared
1051        // by the stalling load.
1052        if (isStalled() &&
1053            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1054            panic("Is stalled should have been cleared by stalling load!\n");
1055            stalled = false;
1056            stallingStoreIsn = 0;
1057        }
1058
1059        // Clear the smart pointer to make sure it is decremented.
1060        storeQueue[store_idx].inst->setSquashed();
1061        storeQueue[store_idx].inst = NULL;
1062        storeQueue[store_idx].canWB = 0;
1063
1064        // Must delete request now that it wasn't handed off to
1065        // memory.  This is quite ugly.  @todo: Figure out the proper
1066        // place to really handle request deletes.
1067        delete storeQueue[store_idx].req;
1068        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1069            delete storeQueue[store_idx].sreqLow;
1070            delete storeQueue[store_idx].sreqHigh;
1071
1072            storeQueue[store_idx].sreqLow = NULL;
1073            storeQueue[store_idx].sreqHigh = NULL;
1074        }
1075
1076        storeQueue[store_idx].req = NULL;
1077        --stores;
1078
1079        // Inefficient!
1080        storeTail = store_idx;
1081
1082        decrStIdx(store_idx);
1083        ++lsqSquashedStores;
1084    }
1085}
1086
1087template <class Impl>
1088void
1089LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1090{
1091    if (isStalled() &&
1092        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1093        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1094                "load idx:%i\n",
1095                stallingStoreIsn, stallingLoadIdx);
1096        stalled = false;
1097        stallingStoreIsn = 0;
1098        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1099    }
1100
1101    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1102        // The store is basically completed at this time. This
1103        // only works so long as the checker doesn't try to
1104        // verify the value in memory for stores.
1105        storeQueue[storeWBIdx].inst->setCompleted();
1106
1107        if (cpu->checker) {
1108            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1109        }
1110    }
1111
1112    if (needsTSO) {
1113        storeInFlight = true;
1114    }
1115
1116    incrStIdx(storeWBIdx);
1117}
1118
1119template <class Impl>
1120void
1121LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1122{
1123    iewStage->wakeCPU();
1124
1125    // Squashed instructions do not need to complete their access.
1126    if (inst->isSquashed()) {
1127        assert(!inst->isStore());
1128        ++lsqIgnoredResponses;
1129        return;
1130    }
1131
1132    if (!inst->isExecuted()) {
1133        inst->setExecuted();
1134
1135        // Complete access to copy data to proper place.
1136        inst->completeAcc(pkt);
1137    }
1138
1139    // Need to insert instruction into queue to commit
1140    iewStage->instToCommit(inst);
1141
1142    iewStage->activityThisCycle();
1143
1144    // see if this load changed the PC
1145    iewStage->checkMisprediction(inst);
1146}
1147
1148template <class Impl>
1149void
1150LSQUnit<Impl>::completeStore(int store_idx)
1151{
1152    assert(storeQueue[store_idx].inst);
1153    storeQueue[store_idx].completed = true;
1154    --storesToWB;
1155    // A bit conservative because a store completion may not free up entries,
1156    // but hopefully avoids two store completions in one cycle from making
1157    // the CPU tick twice.
1158    cpu->wakeCPU();
1159    cpu->activityThisCycle();
1160
1161    if (store_idx == storeHead) {
1162        do {
1163            incrStIdx(storeHead);
1164
1165            --stores;
1166        } while (storeQueue[storeHead].completed &&
1167                 storeHead != storeTail);
1168
1169        iewStage->updateLSQNextCycle = true;
1170    }
1171
1172    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1173            "idx:%i\n",
1174            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1175
1176#if TRACING_ON
1177    if (DTRACE(O3PipeView)) {
1178        storeQueue[store_idx].inst->storeTick =
1179            curTick() - storeQueue[store_idx].inst->fetchTick;
1180    }
1181#endif
1182
1183    if (isStalled() &&
1184        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1185        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1186                "load idx:%i\n",
1187                stallingStoreIsn, stallingLoadIdx);
1188        stalled = false;
1189        stallingStoreIsn = 0;
1190        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1191    }
1192
1193    storeQueue[store_idx].inst->setCompleted();
1194
1195    if (needsTSO) {
1196        storeInFlight = false;
1197    }
1198
1199    // Tell the checker we've completed this instruction.  Some stores
1200    // may get reported twice to the checker, but the checker can
1201    // handle that case.
1202    if (cpu->checker) {
1203        cpu->checker->verify(storeQueue[store_idx].inst);
1204    }
1205}
1206
1207template <class Impl>
1208bool
1209LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1210{
1211    if (!dcachePort->sendTimingReq(data_pkt)) {
1212        // Need to handle becoming blocked on a store.
1213        isStoreBlocked = true;
1214        ++lsqCacheBlocked;
1215        assert(retryPkt == NULL);
1216        retryPkt = data_pkt;
1217        return false;
1218    }
1219    return true;
1220}
1221
1222template <class Impl>
1223void
1224LSQUnit<Impl>::recvRetry()
1225{
1226    if (isStoreBlocked) {
1227        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1228        assert(retryPkt != NULL);
1229
1230        LSQSenderState *state =
1231            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1232
1233        if (dcachePort->sendTimingReq(retryPkt)) {
1234            // Don't finish the store unless this is the last packet.
1235            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1236                    state->pendingPacket == retryPkt) {
1237                state->pktToSend = false;
1238                storePostSend(retryPkt);
1239            }
1240            retryPkt = NULL;
1241            isStoreBlocked = false;
1242
1243            // Send any outstanding packet.
1244            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1245                assert(state->pendingPacket);
1246                if (sendStore(state->pendingPacket)) {
1247                    storePostSend(state->pendingPacket);
1248                }
1249            }
1250        } else {
1251            // Still blocked!
1252            ++lsqCacheBlocked;
1253        }
1254    }
1255}
1256
1257template <class Impl>
1258inline void
1259LSQUnit<Impl>::incrStIdx(int &store_idx) const
1260{
1261    if (++store_idx >= SQEntries)
1262        store_idx = 0;
1263}
1264
1265template <class Impl>
1266inline void
1267LSQUnit<Impl>::decrStIdx(int &store_idx) const
1268{
1269    if (--store_idx < 0)
1270        store_idx += SQEntries;
1271}
1272
1273template <class Impl>
1274inline void
1275LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1276{
1277    if (++load_idx >= LQEntries)
1278        load_idx = 0;
1279}
1280
1281template <class Impl>
1282inline void
1283LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1284{
1285    if (--load_idx < 0)
1286        load_idx += LQEntries;
1287}
1288
1289template <class Impl>
1290void
1291LSQUnit<Impl>::dumpInsts() const
1292{
1293    cprintf("Load store queue: Dumping instructions.\n");
1294    cprintf("Load queue size: %i\n", loads);
1295    cprintf("Load queue: ");
1296
1297    int load_idx = loadHead;
1298
1299    while (load_idx != loadTail && loadQueue[load_idx]) {
1300        const DynInstPtr &inst(loadQueue[load_idx]);
1301        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1302
1303        incrLdIdx(load_idx);
1304    }
1305    cprintf("\n");
1306
1307    cprintf("Store queue size: %i\n", stores);
1308    cprintf("Store queue: ");
1309
1310    int store_idx = storeHead;
1311
1312    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1313        const DynInstPtr &inst(storeQueue[store_idx].inst);
1314        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1315
1316        incrStIdx(store_idx);
1317    }
1318
1319    cprintf("\n");
1320}
1321
1322#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1323