lsq_unit_impl.hh revision 10327
1
2/*
3 * Copyright (c) 2010-2013 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
103
104    // If this is a split access, wait until all packets are received.
105    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
106        delete pkt->req;
107        delete pkt;
108        return;
109    }
110
111    assert(!cpu->switchedOut());
112    if (!inst->isSquashed()) {
113        if (!state->noWB) {
114            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
115                !state->isLoad) {
116                writeback(inst, pkt);
117            } else {
118                writeback(inst, state->mainPkt);
119            }
120        }
121
122        if (inst->isStore()) {
123            completeStore(state->idx);
124        }
125    }
126
127    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
128        delete state->mainPkt->req;
129        delete state->mainPkt;
130    }
131
132    pkt->req->setAccessLatency();
133    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
134
135    delete state;
136    delete pkt->req;
137    delete pkt;
138}
139
140template <class Impl>
141LSQUnit<Impl>::LSQUnit()
142    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
143      isStoreBlocked(false), isLoadBlocked(false),
144      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
145{
146}
147
148template<class Impl>
149void
150LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
151        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
152        unsigned id)
153{
154    cpu = cpu_ptr;
155    iewStage = iew_ptr;
156
157    lsq = lsq_ptr;
158
159    lsqID = id;
160
161    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
162
163    // Add 1 for the sentinel entry (they are circular queues).
164    LQEntries = maxLQEntries + 1;
165    SQEntries = maxSQEntries + 1;
166
167    //Due to uint8_t index in LSQSenderState
168    assert(LQEntries <= 256);
169    assert(SQEntries <= 256);
170
171    loadQueue.resize(LQEntries);
172    storeQueue.resize(SQEntries);
173
174    depCheckShift = params->LSQDepCheckShift;
175    checkLoads = params->LSQCheckLoads;
176    cachePorts = params->cachePorts;
177    needsTSO = params->needsTSO;
178
179    resetState();
180}
181
182
183template<class Impl>
184void
185LSQUnit<Impl>::resetState()
186{
187    loads = stores = storesToWB = 0;
188
189    loadHead = loadTail = 0;
190
191    storeHead = storeWBIdx = storeTail = 0;
192
193    usedPorts = 0;
194
195    retryPkt = NULL;
196    memDepViolator = NULL;
197
198    blockedLoadSeqNum = 0;
199
200    stalled = false;
201    isLoadBlocked = false;
202    loadBlockedHandled = false;
203
204    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
205}
206
207template<class Impl>
208std::string
209LSQUnit<Impl>::name() const
210{
211    if (Impl::MaxThreads == 1) {
212        return iewStage->name() + ".lsq";
213    } else {
214        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
215    }
216}
217
218template<class Impl>
219void
220LSQUnit<Impl>::regStats()
221{
222    lsqForwLoads
223        .name(name() + ".forwLoads")
224        .desc("Number of loads that had data forwarded from stores");
225
226    invAddrLoads
227        .name(name() + ".invAddrLoads")
228        .desc("Number of loads ignored due to an invalid address");
229
230    lsqSquashedLoads
231        .name(name() + ".squashedLoads")
232        .desc("Number of loads squashed");
233
234    lsqIgnoredResponses
235        .name(name() + ".ignoredResponses")
236        .desc("Number of memory responses ignored because the instruction is squashed");
237
238    lsqMemOrderViolation
239        .name(name() + ".memOrderViolation")
240        .desc("Number of memory ordering violations");
241
242    lsqSquashedStores
243        .name(name() + ".squashedStores")
244        .desc("Number of stores squashed");
245
246    invAddrSwpfs
247        .name(name() + ".invAddrSwpfs")
248        .desc("Number of software prefetches ignored due to an invalid address");
249
250    lsqBlockedLoads
251        .name(name() + ".blockedLoads")
252        .desc("Number of blocked loads due to partial load-store forwarding");
253
254    lsqRescheduledLoads
255        .name(name() + ".rescheduledLoads")
256        .desc("Number of loads that were rescheduled");
257
258    lsqCacheBlocked
259        .name(name() + ".cacheBlocked")
260        .desc("Number of times an access to memory failed due to the cache being blocked");
261}
262
263template<class Impl>
264void
265LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
266{
267    dcachePort = dcache_port;
268}
269
270template<class Impl>
271void
272LSQUnit<Impl>::clearLQ()
273{
274    loadQueue.clear();
275}
276
277template<class Impl>
278void
279LSQUnit<Impl>::clearSQ()
280{
281    storeQueue.clear();
282}
283
284template<class Impl>
285void
286LSQUnit<Impl>::drainSanityCheck() const
287{
288    for (int i = 0; i < loadQueue.size(); ++i)
289        assert(!loadQueue[i]);
290
291    assert(storesToWB == 0);
292    assert(!retryPkt);
293}
294
295template<class Impl>
296void
297LSQUnit<Impl>::takeOverFrom()
298{
299    resetState();
300}
301
302template<class Impl>
303void
304LSQUnit<Impl>::resizeLQ(unsigned size)
305{
306    unsigned size_plus_sentinel = size + 1;
307    assert(size_plus_sentinel >= LQEntries);
308
309    if (size_plus_sentinel > LQEntries) {
310        while (size_plus_sentinel > loadQueue.size()) {
311            DynInstPtr dummy;
312            loadQueue.push_back(dummy);
313            LQEntries++;
314        }
315    } else {
316        LQEntries = size_plus_sentinel;
317    }
318
319    assert(LQEntries <= 256);
320}
321
322template<class Impl>
323void
324LSQUnit<Impl>::resizeSQ(unsigned size)
325{
326    unsigned size_plus_sentinel = size + 1;
327    if (size_plus_sentinel > SQEntries) {
328        while (size_plus_sentinel > storeQueue.size()) {
329            SQEntry dummy;
330            storeQueue.push_back(dummy);
331            SQEntries++;
332        }
333    } else {
334        SQEntries = size_plus_sentinel;
335    }
336
337    assert(SQEntries <= 256);
338}
339
340template <class Impl>
341void
342LSQUnit<Impl>::insert(DynInstPtr &inst)
343{
344    assert(inst->isMemRef());
345
346    assert(inst->isLoad() || inst->isStore());
347
348    if (inst->isLoad()) {
349        insertLoad(inst);
350    } else {
351        insertStore(inst);
352    }
353
354    inst->setInLSQ();
355}
356
357template <class Impl>
358void
359LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
360{
361    assert((loadTail + 1) % LQEntries != loadHead);
362    assert(loads < LQEntries);
363
364    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
365            load_inst->pcState(), loadTail, load_inst->seqNum);
366
367    load_inst->lqIdx = loadTail;
368
369    if (stores == 0) {
370        load_inst->sqIdx = -1;
371    } else {
372        load_inst->sqIdx = storeTail;
373    }
374
375    loadQueue[loadTail] = load_inst;
376
377    incrLdIdx(loadTail);
378
379    ++loads;
380}
381
382template <class Impl>
383void
384LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
385{
386    // Make sure it is not full before inserting an instruction.
387    assert((storeTail + 1) % SQEntries != storeHead);
388    assert(stores < SQEntries);
389
390    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
391            store_inst->pcState(), storeTail, store_inst->seqNum);
392
393    store_inst->sqIdx = storeTail;
394    store_inst->lqIdx = loadTail;
395
396    storeQueue[storeTail] = SQEntry(store_inst);
397
398    incrStIdx(storeTail);
399
400    ++stores;
401}
402
403template <class Impl>
404typename Impl::DynInstPtr
405LSQUnit<Impl>::getMemDepViolator()
406{
407    DynInstPtr temp = memDepViolator;
408
409    memDepViolator = NULL;
410
411    return temp;
412}
413
414template <class Impl>
415unsigned
416LSQUnit<Impl>::numFreeLoadEntries()
417{
418        //LQ has an extra dummy entry to differentiate
419        //empty/full conditions. Subtract 1 from the free entries.
420        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
421        return LQEntries - loads - 1;
422}
423
424template <class Impl>
425unsigned
426LSQUnit<Impl>::numFreeStoreEntries()
427{
428        //SQ has an extra dummy entry to differentiate
429        //empty/full conditions. Subtract 1 from the free entries.
430        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
431        return SQEntries - stores - 1;
432
433 }
434
435template <class Impl>
436void
437LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
438{
439    int load_idx = loadHead;
440    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
441
442    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
443    // address. The CPU can speculatively execute a LL operation after a pending
444    // SC operation in the pipeline and that can make the cache monitor the CPU
445    // is connected to valid while it really shouldn't be.
446    for (int x = 0; x < cpu->numContexts(); x++) {
447        ThreadContext *tc = cpu->getContext(x);
448        bool no_squash = cpu->thread[x]->noSquashFromTC;
449        cpu->thread[x]->noSquashFromTC = true;
450        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
451        cpu->thread[x]->noSquashFromTC = no_squash;
452    }
453
454    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
455
456    DynInstPtr ld_inst = loadQueue[load_idx];
457    if (ld_inst) {
458        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
459        // Check that this snoop didn't just invalidate our lock flag
460        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
461            ld_inst->memReqFlags & Request::LLSC)
462            TheISA::handleLockedSnoopHit(ld_inst.get());
463    }
464
465    // If this is the only load in the LSQ we don't care
466    if (load_idx == loadTail)
467        return;
468
469    incrLdIdx(load_idx);
470
471    bool force_squash = false;
472
473    while (load_idx != loadTail) {
474        DynInstPtr ld_inst = loadQueue[load_idx];
475
476        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
477            incrLdIdx(load_idx);
478            continue;
479        }
480
481        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
482        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
483                    ld_inst->seqNum, load_addr, invalidate_addr);
484
485        if (load_addr == invalidate_addr || force_squash) {
486            if (needsTSO) {
487                // If we have a TSO system, as all loads must be ordered with
488                // all other loads, this load as well as *all* subsequent loads
489                // need to be squashed to prevent possible load reordering.
490                force_squash = true;
491            }
492            if (ld_inst->possibleLoadViolation() || force_squash) {
493                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
494                        pkt->getAddr(), ld_inst->seqNum);
495
496                // Mark the load for re-execution
497                ld_inst->fault = new ReExec;
498            } else {
499                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
500                        pkt->getAddr(), ld_inst->seqNum);
501
502                // Make sure that we don't lose a snoop hitting a LOCKED
503                // address since the LOCK* flags don't get updated until
504                // commit.
505                if (ld_inst->memReqFlags & Request::LLSC)
506                    TheISA::handleLockedSnoopHit(ld_inst.get());
507
508                // If a older load checks this and it's true
509                // then we might have missed the snoop
510                // in which case we need to invalidate to be sure
511                ld_inst->hitExternalSnoop(true);
512            }
513        }
514        incrLdIdx(load_idx);
515    }
516    return;
517}
518
519template <class Impl>
520Fault
521LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
522{
523    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
524    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
525
526    /** @todo in theory you only need to check an instruction that has executed
527     * however, there isn't a good way in the pipeline at the moment to check
528     * all instructions that will execute before the store writes back. Thus,
529     * like the implementation that came before it, we're overly conservative.
530     */
531    while (load_idx != loadTail) {
532        DynInstPtr ld_inst = loadQueue[load_idx];
533        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
534            incrLdIdx(load_idx);
535            continue;
536        }
537
538        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
539        Addr ld_eff_addr2 =
540            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
541
542        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
543            if (inst->isLoad()) {
544                // If this load is to the same block as an external snoop
545                // invalidate that we've observed then the load needs to be
546                // squashed as it could have newer data
547                if (ld_inst->hitExternalSnoop()) {
548                    if (!memDepViolator ||
549                            ld_inst->seqNum < memDepViolator->seqNum) {
550                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
551                                "and [sn:%lli] at address %#x\n",
552                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
553                        memDepViolator = ld_inst;
554
555                        ++lsqMemOrderViolation;
556
557                        return new GenericISA::M5PanicFault(
558                                "Detected fault with inst [sn:%lli] and "
559                                "[sn:%lli] at address %#x\n",
560                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
561                    }
562                }
563
564                // Otherwise, mark the load has a possible load violation
565                // and if we see a snoop before it's commited, we need to squash
566                ld_inst->possibleLoadViolation(true);
567                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
568                        " between instructions [sn:%lli] and [sn:%lli]\n",
569                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
570            } else {
571                // A load/store incorrectly passed this store.
572                // Check if we already have a violator, or if it's newer
573                // squash and refetch.
574                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
575                    break;
576
577                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
578                        "[sn:%lli] at address %#x\n",
579                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
580                memDepViolator = ld_inst;
581
582                ++lsqMemOrderViolation;
583
584                return new GenericISA::M5PanicFault("Detected fault with "
585                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
586                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
587            }
588        }
589
590        incrLdIdx(load_idx);
591    }
592    return NoFault;
593}
594
595
596
597
598template <class Impl>
599Fault
600LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
601{
602    using namespace TheISA;
603    // Execute a specific load.
604    Fault load_fault = NoFault;
605
606    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
607            inst->pcState(), inst->seqNum);
608
609    assert(!inst->isSquashed());
610
611    load_fault = inst->initiateAcc();
612
613    if (inst->isTranslationDelayed() &&
614        load_fault == NoFault)
615        return load_fault;
616
617    // If the instruction faulted or predicated false, then we need to send it
618    // along to commit without the instruction completing.
619    if (load_fault != NoFault || !inst->readPredicate()) {
620        // Send this instruction to commit, also make sure iew stage
621        // realizes there is activity.
622        // Mark it as executed unless it is an uncached load that
623        // needs to hit the head of commit.
624        if (!inst->readPredicate())
625            inst->forwardOldRegs();
626        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
627                inst->seqNum,
628                (load_fault != NoFault ? "fault" : "predication"));
629        if (!(inst->hasRequest() && inst->uncacheable()) ||
630            inst->isAtCommit()) {
631            inst->setExecuted();
632        }
633        iewStage->instToCommit(inst);
634        iewStage->activityThisCycle();
635    } else if (!loadBlocked()) {
636        assert(inst->effAddrValid());
637        int load_idx = inst->lqIdx;
638        incrLdIdx(load_idx);
639
640        if (checkLoads)
641            return checkViolations(load_idx, inst);
642    }
643
644    return load_fault;
645}
646
647template <class Impl>
648Fault
649LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
650{
651    using namespace TheISA;
652    // Make sure that a store exists.
653    assert(stores != 0);
654
655    int store_idx = store_inst->sqIdx;
656
657    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
658            store_inst->pcState(), store_inst->seqNum);
659
660    assert(!store_inst->isSquashed());
661
662    // Check the recently completed loads to see if any match this store's
663    // address.  If so, then we have a memory ordering violation.
664    int load_idx = store_inst->lqIdx;
665
666    Fault store_fault = store_inst->initiateAcc();
667
668    if (store_inst->isTranslationDelayed() &&
669        store_fault == NoFault)
670        return store_fault;
671
672    if (!store_inst->readPredicate())
673        store_inst->forwardOldRegs();
674
675    if (storeQueue[store_idx].size == 0) {
676        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
677                store_inst->pcState(), store_inst->seqNum);
678
679        return store_fault;
680    } else if (!store_inst->readPredicate()) {
681        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
682                store_inst->seqNum);
683        return store_fault;
684    }
685
686    assert(store_fault == NoFault);
687
688    if (store_inst->isStoreConditional()) {
689        // Store conditionals need to set themselves as able to
690        // writeback if we haven't had a fault by here.
691        storeQueue[store_idx].canWB = true;
692
693        ++storesToWB;
694    }
695
696    return checkViolations(load_idx, store_inst);
697
698}
699
700template <class Impl>
701void
702LSQUnit<Impl>::commitLoad()
703{
704    assert(loadQueue[loadHead]);
705
706    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
707            loadQueue[loadHead]->pcState());
708
709    loadQueue[loadHead] = NULL;
710
711    incrLdIdx(loadHead);
712
713    --loads;
714}
715
716template <class Impl>
717void
718LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
719{
720    assert(loads == 0 || loadQueue[loadHead]);
721
722    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
723        commitLoad();
724    }
725}
726
727template <class Impl>
728void
729LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
730{
731    assert(stores == 0 || storeQueue[storeHead].inst);
732
733    int store_idx = storeHead;
734
735    while (store_idx != storeTail) {
736        assert(storeQueue[store_idx].inst);
737        // Mark any stores that are now committed and have not yet
738        // been marked as able to write back.
739        if (!storeQueue[store_idx].canWB) {
740            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
741                break;
742            }
743            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
744                    "%s [sn:%lli]\n",
745                    storeQueue[store_idx].inst->pcState(),
746                    storeQueue[store_idx].inst->seqNum);
747
748            storeQueue[store_idx].canWB = true;
749
750            ++storesToWB;
751        }
752
753        incrStIdx(store_idx);
754    }
755}
756
757template <class Impl>
758void
759LSQUnit<Impl>::writebackPendingStore()
760{
761    if (hasPendingPkt) {
762        assert(pendingPkt != NULL);
763
764        // If the cache is blocked, this will store the packet for retry.
765        if (sendStore(pendingPkt)) {
766            storePostSend(pendingPkt);
767        }
768        pendingPkt = NULL;
769        hasPendingPkt = false;
770    }
771}
772
773template <class Impl>
774void
775LSQUnit<Impl>::writebackStores()
776{
777    // First writeback the second packet from any split store that didn't
778    // complete last cycle because there weren't enough cache ports available.
779    if (TheISA::HasUnalignedMemAcc) {
780        writebackPendingStore();
781    }
782
783    while (storesToWB > 0 &&
784           storeWBIdx != storeTail &&
785           storeQueue[storeWBIdx].inst &&
786           storeQueue[storeWBIdx].canWB &&
787           ((!needsTSO) || (!storeInFlight)) &&
788           usedPorts < cachePorts) {
789
790        if (isStoreBlocked || lsq->cacheBlocked()) {
791            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
792                    " is blocked!\n");
793            break;
794        }
795
796        // Store didn't write any data so no need to write it back to
797        // memory.
798        if (storeQueue[storeWBIdx].size == 0) {
799            completeStore(storeWBIdx);
800
801            incrStIdx(storeWBIdx);
802
803            continue;
804        }
805
806        ++usedPorts;
807
808        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
809            incrStIdx(storeWBIdx);
810
811            continue;
812        }
813
814        assert(storeQueue[storeWBIdx].req);
815        assert(!storeQueue[storeWBIdx].committed);
816
817        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
818            assert(storeQueue[storeWBIdx].sreqLow);
819            assert(storeQueue[storeWBIdx].sreqHigh);
820        }
821
822        DynInstPtr inst = storeQueue[storeWBIdx].inst;
823
824        Request *req = storeQueue[storeWBIdx].req;
825        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
826        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
827
828        storeQueue[storeWBIdx].committed = true;
829
830        assert(!inst->memData);
831        inst->memData = new uint8_t[req->getSize()];
832
833        if (storeQueue[storeWBIdx].isAllZeros)
834            memset(inst->memData, 0, req->getSize());
835        else
836            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
837
838        MemCmd command =
839            req->isSwap() ? MemCmd::SwapReq :
840            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
841        PacketPtr data_pkt;
842        PacketPtr snd_data_pkt = NULL;
843
844        LSQSenderState *state = new LSQSenderState;
845        state->isLoad = false;
846        state->idx = storeWBIdx;
847        state->inst = inst;
848
849        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
850
851            // Build a single data packet if the store isn't split.
852            data_pkt = new Packet(req, command);
853            data_pkt->dataStatic(inst->memData);
854            data_pkt->senderState = state;
855        } else {
856            // Create two packets if the store is split in two.
857            data_pkt = new Packet(sreqLow, command);
858            snd_data_pkt = new Packet(sreqHigh, command);
859
860            data_pkt->dataStatic(inst->memData);
861            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
862
863            data_pkt->senderState = state;
864            snd_data_pkt->senderState = state;
865
866            state->isSplit = true;
867            state->outstanding = 2;
868
869            // Can delete the main request now.
870            delete req;
871            req = sreqLow;
872        }
873
874        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
875                "to Addr:%#x, data:%#x [sn:%lli]\n",
876                storeWBIdx, inst->pcState(),
877                req->getPaddr(), (int)*(inst->memData),
878                inst->seqNum);
879
880        // @todo: Remove this SC hack once the memory system handles it.
881        if (inst->isStoreConditional()) {
882            assert(!storeQueue[storeWBIdx].isSplit);
883            // Disable recording the result temporarily.  Writing to
884            // misc regs normally updates the result, but this is not
885            // the desired behavior when handling store conditionals.
886            inst->recordResult(false);
887            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
888            inst->recordResult(true);
889
890            if (!success) {
891                // Instantly complete this store.
892                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
893                        "Instantly completing it.\n",
894                        inst->seqNum);
895                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
896                cpu->schedule(wb, curTick() + 1);
897                if (cpu->checker) {
898                    // Make sure to set the LLSC data for verification
899                    // if checker is loaded
900                    inst->reqToVerify->setExtraData(0);
901                    inst->completeAcc(data_pkt);
902                }
903                completeStore(storeWBIdx);
904                incrStIdx(storeWBIdx);
905                continue;
906            }
907        } else {
908            // Non-store conditionals do not need a writeback.
909            state->noWB = true;
910        }
911
912        bool split =
913            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
914
915        ThreadContext *thread = cpu->tcBase(lsqID);
916
917        if (req->isMmappedIpr()) {
918            assert(!inst->isStoreConditional());
919            TheISA::handleIprWrite(thread, data_pkt);
920            delete data_pkt;
921            if (split) {
922                assert(snd_data_pkt->req->isMmappedIpr());
923                TheISA::handleIprWrite(thread, snd_data_pkt);
924                delete snd_data_pkt;
925                delete sreqLow;
926                delete sreqHigh;
927            }
928            delete state;
929            delete req;
930            completeStore(storeWBIdx);
931            incrStIdx(storeWBIdx);
932        } else if (!sendStore(data_pkt)) {
933            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
934                    "retry later\n",
935                    inst->seqNum);
936
937            // Need to store the second packet, if split.
938            if (split) {
939                state->pktToSend = true;
940                state->pendingPacket = snd_data_pkt;
941            }
942        } else {
943
944            // If split, try to send the second packet too
945            if (split) {
946                assert(snd_data_pkt);
947
948                // Ensure there are enough ports to use.
949                if (usedPorts < cachePorts) {
950                    ++usedPorts;
951                    if (sendStore(snd_data_pkt)) {
952                        storePostSend(snd_data_pkt);
953                    } else {
954                        DPRINTF(IEW, "D-Cache became blocked when writing"
955                                " [sn:%lli] second packet, will retry later\n",
956                                inst->seqNum);
957                    }
958                } else {
959
960                    // Store the packet for when there's free ports.
961                    assert(pendingPkt == NULL);
962                    pendingPkt = snd_data_pkt;
963                    hasPendingPkt = true;
964                }
965            } else {
966
967                // Not a split store.
968                storePostSend(data_pkt);
969            }
970        }
971    }
972
973    // Not sure this should set it to 0.
974    usedPorts = 0;
975
976    assert(stores >= 0 && storesToWB >= 0);
977}
978
979/*template <class Impl>
980void
981LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
982{
983    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
984                                              mshrSeqNums.end(),
985                                              seqNum);
986
987    if (mshr_it != mshrSeqNums.end()) {
988        mshrSeqNums.erase(mshr_it);
989        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
990    }
991}*/
992
993template <class Impl>
994void
995LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
996{
997    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
998            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
999
1000    int load_idx = loadTail;
1001    decrLdIdx(load_idx);
1002
1003    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1004        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1005                "[sn:%lli]\n",
1006                loadQueue[load_idx]->pcState(),
1007                loadQueue[load_idx]->seqNum);
1008
1009        if (isStalled() && load_idx == stallingLoadIdx) {
1010            stalled = false;
1011            stallingStoreIsn = 0;
1012            stallingLoadIdx = 0;
1013        }
1014
1015        // Clear the smart pointer to make sure it is decremented.
1016        loadQueue[load_idx]->setSquashed();
1017        loadQueue[load_idx] = NULL;
1018        --loads;
1019
1020        // Inefficient!
1021        loadTail = load_idx;
1022
1023        decrLdIdx(load_idx);
1024        ++lsqSquashedLoads;
1025    }
1026
1027    if (isLoadBlocked) {
1028        if (squashed_num < blockedLoadSeqNum) {
1029            isLoadBlocked = false;
1030            loadBlockedHandled = false;
1031            blockedLoadSeqNum = 0;
1032        }
1033    }
1034
1035    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1036        memDepViolator = NULL;
1037    }
1038
1039    int store_idx = storeTail;
1040    decrStIdx(store_idx);
1041
1042    while (stores != 0 &&
1043           storeQueue[store_idx].inst->seqNum > squashed_num) {
1044        // Instructions marked as can WB are already committed.
1045        if (storeQueue[store_idx].canWB) {
1046            break;
1047        }
1048
1049        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1050                "idx:%i [sn:%lli]\n",
1051                storeQueue[store_idx].inst->pcState(),
1052                store_idx, storeQueue[store_idx].inst->seqNum);
1053
1054        // I don't think this can happen.  It should have been cleared
1055        // by the stalling load.
1056        if (isStalled() &&
1057            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1058            panic("Is stalled should have been cleared by stalling load!\n");
1059            stalled = false;
1060            stallingStoreIsn = 0;
1061        }
1062
1063        // Clear the smart pointer to make sure it is decremented.
1064        storeQueue[store_idx].inst->setSquashed();
1065        storeQueue[store_idx].inst = NULL;
1066        storeQueue[store_idx].canWB = 0;
1067
1068        // Must delete request now that it wasn't handed off to
1069        // memory.  This is quite ugly.  @todo: Figure out the proper
1070        // place to really handle request deletes.
1071        delete storeQueue[store_idx].req;
1072        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1073            delete storeQueue[store_idx].sreqLow;
1074            delete storeQueue[store_idx].sreqHigh;
1075
1076            storeQueue[store_idx].sreqLow = NULL;
1077            storeQueue[store_idx].sreqHigh = NULL;
1078        }
1079
1080        storeQueue[store_idx].req = NULL;
1081        --stores;
1082
1083        // Inefficient!
1084        storeTail = store_idx;
1085
1086        decrStIdx(store_idx);
1087        ++lsqSquashedStores;
1088    }
1089}
1090
1091template <class Impl>
1092void
1093LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1094{
1095    if (isStalled() &&
1096        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1097        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1098                "load idx:%i\n",
1099                stallingStoreIsn, stallingLoadIdx);
1100        stalled = false;
1101        stallingStoreIsn = 0;
1102        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1103    }
1104
1105    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1106        // The store is basically completed at this time. This
1107        // only works so long as the checker doesn't try to
1108        // verify the value in memory for stores.
1109        storeQueue[storeWBIdx].inst->setCompleted();
1110
1111        if (cpu->checker) {
1112            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1113        }
1114    }
1115
1116    if (needsTSO) {
1117        storeInFlight = true;
1118    }
1119
1120    incrStIdx(storeWBIdx);
1121}
1122
1123template <class Impl>
1124void
1125LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1126{
1127    iewStage->wakeCPU();
1128
1129    // Squashed instructions do not need to complete their access.
1130    if (inst->isSquashed()) {
1131        assert(!inst->isStore());
1132        ++lsqIgnoredResponses;
1133        return;
1134    }
1135
1136    if (!inst->isExecuted()) {
1137        inst->setExecuted();
1138
1139        // Complete access to copy data to proper place.
1140        inst->completeAcc(pkt);
1141    }
1142
1143    // Need to insert instruction into queue to commit
1144    iewStage->instToCommit(inst);
1145
1146    iewStage->activityThisCycle();
1147
1148    // see if this load changed the PC
1149    iewStage->checkMisprediction(inst);
1150}
1151
1152template <class Impl>
1153void
1154LSQUnit<Impl>::completeStore(int store_idx)
1155{
1156    assert(storeQueue[store_idx].inst);
1157    storeQueue[store_idx].completed = true;
1158    --storesToWB;
1159    // A bit conservative because a store completion may not free up entries,
1160    // but hopefully avoids two store completions in one cycle from making
1161    // the CPU tick twice.
1162    cpu->wakeCPU();
1163    cpu->activityThisCycle();
1164
1165    if (store_idx == storeHead) {
1166        do {
1167            incrStIdx(storeHead);
1168
1169            --stores;
1170        } while (storeQueue[storeHead].completed &&
1171                 storeHead != storeTail);
1172
1173        iewStage->updateLSQNextCycle = true;
1174    }
1175
1176    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1177            "idx:%i\n",
1178            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1179
1180#if TRACING_ON
1181    if (DTRACE(O3PipeView)) {
1182        storeQueue[store_idx].inst->storeTick =
1183            curTick() - storeQueue[store_idx].inst->fetchTick;
1184    }
1185#endif
1186
1187    if (isStalled() &&
1188        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1189        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1190                "load idx:%i\n",
1191                stallingStoreIsn, stallingLoadIdx);
1192        stalled = false;
1193        stallingStoreIsn = 0;
1194        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1195    }
1196
1197    storeQueue[store_idx].inst->setCompleted();
1198
1199    if (needsTSO) {
1200        storeInFlight = false;
1201    }
1202
1203    // Tell the checker we've completed this instruction.  Some stores
1204    // may get reported twice to the checker, but the checker can
1205    // handle that case.
1206    if (cpu->checker) {
1207        cpu->checker->verify(storeQueue[store_idx].inst);
1208    }
1209}
1210
1211template <class Impl>
1212bool
1213LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1214{
1215    if (!dcachePort->sendTimingReq(data_pkt)) {
1216        // Need to handle becoming blocked on a store.
1217        isStoreBlocked = true;
1218        ++lsqCacheBlocked;
1219        assert(retryPkt == NULL);
1220        retryPkt = data_pkt;
1221        lsq->setRetryTid(lsqID);
1222        return false;
1223    }
1224    return true;
1225}
1226
1227template <class Impl>
1228void
1229LSQUnit<Impl>::recvRetry()
1230{
1231    if (isStoreBlocked) {
1232        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1233        assert(retryPkt != NULL);
1234
1235        LSQSenderState *state =
1236            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1237
1238        if (dcachePort->sendTimingReq(retryPkt)) {
1239            // Don't finish the store unless this is the last packet.
1240            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1241                    state->pendingPacket == retryPkt) {
1242                state->pktToSend = false;
1243                storePostSend(retryPkt);
1244            }
1245            retryPkt = NULL;
1246            isStoreBlocked = false;
1247            lsq->setRetryTid(InvalidThreadID);
1248
1249            // Send any outstanding packet.
1250            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1251                assert(state->pendingPacket);
1252                if (sendStore(state->pendingPacket)) {
1253                    storePostSend(state->pendingPacket);
1254                }
1255            }
1256        } else {
1257            // Still blocked!
1258            ++lsqCacheBlocked;
1259            lsq->setRetryTid(lsqID);
1260        }
1261    } else if (isLoadBlocked) {
1262        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1263                "no need to resend packet.\n");
1264    } else {
1265        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1266    }
1267}
1268
1269template <class Impl>
1270inline void
1271LSQUnit<Impl>::incrStIdx(int &store_idx) const
1272{
1273    if (++store_idx >= SQEntries)
1274        store_idx = 0;
1275}
1276
1277template <class Impl>
1278inline void
1279LSQUnit<Impl>::decrStIdx(int &store_idx) const
1280{
1281    if (--store_idx < 0)
1282        store_idx += SQEntries;
1283}
1284
1285template <class Impl>
1286inline void
1287LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1288{
1289    if (++load_idx >= LQEntries)
1290        load_idx = 0;
1291}
1292
1293template <class Impl>
1294inline void
1295LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1296{
1297    if (--load_idx < 0)
1298        load_idx += LQEntries;
1299}
1300
1301template <class Impl>
1302void
1303LSQUnit<Impl>::dumpInsts() const
1304{
1305    cprintf("Load store queue: Dumping instructions.\n");
1306    cprintf("Load queue size: %i\n", loads);
1307    cprintf("Load queue: ");
1308
1309    int load_idx = loadHead;
1310
1311    while (load_idx != loadTail && loadQueue[load_idx]) {
1312        const DynInstPtr &inst(loadQueue[load_idx]);
1313        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1314
1315        incrLdIdx(load_idx);
1316    }
1317    cprintf("\n");
1318
1319    cprintf("Store queue size: %i\n", stores);
1320    cprintf("Store queue: ");
1321
1322    int store_idx = storeHead;
1323
1324    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1325        const DynInstPtr &inst(storeQueue[store_idx].inst);
1326        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1327
1328        incrStIdx(store_idx);
1329    }
1330
1331    cprintf("\n");
1332}
1333
1334#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1335