lsq_unit_impl.hh revision 10239:592f0bb6bd6f
1
2/*
3 * Copyright (c) 2010-2013 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
103
104    // If this is a split access, wait until all packets are received.
105    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
106        delete pkt->req;
107        delete pkt;
108        return;
109    }
110
111    assert(!cpu->switchedOut());
112    if (inst->isSquashed()) {
113        iewStage->decrWb(inst->seqNum);
114    } else {
115        if (!state->noWB) {
116            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
117                !state->isLoad) {
118                writeback(inst, pkt);
119            } else {
120                writeback(inst, state->mainPkt);
121            }
122        }
123
124        if (inst->isStore()) {
125            completeStore(state->idx);
126        }
127    }
128
129    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
130        delete state->mainPkt->req;
131        delete state->mainPkt;
132    }
133
134    pkt->req->setAccessLatency();
135    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
136
137    delete state;
138    delete pkt->req;
139    delete pkt;
140}
141
142template <class Impl>
143LSQUnit<Impl>::LSQUnit()
144    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
145      isStoreBlocked(false), isLoadBlocked(false),
146      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
147{
148}
149
150template<class Impl>
151void
152LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
153        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
154        unsigned id)
155{
156    cpu = cpu_ptr;
157    iewStage = iew_ptr;
158
159    lsq = lsq_ptr;
160
161    lsqID = id;
162
163    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
164
165    // Add 1 for the sentinel entry (they are circular queues).
166    LQEntries = maxLQEntries + 1;
167    SQEntries = maxSQEntries + 1;
168
169    //Due to uint8_t index in LSQSenderState
170    assert(LQEntries <= 256);
171    assert(SQEntries <= 256);
172
173    loadQueue.resize(LQEntries);
174    storeQueue.resize(SQEntries);
175
176    depCheckShift = params->LSQDepCheckShift;
177    checkLoads = params->LSQCheckLoads;
178    cachePorts = params->cachePorts;
179    needsTSO = params->needsTSO;
180
181    resetState();
182}
183
184
185template<class Impl>
186void
187LSQUnit<Impl>::resetState()
188{
189    loads = stores = storesToWB = 0;
190
191    loadHead = loadTail = 0;
192
193    storeHead = storeWBIdx = storeTail = 0;
194
195    usedPorts = 0;
196
197    retryPkt = NULL;
198    memDepViolator = NULL;
199
200    blockedLoadSeqNum = 0;
201
202    stalled = false;
203    isLoadBlocked = false;
204    loadBlockedHandled = false;
205
206    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
207}
208
209template<class Impl>
210std::string
211LSQUnit<Impl>::name() const
212{
213    if (Impl::MaxThreads == 1) {
214        return iewStage->name() + ".lsq";
215    } else {
216        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
217    }
218}
219
220template<class Impl>
221void
222LSQUnit<Impl>::regStats()
223{
224    lsqForwLoads
225        .name(name() + ".forwLoads")
226        .desc("Number of loads that had data forwarded from stores");
227
228    invAddrLoads
229        .name(name() + ".invAddrLoads")
230        .desc("Number of loads ignored due to an invalid address");
231
232    lsqSquashedLoads
233        .name(name() + ".squashedLoads")
234        .desc("Number of loads squashed");
235
236    lsqIgnoredResponses
237        .name(name() + ".ignoredResponses")
238        .desc("Number of memory responses ignored because the instruction is squashed");
239
240    lsqMemOrderViolation
241        .name(name() + ".memOrderViolation")
242        .desc("Number of memory ordering violations");
243
244    lsqSquashedStores
245        .name(name() + ".squashedStores")
246        .desc("Number of stores squashed");
247
248    invAddrSwpfs
249        .name(name() + ".invAddrSwpfs")
250        .desc("Number of software prefetches ignored due to an invalid address");
251
252    lsqBlockedLoads
253        .name(name() + ".blockedLoads")
254        .desc("Number of blocked loads due to partial load-store forwarding");
255
256    lsqRescheduledLoads
257        .name(name() + ".rescheduledLoads")
258        .desc("Number of loads that were rescheduled");
259
260    lsqCacheBlocked
261        .name(name() + ".cacheBlocked")
262        .desc("Number of times an access to memory failed due to the cache being blocked");
263}
264
265template<class Impl>
266void
267LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
268{
269    dcachePort = dcache_port;
270}
271
272template<class Impl>
273void
274LSQUnit<Impl>::clearLQ()
275{
276    loadQueue.clear();
277}
278
279template<class Impl>
280void
281LSQUnit<Impl>::clearSQ()
282{
283    storeQueue.clear();
284}
285
286template<class Impl>
287void
288LSQUnit<Impl>::drainSanityCheck() const
289{
290    for (int i = 0; i < loadQueue.size(); ++i)
291        assert(!loadQueue[i]);
292
293    assert(storesToWB == 0);
294    assert(!retryPkt);
295}
296
297template<class Impl>
298void
299LSQUnit<Impl>::takeOverFrom()
300{
301    resetState();
302}
303
304template<class Impl>
305void
306LSQUnit<Impl>::resizeLQ(unsigned size)
307{
308    unsigned size_plus_sentinel = size + 1;
309    assert(size_plus_sentinel >= LQEntries);
310
311    if (size_plus_sentinel > LQEntries) {
312        while (size_plus_sentinel > loadQueue.size()) {
313            DynInstPtr dummy;
314            loadQueue.push_back(dummy);
315            LQEntries++;
316        }
317    } else {
318        LQEntries = size_plus_sentinel;
319    }
320
321    assert(LQEntries <= 256);
322}
323
324template<class Impl>
325void
326LSQUnit<Impl>::resizeSQ(unsigned size)
327{
328    unsigned size_plus_sentinel = size + 1;
329    if (size_plus_sentinel > SQEntries) {
330        while (size_plus_sentinel > storeQueue.size()) {
331            SQEntry dummy;
332            storeQueue.push_back(dummy);
333            SQEntries++;
334        }
335    } else {
336        SQEntries = size_plus_sentinel;
337    }
338
339    assert(SQEntries <= 256);
340}
341
342template <class Impl>
343void
344LSQUnit<Impl>::insert(DynInstPtr &inst)
345{
346    assert(inst->isMemRef());
347
348    assert(inst->isLoad() || inst->isStore());
349
350    if (inst->isLoad()) {
351        insertLoad(inst);
352    } else {
353        insertStore(inst);
354    }
355
356    inst->setInLSQ();
357}
358
359template <class Impl>
360void
361LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
362{
363    assert((loadTail + 1) % LQEntries != loadHead);
364    assert(loads < LQEntries);
365
366    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
367            load_inst->pcState(), loadTail, load_inst->seqNum);
368
369    load_inst->lqIdx = loadTail;
370
371    if (stores == 0) {
372        load_inst->sqIdx = -1;
373    } else {
374        load_inst->sqIdx = storeTail;
375    }
376
377    loadQueue[loadTail] = load_inst;
378
379    incrLdIdx(loadTail);
380
381    ++loads;
382}
383
384template <class Impl>
385void
386LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
387{
388    // Make sure it is not full before inserting an instruction.
389    assert((storeTail + 1) % SQEntries != storeHead);
390    assert(stores < SQEntries);
391
392    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
393            store_inst->pcState(), storeTail, store_inst->seqNum);
394
395    store_inst->sqIdx = storeTail;
396    store_inst->lqIdx = loadTail;
397
398    storeQueue[storeTail] = SQEntry(store_inst);
399
400    incrStIdx(storeTail);
401
402    ++stores;
403}
404
405template <class Impl>
406typename Impl::DynInstPtr
407LSQUnit<Impl>::getMemDepViolator()
408{
409    DynInstPtr temp = memDepViolator;
410
411    memDepViolator = NULL;
412
413    return temp;
414}
415
416template <class Impl>
417unsigned
418LSQUnit<Impl>::numFreeLoadEntries()
419{
420        //LQ has an extra dummy entry to differentiate
421        //empty/full conditions. Subtract 1 from the free entries.
422        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
423        return LQEntries - loads - 1;
424}
425
426template <class Impl>
427unsigned
428LSQUnit<Impl>::numFreeStoreEntries()
429{
430        //SQ has an extra dummy entry to differentiate
431        //empty/full conditions. Subtract 1 from the free entries.
432        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
433        return SQEntries - stores - 1;
434
435 }
436
437template <class Impl>
438void
439LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
440{
441    int load_idx = loadHead;
442    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
443
444    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
445    // address. The CPU can speculatively execute a LL operation after a pending
446    // SC operation in the pipeline and that can make the cache monitor the CPU
447    // is connected to valid while it really shouldn't be.
448    for (int x = 0; x < cpu->numContexts(); x++) {
449        ThreadContext *tc = cpu->getContext(x);
450        bool no_squash = cpu->thread[x]->noSquashFromTC;
451        cpu->thread[x]->noSquashFromTC = true;
452        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
453        cpu->thread[x]->noSquashFromTC = no_squash;
454    }
455
456    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
457
458    DynInstPtr ld_inst = loadQueue[load_idx];
459    if (ld_inst) {
460        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
461        // Check that this snoop didn't just invalidate our lock flag
462        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
463            ld_inst->memReqFlags & Request::LLSC)
464            TheISA::handleLockedSnoopHit(ld_inst.get());
465    }
466
467    // If this is the only load in the LSQ we don't care
468    if (load_idx == loadTail)
469        return;
470
471    incrLdIdx(load_idx);
472
473    bool force_squash = false;
474
475    while (load_idx != loadTail) {
476        DynInstPtr ld_inst = loadQueue[load_idx];
477
478        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
479            incrLdIdx(load_idx);
480            continue;
481        }
482
483        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
484        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
485                    ld_inst->seqNum, load_addr, invalidate_addr);
486
487        if (load_addr == invalidate_addr || force_squash) {
488            if (needsTSO) {
489                // If we have a TSO system, as all loads must be ordered with
490                // all other loads, this load as well as *all* subsequent loads
491                // need to be squashed to prevent possible load reordering.
492                force_squash = true;
493            }
494            if (ld_inst->possibleLoadViolation() || force_squash) {
495                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
496                        pkt->getAddr(), ld_inst->seqNum);
497
498                // Mark the load for re-execution
499                ld_inst->fault = new ReExec;
500            } else {
501                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
502                        pkt->getAddr(), ld_inst->seqNum);
503
504                // Make sure that we don't lose a snoop hitting a LOCKED
505                // address since the LOCK* flags don't get updated until
506                // commit.
507                if (ld_inst->memReqFlags & Request::LLSC)
508                    TheISA::handleLockedSnoopHit(ld_inst.get());
509
510                // If a older load checks this and it's true
511                // then we might have missed the snoop
512                // in which case we need to invalidate to be sure
513                ld_inst->hitExternalSnoop(true);
514            }
515        }
516        incrLdIdx(load_idx);
517    }
518    return;
519}
520
521template <class Impl>
522Fault
523LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
524{
525    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
526    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
527
528    /** @todo in theory you only need to check an instruction that has executed
529     * however, there isn't a good way in the pipeline at the moment to check
530     * all instructions that will execute before the store writes back. Thus,
531     * like the implementation that came before it, we're overly conservative.
532     */
533    while (load_idx != loadTail) {
534        DynInstPtr ld_inst = loadQueue[load_idx];
535        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
536            incrLdIdx(load_idx);
537            continue;
538        }
539
540        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
541        Addr ld_eff_addr2 =
542            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
543
544        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
545            if (inst->isLoad()) {
546                // If this load is to the same block as an external snoop
547                // invalidate that we've observed then the load needs to be
548                // squashed as it could have newer data
549                if (ld_inst->hitExternalSnoop()) {
550                    if (!memDepViolator ||
551                            ld_inst->seqNum < memDepViolator->seqNum) {
552                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
553                                "and [sn:%lli] at address %#x\n",
554                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
555                        memDepViolator = ld_inst;
556
557                        ++lsqMemOrderViolation;
558
559                        return new GenericISA::M5PanicFault(
560                                "Detected fault with inst [sn:%lli] and "
561                                "[sn:%lli] at address %#x\n",
562                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
563                    }
564                }
565
566                // Otherwise, mark the load has a possible load violation
567                // and if we see a snoop before it's commited, we need to squash
568                ld_inst->possibleLoadViolation(true);
569                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
570                        " between instructions [sn:%lli] and [sn:%lli]\n",
571                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
572            } else {
573                // A load/store incorrectly passed this store.
574                // Check if we already have a violator, or if it's newer
575                // squash and refetch.
576                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
577                    break;
578
579                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
580                        "[sn:%lli] at address %#x\n",
581                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
582                memDepViolator = ld_inst;
583
584                ++lsqMemOrderViolation;
585
586                return new GenericISA::M5PanicFault("Detected fault with "
587                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
588                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
589            }
590        }
591
592        incrLdIdx(load_idx);
593    }
594    return NoFault;
595}
596
597
598
599
600template <class Impl>
601Fault
602LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
603{
604    using namespace TheISA;
605    // Execute a specific load.
606    Fault load_fault = NoFault;
607
608    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
609            inst->pcState(), inst->seqNum);
610
611    assert(!inst->isSquashed());
612
613    load_fault = inst->initiateAcc();
614
615    if (inst->isTranslationDelayed() &&
616        load_fault == NoFault)
617        return load_fault;
618
619    // If the instruction faulted or predicated false, then we need to send it
620    // along to commit without the instruction completing.
621    if (load_fault != NoFault || !inst->readPredicate()) {
622        // Send this instruction to commit, also make sure iew stage
623        // realizes there is activity.
624        // Mark it as executed unless it is an uncached load that
625        // needs to hit the head of commit.
626        if (!inst->readPredicate())
627            inst->forwardOldRegs();
628        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
629                inst->seqNum,
630                (load_fault != NoFault ? "fault" : "predication"));
631        if (!(inst->hasRequest() && inst->uncacheable()) ||
632            inst->isAtCommit()) {
633            inst->setExecuted();
634        }
635        iewStage->instToCommit(inst);
636        iewStage->activityThisCycle();
637    } else if (!loadBlocked()) {
638        assert(inst->effAddrValid());
639        int load_idx = inst->lqIdx;
640        incrLdIdx(load_idx);
641
642        if (checkLoads)
643            return checkViolations(load_idx, inst);
644    }
645
646    return load_fault;
647}
648
649template <class Impl>
650Fault
651LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
652{
653    using namespace TheISA;
654    // Make sure that a store exists.
655    assert(stores != 0);
656
657    int store_idx = store_inst->sqIdx;
658
659    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
660            store_inst->pcState(), store_inst->seqNum);
661
662    assert(!store_inst->isSquashed());
663
664    // Check the recently completed loads to see if any match this store's
665    // address.  If so, then we have a memory ordering violation.
666    int load_idx = store_inst->lqIdx;
667
668    Fault store_fault = store_inst->initiateAcc();
669
670    if (store_inst->isTranslationDelayed() &&
671        store_fault == NoFault)
672        return store_fault;
673
674    if (!store_inst->readPredicate())
675        store_inst->forwardOldRegs();
676
677    if (storeQueue[store_idx].size == 0) {
678        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
679                store_inst->pcState(), store_inst->seqNum);
680
681        return store_fault;
682    } else if (!store_inst->readPredicate()) {
683        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
684                store_inst->seqNum);
685        return store_fault;
686    }
687
688    assert(store_fault == NoFault);
689
690    if (store_inst->isStoreConditional()) {
691        // Store conditionals need to set themselves as able to
692        // writeback if we haven't had a fault by here.
693        storeQueue[store_idx].canWB = true;
694
695        ++storesToWB;
696    }
697
698    return checkViolations(load_idx, store_inst);
699
700}
701
702template <class Impl>
703void
704LSQUnit<Impl>::commitLoad()
705{
706    assert(loadQueue[loadHead]);
707
708    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
709            loadQueue[loadHead]->pcState());
710
711    loadQueue[loadHead] = NULL;
712
713    incrLdIdx(loadHead);
714
715    --loads;
716}
717
718template <class Impl>
719void
720LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
721{
722    assert(loads == 0 || loadQueue[loadHead]);
723
724    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
725        commitLoad();
726    }
727}
728
729template <class Impl>
730void
731LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
732{
733    assert(stores == 0 || storeQueue[storeHead].inst);
734
735    int store_idx = storeHead;
736
737    while (store_idx != storeTail) {
738        assert(storeQueue[store_idx].inst);
739        // Mark any stores that are now committed and have not yet
740        // been marked as able to write back.
741        if (!storeQueue[store_idx].canWB) {
742            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
743                break;
744            }
745            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
746                    "%s [sn:%lli]\n",
747                    storeQueue[store_idx].inst->pcState(),
748                    storeQueue[store_idx].inst->seqNum);
749
750            storeQueue[store_idx].canWB = true;
751
752            ++storesToWB;
753        }
754
755        incrStIdx(store_idx);
756    }
757}
758
759template <class Impl>
760void
761LSQUnit<Impl>::writebackPendingStore()
762{
763    if (hasPendingPkt) {
764        assert(pendingPkt != NULL);
765
766        // If the cache is blocked, this will store the packet for retry.
767        if (sendStore(pendingPkt)) {
768            storePostSend(pendingPkt);
769        }
770        pendingPkt = NULL;
771        hasPendingPkt = false;
772    }
773}
774
775template <class Impl>
776void
777LSQUnit<Impl>::writebackStores()
778{
779    // First writeback the second packet from any split store that didn't
780    // complete last cycle because there weren't enough cache ports available.
781    if (TheISA::HasUnalignedMemAcc) {
782        writebackPendingStore();
783    }
784
785    while (storesToWB > 0 &&
786           storeWBIdx != storeTail &&
787           storeQueue[storeWBIdx].inst &&
788           storeQueue[storeWBIdx].canWB &&
789           ((!needsTSO) || (!storeInFlight)) &&
790           usedPorts < cachePorts) {
791
792        if (isStoreBlocked || lsq->cacheBlocked()) {
793            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
794                    " is blocked!\n");
795            break;
796        }
797
798        // Store didn't write any data so no need to write it back to
799        // memory.
800        if (storeQueue[storeWBIdx].size == 0) {
801            completeStore(storeWBIdx);
802
803            incrStIdx(storeWBIdx);
804
805            continue;
806        }
807
808        ++usedPorts;
809
810        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
811            incrStIdx(storeWBIdx);
812
813            continue;
814        }
815
816        assert(storeQueue[storeWBIdx].req);
817        assert(!storeQueue[storeWBIdx].committed);
818
819        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
820            assert(storeQueue[storeWBIdx].sreqLow);
821            assert(storeQueue[storeWBIdx].sreqHigh);
822        }
823
824        DynInstPtr inst = storeQueue[storeWBIdx].inst;
825
826        Request *req = storeQueue[storeWBIdx].req;
827        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
828        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
829
830        storeQueue[storeWBIdx].committed = true;
831
832        assert(!inst->memData);
833        inst->memData = new uint8_t[req->getSize()];
834
835        if (storeQueue[storeWBIdx].isAllZeros)
836            memset(inst->memData, 0, req->getSize());
837        else
838            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
839
840        MemCmd command =
841            req->isSwap() ? MemCmd::SwapReq :
842            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
843        PacketPtr data_pkt;
844        PacketPtr snd_data_pkt = NULL;
845
846        LSQSenderState *state = new LSQSenderState;
847        state->isLoad = false;
848        state->idx = storeWBIdx;
849        state->inst = inst;
850
851        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
852
853            // Build a single data packet if the store isn't split.
854            data_pkt = new Packet(req, command);
855            data_pkt->dataStatic(inst->memData);
856            data_pkt->senderState = state;
857        } else {
858            // Create two packets if the store is split in two.
859            data_pkt = new Packet(sreqLow, command);
860            snd_data_pkt = new Packet(sreqHigh, command);
861
862            data_pkt->dataStatic(inst->memData);
863            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
864
865            data_pkt->senderState = state;
866            snd_data_pkt->senderState = state;
867
868            state->isSplit = true;
869            state->outstanding = 2;
870
871            // Can delete the main request now.
872            delete req;
873            req = sreqLow;
874        }
875
876        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
877                "to Addr:%#x, data:%#x [sn:%lli]\n",
878                storeWBIdx, inst->pcState(),
879                req->getPaddr(), (int)*(inst->memData),
880                inst->seqNum);
881
882        // @todo: Remove this SC hack once the memory system handles it.
883        if (inst->isStoreConditional()) {
884            assert(!storeQueue[storeWBIdx].isSplit);
885            // Disable recording the result temporarily.  Writing to
886            // misc regs normally updates the result, but this is not
887            // the desired behavior when handling store conditionals.
888            inst->recordResult(false);
889            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
890            inst->recordResult(true);
891
892            if (!success) {
893                // Instantly complete this store.
894                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
895                        "Instantly completing it.\n",
896                        inst->seqNum);
897                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
898                cpu->schedule(wb, curTick() + 1);
899                if (cpu->checker) {
900                    // Make sure to set the LLSC data for verification
901                    // if checker is loaded
902                    inst->reqToVerify->setExtraData(0);
903                    inst->completeAcc(data_pkt);
904                }
905                completeStore(storeWBIdx);
906                incrStIdx(storeWBIdx);
907                continue;
908            }
909        } else {
910            // Non-store conditionals do not need a writeback.
911            state->noWB = true;
912        }
913
914        bool split =
915            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
916
917        ThreadContext *thread = cpu->tcBase(lsqID);
918
919        if (req->isMmappedIpr()) {
920            assert(!inst->isStoreConditional());
921            TheISA::handleIprWrite(thread, data_pkt);
922            delete data_pkt;
923            if (split) {
924                assert(snd_data_pkt->req->isMmappedIpr());
925                TheISA::handleIprWrite(thread, snd_data_pkt);
926                delete snd_data_pkt;
927                delete sreqLow;
928                delete sreqHigh;
929            }
930            delete state;
931            delete req;
932            completeStore(storeWBIdx);
933            incrStIdx(storeWBIdx);
934        } else if (!sendStore(data_pkt)) {
935            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
936                    "retry later\n",
937                    inst->seqNum);
938
939            // Need to store the second packet, if split.
940            if (split) {
941                state->pktToSend = true;
942                state->pendingPacket = snd_data_pkt;
943            }
944        } else {
945
946            // If split, try to send the second packet too
947            if (split) {
948                assert(snd_data_pkt);
949
950                // Ensure there are enough ports to use.
951                if (usedPorts < cachePorts) {
952                    ++usedPorts;
953                    if (sendStore(snd_data_pkt)) {
954                        storePostSend(snd_data_pkt);
955                    } else {
956                        DPRINTF(IEW, "D-Cache became blocked when writing"
957                                " [sn:%lli] second packet, will retry later\n",
958                                inst->seqNum);
959                    }
960                } else {
961
962                    // Store the packet for when there's free ports.
963                    assert(pendingPkt == NULL);
964                    pendingPkt = snd_data_pkt;
965                    hasPendingPkt = true;
966                }
967            } else {
968
969                // Not a split store.
970                storePostSend(data_pkt);
971            }
972        }
973    }
974
975    // Not sure this should set it to 0.
976    usedPorts = 0;
977
978    assert(stores >= 0 && storesToWB >= 0);
979}
980
981/*template <class Impl>
982void
983LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
984{
985    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
986                                              mshrSeqNums.end(),
987                                              seqNum);
988
989    if (mshr_it != mshrSeqNums.end()) {
990        mshrSeqNums.erase(mshr_it);
991        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
992    }
993}*/
994
995template <class Impl>
996void
997LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
998{
999    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1000            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1001
1002    int load_idx = loadTail;
1003    decrLdIdx(load_idx);
1004
1005    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1006        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1007                "[sn:%lli]\n",
1008                loadQueue[load_idx]->pcState(),
1009                loadQueue[load_idx]->seqNum);
1010
1011        if (isStalled() && load_idx == stallingLoadIdx) {
1012            stalled = false;
1013            stallingStoreIsn = 0;
1014            stallingLoadIdx = 0;
1015        }
1016
1017        // Clear the smart pointer to make sure it is decremented.
1018        loadQueue[load_idx]->setSquashed();
1019        loadQueue[load_idx] = NULL;
1020        --loads;
1021
1022        // Inefficient!
1023        loadTail = load_idx;
1024
1025        decrLdIdx(load_idx);
1026        ++lsqSquashedLoads;
1027    }
1028
1029    if (isLoadBlocked) {
1030        if (squashed_num < blockedLoadSeqNum) {
1031            isLoadBlocked = false;
1032            loadBlockedHandled = false;
1033            blockedLoadSeqNum = 0;
1034        }
1035    }
1036
1037    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1038        memDepViolator = NULL;
1039    }
1040
1041    int store_idx = storeTail;
1042    decrStIdx(store_idx);
1043
1044    while (stores != 0 &&
1045           storeQueue[store_idx].inst->seqNum > squashed_num) {
1046        // Instructions marked as can WB are already committed.
1047        if (storeQueue[store_idx].canWB) {
1048            break;
1049        }
1050
1051        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1052                "idx:%i [sn:%lli]\n",
1053                storeQueue[store_idx].inst->pcState(),
1054                store_idx, storeQueue[store_idx].inst->seqNum);
1055
1056        // I don't think this can happen.  It should have been cleared
1057        // by the stalling load.
1058        if (isStalled() &&
1059            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1060            panic("Is stalled should have been cleared by stalling load!\n");
1061            stalled = false;
1062            stallingStoreIsn = 0;
1063        }
1064
1065        // Clear the smart pointer to make sure it is decremented.
1066        storeQueue[store_idx].inst->setSquashed();
1067        storeQueue[store_idx].inst = NULL;
1068        storeQueue[store_idx].canWB = 0;
1069
1070        // Must delete request now that it wasn't handed off to
1071        // memory.  This is quite ugly.  @todo: Figure out the proper
1072        // place to really handle request deletes.
1073        delete storeQueue[store_idx].req;
1074        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1075            delete storeQueue[store_idx].sreqLow;
1076            delete storeQueue[store_idx].sreqHigh;
1077
1078            storeQueue[store_idx].sreqLow = NULL;
1079            storeQueue[store_idx].sreqHigh = NULL;
1080        }
1081
1082        storeQueue[store_idx].req = NULL;
1083        --stores;
1084
1085        // Inefficient!
1086        storeTail = store_idx;
1087
1088        decrStIdx(store_idx);
1089        ++lsqSquashedStores;
1090    }
1091}
1092
1093template <class Impl>
1094void
1095LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1096{
1097    if (isStalled() &&
1098        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1099        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1100                "load idx:%i\n",
1101                stallingStoreIsn, stallingLoadIdx);
1102        stalled = false;
1103        stallingStoreIsn = 0;
1104        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1105    }
1106
1107    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1108        // The store is basically completed at this time. This
1109        // only works so long as the checker doesn't try to
1110        // verify the value in memory for stores.
1111        storeQueue[storeWBIdx].inst->setCompleted();
1112
1113        if (cpu->checker) {
1114            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1115        }
1116    }
1117
1118    if (needsTSO) {
1119        storeInFlight = true;
1120    }
1121
1122    incrStIdx(storeWBIdx);
1123}
1124
1125template <class Impl>
1126void
1127LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1128{
1129    iewStage->wakeCPU();
1130
1131    // Squashed instructions do not need to complete their access.
1132    if (inst->isSquashed()) {
1133        iewStage->decrWb(inst->seqNum);
1134        assert(!inst->isStore());
1135        ++lsqIgnoredResponses;
1136        return;
1137    }
1138
1139    if (!inst->isExecuted()) {
1140        inst->setExecuted();
1141
1142        // Complete access to copy data to proper place.
1143        inst->completeAcc(pkt);
1144    }
1145
1146    // Need to insert instruction into queue to commit
1147    iewStage->instToCommit(inst);
1148
1149    iewStage->activityThisCycle();
1150
1151    // see if this load changed the PC
1152    iewStage->checkMisprediction(inst);
1153}
1154
1155template <class Impl>
1156void
1157LSQUnit<Impl>::completeStore(int store_idx)
1158{
1159    assert(storeQueue[store_idx].inst);
1160    storeQueue[store_idx].completed = true;
1161    --storesToWB;
1162    // A bit conservative because a store completion may not free up entries,
1163    // but hopefully avoids two store completions in one cycle from making
1164    // the CPU tick twice.
1165    cpu->wakeCPU();
1166    cpu->activityThisCycle();
1167
1168    if (store_idx == storeHead) {
1169        do {
1170            incrStIdx(storeHead);
1171
1172            --stores;
1173        } while (storeQueue[storeHead].completed &&
1174                 storeHead != storeTail);
1175
1176        iewStage->updateLSQNextCycle = true;
1177    }
1178
1179    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1180            "idx:%i\n",
1181            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1182
1183#if TRACING_ON
1184    if (DTRACE(O3PipeView)) {
1185        storeQueue[store_idx].inst->storeTick =
1186            curTick() - storeQueue[store_idx].inst->fetchTick;
1187    }
1188#endif
1189
1190    if (isStalled() &&
1191        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1192        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1193                "load idx:%i\n",
1194                stallingStoreIsn, stallingLoadIdx);
1195        stalled = false;
1196        stallingStoreIsn = 0;
1197        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1198    }
1199
1200    storeQueue[store_idx].inst->setCompleted();
1201
1202    if (needsTSO) {
1203        storeInFlight = false;
1204    }
1205
1206    // Tell the checker we've completed this instruction.  Some stores
1207    // may get reported twice to the checker, but the checker can
1208    // handle that case.
1209    if (cpu->checker) {
1210        cpu->checker->verify(storeQueue[store_idx].inst);
1211    }
1212}
1213
1214template <class Impl>
1215bool
1216LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1217{
1218    if (!dcachePort->sendTimingReq(data_pkt)) {
1219        // Need to handle becoming blocked on a store.
1220        isStoreBlocked = true;
1221        ++lsqCacheBlocked;
1222        assert(retryPkt == NULL);
1223        retryPkt = data_pkt;
1224        lsq->setRetryTid(lsqID);
1225        return false;
1226    }
1227    return true;
1228}
1229
1230template <class Impl>
1231void
1232LSQUnit<Impl>::recvRetry()
1233{
1234    if (isStoreBlocked) {
1235        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1236        assert(retryPkt != NULL);
1237
1238        LSQSenderState *state =
1239            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1240
1241        if (dcachePort->sendTimingReq(retryPkt)) {
1242            // Don't finish the store unless this is the last packet.
1243            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1244                    state->pendingPacket == retryPkt) {
1245                state->pktToSend = false;
1246                storePostSend(retryPkt);
1247            }
1248            retryPkt = NULL;
1249            isStoreBlocked = false;
1250            lsq->setRetryTid(InvalidThreadID);
1251
1252            // Send any outstanding packet.
1253            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1254                assert(state->pendingPacket);
1255                if (sendStore(state->pendingPacket)) {
1256                    storePostSend(state->pendingPacket);
1257                }
1258            }
1259        } else {
1260            // Still blocked!
1261            ++lsqCacheBlocked;
1262            lsq->setRetryTid(lsqID);
1263        }
1264    } else if (isLoadBlocked) {
1265        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1266                "no need to resend packet.\n");
1267    } else {
1268        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1269    }
1270}
1271
1272template <class Impl>
1273inline void
1274LSQUnit<Impl>::incrStIdx(int &store_idx) const
1275{
1276    if (++store_idx >= SQEntries)
1277        store_idx = 0;
1278}
1279
1280template <class Impl>
1281inline void
1282LSQUnit<Impl>::decrStIdx(int &store_idx) const
1283{
1284    if (--store_idx < 0)
1285        store_idx += SQEntries;
1286}
1287
1288template <class Impl>
1289inline void
1290LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1291{
1292    if (++load_idx >= LQEntries)
1293        load_idx = 0;
1294}
1295
1296template <class Impl>
1297inline void
1298LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1299{
1300    if (--load_idx < 0)
1301        load_idx += LQEntries;
1302}
1303
1304template <class Impl>
1305void
1306LSQUnit<Impl>::dumpInsts() const
1307{
1308    cprintf("Load store queue: Dumping instructions.\n");
1309    cprintf("Load queue size: %i\n", loads);
1310    cprintf("Load queue: ");
1311
1312    int load_idx = loadHead;
1313
1314    while (load_idx != loadTail && loadQueue[load_idx]) {
1315        const DynInstPtr &inst(loadQueue[load_idx]);
1316        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1317
1318        incrLdIdx(load_idx);
1319    }
1320    cprintf("\n");
1321
1322    cprintf("Store queue size: %i\n", stores);
1323    cprintf("Store queue: ");
1324
1325    int store_idx = storeHead;
1326
1327    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1328        const DynInstPtr &inst(storeQueue[store_idx].inst);
1329        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1330
1331        incrStIdx(store_idx);
1332    }
1333
1334    cprintf("\n");
1335}
1336
1337#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1338