lsq_unit_impl.hh revision 10149:45a67d84fd4a
1
2/*
3 * Copyright (c) 2010-2013 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64                                              LSQUnit *lsq_ptr)
65    : Event(Default_Pri, AutoDelete),
66      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74    assert(!lsqPtr->cpu->switchedOut());
75
76    lsqPtr->writeback(inst, pkt);
77
78    if (pkt->senderState)
79        delete pkt->senderState;
80
81    delete pkt->req;
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    assert(!cpu->switchedOut());
111    if (inst->isSquashed()) {
112        iewStage->decrWb(inst->seqNum);
113    } else {
114        if (!state->noWB) {
115            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116                !state->isLoad) {
117                writeback(inst, pkt);
118            } else {
119                writeback(inst, state->mainPkt);
120            }
121        }
122
123        if (inst->isStore()) {
124            completeStore(state->idx);
125        }
126    }
127
128    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129        delete state->mainPkt->req;
130        delete state->mainPkt;
131    }
132
133    pkt->req->setAccessLatency();
134    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
135
136    delete state;
137    delete pkt->req;
138    delete pkt;
139}
140
141template <class Impl>
142LSQUnit<Impl>::LSQUnit()
143    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
144      isStoreBlocked(false), isLoadBlocked(false),
145      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
146{
147}
148
149template<class Impl>
150void
151LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
152        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
153        unsigned id)
154{
155    cpu = cpu_ptr;
156    iewStage = iew_ptr;
157
158    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
159
160    lsq = lsq_ptr;
161
162    lsqID = id;
163
164    // Add 1 for the sentinel entry (they are circular queues).
165    LQEntries = maxLQEntries + 1;
166    SQEntries = maxSQEntries + 1;
167
168    //Due to uint8_t index in LSQSenderState
169    assert(LQEntries <= 256);
170    assert(SQEntries <= 256);
171
172    loadQueue.resize(LQEntries);
173    storeQueue.resize(SQEntries);
174
175    depCheckShift = params->LSQDepCheckShift;
176    checkLoads = params->LSQCheckLoads;
177    cachePorts = params->cachePorts;
178    needsTSO = params->needsTSO;
179
180    resetState();
181}
182
183
184template<class Impl>
185void
186LSQUnit<Impl>::resetState()
187{
188    loads = stores = storesToWB = 0;
189
190    loadHead = loadTail = 0;
191
192    storeHead = storeWBIdx = storeTail = 0;
193
194    usedPorts = 0;
195
196    retryPkt = NULL;
197    memDepViolator = NULL;
198
199    blockedLoadSeqNum = 0;
200
201    stalled = false;
202    isLoadBlocked = false;
203    loadBlockedHandled = false;
204
205    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
206}
207
208template<class Impl>
209std::string
210LSQUnit<Impl>::name() const
211{
212    if (Impl::MaxThreads == 1) {
213        return iewStage->name() + ".lsq";
214    } else {
215        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
216    }
217}
218
219template<class Impl>
220void
221LSQUnit<Impl>::regStats()
222{
223    lsqForwLoads
224        .name(name() + ".forwLoads")
225        .desc("Number of loads that had data forwarded from stores");
226
227    invAddrLoads
228        .name(name() + ".invAddrLoads")
229        .desc("Number of loads ignored due to an invalid address");
230
231    lsqSquashedLoads
232        .name(name() + ".squashedLoads")
233        .desc("Number of loads squashed");
234
235    lsqIgnoredResponses
236        .name(name() + ".ignoredResponses")
237        .desc("Number of memory responses ignored because the instruction is squashed");
238
239    lsqMemOrderViolation
240        .name(name() + ".memOrderViolation")
241        .desc("Number of memory ordering violations");
242
243    lsqSquashedStores
244        .name(name() + ".squashedStores")
245        .desc("Number of stores squashed");
246
247    invAddrSwpfs
248        .name(name() + ".invAddrSwpfs")
249        .desc("Number of software prefetches ignored due to an invalid address");
250
251    lsqBlockedLoads
252        .name(name() + ".blockedLoads")
253        .desc("Number of blocked loads due to partial load-store forwarding");
254
255    lsqRescheduledLoads
256        .name(name() + ".rescheduledLoads")
257        .desc("Number of loads that were rescheduled");
258
259    lsqCacheBlocked
260        .name(name() + ".cacheBlocked")
261        .desc("Number of times an access to memory failed due to the cache being blocked");
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
267{
268    dcachePort = dcache_port;
269}
270
271template<class Impl>
272void
273LSQUnit<Impl>::clearLQ()
274{
275    loadQueue.clear();
276}
277
278template<class Impl>
279void
280LSQUnit<Impl>::clearSQ()
281{
282    storeQueue.clear();
283}
284
285template<class Impl>
286void
287LSQUnit<Impl>::drainSanityCheck() const
288{
289    for (int i = 0; i < loadQueue.size(); ++i)
290        assert(!loadQueue[i]);
291
292    assert(storesToWB == 0);
293    assert(!retryPkt);
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::takeOverFrom()
299{
300    resetState();
301}
302
303template<class Impl>
304void
305LSQUnit<Impl>::resizeLQ(unsigned size)
306{
307    unsigned size_plus_sentinel = size + 1;
308    assert(size_plus_sentinel >= LQEntries);
309
310    if (size_plus_sentinel > LQEntries) {
311        while (size_plus_sentinel > loadQueue.size()) {
312            DynInstPtr dummy;
313            loadQueue.push_back(dummy);
314            LQEntries++;
315        }
316    } else {
317        LQEntries = size_plus_sentinel;
318    }
319
320    assert(LQEntries <= 256);
321}
322
323template<class Impl>
324void
325LSQUnit<Impl>::resizeSQ(unsigned size)
326{
327    unsigned size_plus_sentinel = size + 1;
328    if (size_plus_sentinel > SQEntries) {
329        while (size_plus_sentinel > storeQueue.size()) {
330            SQEntry dummy;
331            storeQueue.push_back(dummy);
332            SQEntries++;
333        }
334    } else {
335        SQEntries = size_plus_sentinel;
336    }
337
338    assert(SQEntries <= 256);
339}
340
341template <class Impl>
342void
343LSQUnit<Impl>::insert(DynInstPtr &inst)
344{
345    assert(inst->isMemRef());
346
347    assert(inst->isLoad() || inst->isStore());
348
349    if (inst->isLoad()) {
350        insertLoad(inst);
351    } else {
352        insertStore(inst);
353    }
354
355    inst->setInLSQ();
356}
357
358template <class Impl>
359void
360LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
361{
362    assert((loadTail + 1) % LQEntries != loadHead);
363    assert(loads < LQEntries);
364
365    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
366            load_inst->pcState(), loadTail, load_inst->seqNum);
367
368    load_inst->lqIdx = loadTail;
369
370    if (stores == 0) {
371        load_inst->sqIdx = -1;
372    } else {
373        load_inst->sqIdx = storeTail;
374    }
375
376    loadQueue[loadTail] = load_inst;
377
378    incrLdIdx(loadTail);
379
380    ++loads;
381}
382
383template <class Impl>
384void
385LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
386{
387    // Make sure it is not full before inserting an instruction.
388    assert((storeTail + 1) % SQEntries != storeHead);
389    assert(stores < SQEntries);
390
391    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
392            store_inst->pcState(), storeTail, store_inst->seqNum);
393
394    store_inst->sqIdx = storeTail;
395    store_inst->lqIdx = loadTail;
396
397    storeQueue[storeTail] = SQEntry(store_inst);
398
399    incrStIdx(storeTail);
400
401    ++stores;
402}
403
404template <class Impl>
405typename Impl::DynInstPtr
406LSQUnit<Impl>::getMemDepViolator()
407{
408    DynInstPtr temp = memDepViolator;
409
410    memDepViolator = NULL;
411
412    return temp;
413}
414
415template <class Impl>
416unsigned
417LSQUnit<Impl>::numFreeEntries()
418{
419    unsigned free_lq_entries = LQEntries - loads;
420    unsigned free_sq_entries = SQEntries - stores;
421
422    // Both the LQ and SQ entries have an extra dummy entry to differentiate
423    // empty/full conditions.  Subtract 1 from the free entries.
424    if (free_lq_entries < free_sq_entries) {
425        return free_lq_entries - 1;
426    } else {
427        return free_sq_entries - 1;
428    }
429}
430
431template <class Impl>
432void
433LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
434{
435    int load_idx = loadHead;
436    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
437
438    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
439    // address. The CPU can speculatively execute a LL operation after a pending
440    // SC operation in the pipeline and that can make the cache monitor the CPU
441    // is connected to valid while it really shouldn't be.
442    for (int x = 0; x < cpu->numContexts(); x++) {
443        ThreadContext *tc = cpu->getContext(x);
444        bool no_squash = cpu->thread[x]->noSquashFromTC;
445        cpu->thread[x]->noSquashFromTC = true;
446        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
447        cpu->thread[x]->noSquashFromTC = no_squash;
448    }
449
450    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
451
452    DynInstPtr ld_inst = loadQueue[load_idx];
453    if (ld_inst) {
454        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
455        // Check that this snoop didn't just invalidate our lock flag
456        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
457            ld_inst->memReqFlags & Request::LLSC)
458            TheISA::handleLockedSnoopHit(ld_inst.get());
459    }
460
461    // If this is the only load in the LSQ we don't care
462    if (load_idx == loadTail)
463        return;
464
465    incrLdIdx(load_idx);
466
467    bool force_squash = false;
468
469    while (load_idx != loadTail) {
470        DynInstPtr ld_inst = loadQueue[load_idx];
471
472        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
473            incrLdIdx(load_idx);
474            continue;
475        }
476
477        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
478        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
479                    ld_inst->seqNum, load_addr, invalidate_addr);
480
481        if (load_addr == invalidate_addr || force_squash) {
482            if (needsTSO) {
483                // If we have a TSO system, as all loads must be ordered with
484                // all other loads, this load as well as *all* subsequent loads
485                // need to be squashed to prevent possible load reordering.
486                force_squash = true;
487            }
488            if (ld_inst->possibleLoadViolation() || force_squash) {
489                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
490                        pkt->getAddr(), ld_inst->seqNum);
491
492                // Mark the load for re-execution
493                ld_inst->fault = new ReExec;
494            } else {
495                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
496                        pkt->getAddr(), ld_inst->seqNum);
497
498                // Make sure that we don't lose a snoop hitting a LOCKED
499                // address since the LOCK* flags don't get updated until
500                // commit.
501                if (ld_inst->memReqFlags & Request::LLSC)
502                    TheISA::handleLockedSnoopHit(ld_inst.get());
503
504                // If a older load checks this and it's true
505                // then we might have missed the snoop
506                // in which case we need to invalidate to be sure
507                ld_inst->hitExternalSnoop(true);
508            }
509        }
510        incrLdIdx(load_idx);
511    }
512    return;
513}
514
515template <class Impl>
516Fault
517LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
518{
519    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
520    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
521
522    /** @todo in theory you only need to check an instruction that has executed
523     * however, there isn't a good way in the pipeline at the moment to check
524     * all instructions that will execute before the store writes back. Thus,
525     * like the implementation that came before it, we're overly conservative.
526     */
527    while (load_idx != loadTail) {
528        DynInstPtr ld_inst = loadQueue[load_idx];
529        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
530            incrLdIdx(load_idx);
531            continue;
532        }
533
534        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
535        Addr ld_eff_addr2 =
536            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
537
538        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
539            if (inst->isLoad()) {
540                // If this load is to the same block as an external snoop
541                // invalidate that we've observed then the load needs to be
542                // squashed as it could have newer data
543                if (ld_inst->hitExternalSnoop()) {
544                    if (!memDepViolator ||
545                            ld_inst->seqNum < memDepViolator->seqNum) {
546                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
547                                "and [sn:%lli] at address %#x\n",
548                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
549                        memDepViolator = ld_inst;
550
551                        ++lsqMemOrderViolation;
552
553                        return new GenericISA::M5PanicFault(
554                                "Detected fault with inst [sn:%lli] and "
555                                "[sn:%lli] at address %#x\n",
556                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557                    }
558                }
559
560                // Otherwise, mark the load has a possible load violation
561                // and if we see a snoop before it's commited, we need to squash
562                ld_inst->possibleLoadViolation(true);
563                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
564                        " between instructions [sn:%lli] and [sn:%lli]\n",
565                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
566            } else {
567                // A load/store incorrectly passed this store.
568                // Check if we already have a violator, or if it's newer
569                // squash and refetch.
570                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
571                    break;
572
573                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
574                        "[sn:%lli] at address %#x\n",
575                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
576                memDepViolator = ld_inst;
577
578                ++lsqMemOrderViolation;
579
580                return new GenericISA::M5PanicFault("Detected fault with "
581                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
582                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
583            }
584        }
585
586        incrLdIdx(load_idx);
587    }
588    return NoFault;
589}
590
591
592
593
594template <class Impl>
595Fault
596LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
597{
598    using namespace TheISA;
599    // Execute a specific load.
600    Fault load_fault = NoFault;
601
602    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
603            inst->pcState(), inst->seqNum);
604
605    assert(!inst->isSquashed());
606
607    load_fault = inst->initiateAcc();
608
609    if (inst->isTranslationDelayed() &&
610        load_fault == NoFault)
611        return load_fault;
612
613    // If the instruction faulted or predicated false, then we need to send it
614    // along to commit without the instruction completing.
615    if (load_fault != NoFault || inst->readPredicate() == false) {
616        // Send this instruction to commit, also make sure iew stage
617        // realizes there is activity.
618        // Mark it as executed unless it is an uncached load that
619        // needs to hit the head of commit.
620        if (inst->readPredicate() == false)
621            inst->forwardOldRegs();
622        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
623                inst->seqNum,
624                (load_fault != NoFault ? "fault" : "predication"));
625        if (!(inst->hasRequest() && inst->uncacheable()) ||
626            inst->isAtCommit()) {
627            inst->setExecuted();
628        }
629        iewStage->instToCommit(inst);
630        iewStage->activityThisCycle();
631    } else if (!loadBlocked()) {
632        assert(inst->effAddrValid());
633        int load_idx = inst->lqIdx;
634        incrLdIdx(load_idx);
635
636        if (checkLoads)
637            return checkViolations(load_idx, inst);
638    }
639
640    return load_fault;
641}
642
643template <class Impl>
644Fault
645LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
646{
647    using namespace TheISA;
648    // Make sure that a store exists.
649    assert(stores != 0);
650
651    int store_idx = store_inst->sqIdx;
652
653    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
654            store_inst->pcState(), store_inst->seqNum);
655
656    assert(!store_inst->isSquashed());
657
658    // Check the recently completed loads to see if any match this store's
659    // address.  If so, then we have a memory ordering violation.
660    int load_idx = store_inst->lqIdx;
661
662    Fault store_fault = store_inst->initiateAcc();
663
664    if (store_inst->isTranslationDelayed() &&
665        store_fault == NoFault)
666        return store_fault;
667
668    if (store_inst->readPredicate() == false)
669        store_inst->forwardOldRegs();
670
671    if (storeQueue[store_idx].size == 0) {
672        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
673                store_inst->pcState(), store_inst->seqNum);
674
675        return store_fault;
676    } else if (store_inst->readPredicate() == false) {
677        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
678                store_inst->seqNum);
679        return store_fault;
680    }
681
682    assert(store_fault == NoFault);
683
684    if (store_inst->isStoreConditional()) {
685        // Store conditionals need to set themselves as able to
686        // writeback if we haven't had a fault by here.
687        storeQueue[store_idx].canWB = true;
688
689        ++storesToWB;
690    }
691
692    return checkViolations(load_idx, store_inst);
693
694}
695
696template <class Impl>
697void
698LSQUnit<Impl>::commitLoad()
699{
700    assert(loadQueue[loadHead]);
701
702    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
703            loadQueue[loadHead]->pcState());
704
705    loadQueue[loadHead] = NULL;
706
707    incrLdIdx(loadHead);
708
709    --loads;
710}
711
712template <class Impl>
713void
714LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
715{
716    assert(loads == 0 || loadQueue[loadHead]);
717
718    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
719        commitLoad();
720    }
721}
722
723template <class Impl>
724void
725LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
726{
727    assert(stores == 0 || storeQueue[storeHead].inst);
728
729    int store_idx = storeHead;
730
731    while (store_idx != storeTail) {
732        assert(storeQueue[store_idx].inst);
733        // Mark any stores that are now committed and have not yet
734        // been marked as able to write back.
735        if (!storeQueue[store_idx].canWB) {
736            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
737                break;
738            }
739            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
740                    "%s [sn:%lli]\n",
741                    storeQueue[store_idx].inst->pcState(),
742                    storeQueue[store_idx].inst->seqNum);
743
744            storeQueue[store_idx].canWB = true;
745
746            ++storesToWB;
747        }
748
749        incrStIdx(store_idx);
750    }
751}
752
753template <class Impl>
754void
755LSQUnit<Impl>::writebackPendingStore()
756{
757    if (hasPendingPkt) {
758        assert(pendingPkt != NULL);
759
760        // If the cache is blocked, this will store the packet for retry.
761        if (sendStore(pendingPkt)) {
762            storePostSend(pendingPkt);
763        }
764        pendingPkt = NULL;
765        hasPendingPkt = false;
766    }
767}
768
769template <class Impl>
770void
771LSQUnit<Impl>::writebackStores()
772{
773    // First writeback the second packet from any split store that didn't
774    // complete last cycle because there weren't enough cache ports available.
775    if (TheISA::HasUnalignedMemAcc) {
776        writebackPendingStore();
777    }
778
779    while (storesToWB > 0 &&
780           storeWBIdx != storeTail &&
781           storeQueue[storeWBIdx].inst &&
782           storeQueue[storeWBIdx].canWB &&
783           ((!needsTSO) || (!storeInFlight)) &&
784           usedPorts < cachePorts) {
785
786        if (isStoreBlocked || lsq->cacheBlocked()) {
787            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
788                    " is blocked!\n");
789            break;
790        }
791
792        // Store didn't write any data so no need to write it back to
793        // memory.
794        if (storeQueue[storeWBIdx].size == 0) {
795            completeStore(storeWBIdx);
796
797            incrStIdx(storeWBIdx);
798
799            continue;
800        }
801
802        ++usedPorts;
803
804        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
805            incrStIdx(storeWBIdx);
806
807            continue;
808        }
809
810        assert(storeQueue[storeWBIdx].req);
811        assert(!storeQueue[storeWBIdx].committed);
812
813        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
814            assert(storeQueue[storeWBIdx].sreqLow);
815            assert(storeQueue[storeWBIdx].sreqHigh);
816        }
817
818        DynInstPtr inst = storeQueue[storeWBIdx].inst;
819
820        Request *req = storeQueue[storeWBIdx].req;
821        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
822        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
823
824        storeQueue[storeWBIdx].committed = true;
825
826        assert(!inst->memData);
827        inst->memData = new uint8_t[req->getSize()];
828
829        if (storeQueue[storeWBIdx].isAllZeros)
830            memset(inst->memData, 0, req->getSize());
831        else
832            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
833
834        MemCmd command =
835            req->isSwap() ? MemCmd::SwapReq :
836            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
837        PacketPtr data_pkt;
838        PacketPtr snd_data_pkt = NULL;
839
840        LSQSenderState *state = new LSQSenderState;
841        state->isLoad = false;
842        state->idx = storeWBIdx;
843        state->inst = inst;
844
845        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
846
847            // Build a single data packet if the store isn't split.
848            data_pkt = new Packet(req, command);
849            data_pkt->dataStatic(inst->memData);
850            data_pkt->senderState = state;
851        } else {
852            // Create two packets if the store is split in two.
853            data_pkt = new Packet(sreqLow, command);
854            snd_data_pkt = new Packet(sreqHigh, command);
855
856            data_pkt->dataStatic(inst->memData);
857            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
858
859            data_pkt->senderState = state;
860            snd_data_pkt->senderState = state;
861
862            state->isSplit = true;
863            state->outstanding = 2;
864
865            // Can delete the main request now.
866            delete req;
867            req = sreqLow;
868        }
869
870        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
871                "to Addr:%#x, data:%#x [sn:%lli]\n",
872                storeWBIdx, inst->pcState(),
873                req->getPaddr(), (int)*(inst->memData),
874                inst->seqNum);
875
876        // @todo: Remove this SC hack once the memory system handles it.
877        if (inst->isStoreConditional()) {
878            assert(!storeQueue[storeWBIdx].isSplit);
879            // Disable recording the result temporarily.  Writing to
880            // misc regs normally updates the result, but this is not
881            // the desired behavior when handling store conditionals.
882            inst->recordResult(false);
883            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
884            inst->recordResult(true);
885
886            if (!success) {
887                // Instantly complete this store.
888                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
889                        "Instantly completing it.\n",
890                        inst->seqNum);
891                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
892                cpu->schedule(wb, curTick() + 1);
893                if (cpu->checker) {
894                    // Make sure to set the LLSC data for verification
895                    // if checker is loaded
896                    inst->reqToVerify->setExtraData(0);
897                    inst->completeAcc(data_pkt);
898                }
899                completeStore(storeWBIdx);
900                incrStIdx(storeWBIdx);
901                continue;
902            }
903        } else {
904            // Non-store conditionals do not need a writeback.
905            state->noWB = true;
906        }
907
908        bool split =
909            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
910
911        ThreadContext *thread = cpu->tcBase(lsqID);
912
913        if (req->isMmappedIpr()) {
914            assert(!inst->isStoreConditional());
915            TheISA::handleIprWrite(thread, data_pkt);
916            delete data_pkt;
917            if (split) {
918                assert(snd_data_pkt->req->isMmappedIpr());
919                TheISA::handleIprWrite(thread, snd_data_pkt);
920                delete snd_data_pkt;
921                delete sreqLow;
922                delete sreqHigh;
923            }
924            delete state;
925            delete req;
926            completeStore(storeWBIdx);
927            incrStIdx(storeWBIdx);
928        } else if (!sendStore(data_pkt)) {
929            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
930                    "retry later\n",
931                    inst->seqNum);
932
933            // Need to store the second packet, if split.
934            if (split) {
935                state->pktToSend = true;
936                state->pendingPacket = snd_data_pkt;
937            }
938        } else {
939
940            // If split, try to send the second packet too
941            if (split) {
942                assert(snd_data_pkt);
943
944                // Ensure there are enough ports to use.
945                if (usedPorts < cachePorts) {
946                    ++usedPorts;
947                    if (sendStore(snd_data_pkt)) {
948                        storePostSend(snd_data_pkt);
949                    } else {
950                        DPRINTF(IEW, "D-Cache became blocked when writing"
951                                " [sn:%lli] second packet, will retry later\n",
952                                inst->seqNum);
953                    }
954                } else {
955
956                    // Store the packet for when there's free ports.
957                    assert(pendingPkt == NULL);
958                    pendingPkt = snd_data_pkt;
959                    hasPendingPkt = true;
960                }
961            } else {
962
963                // Not a split store.
964                storePostSend(data_pkt);
965            }
966        }
967    }
968
969    // Not sure this should set it to 0.
970    usedPorts = 0;
971
972    assert(stores >= 0 && storesToWB >= 0);
973}
974
975/*template <class Impl>
976void
977LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
978{
979    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
980                                              mshrSeqNums.end(),
981                                              seqNum);
982
983    if (mshr_it != mshrSeqNums.end()) {
984        mshrSeqNums.erase(mshr_it);
985        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
986    }
987}*/
988
989template <class Impl>
990void
991LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
992{
993    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
994            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
995
996    int load_idx = loadTail;
997    decrLdIdx(load_idx);
998
999    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1000        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1001                "[sn:%lli]\n",
1002                loadQueue[load_idx]->pcState(),
1003                loadQueue[load_idx]->seqNum);
1004
1005        if (isStalled() && load_idx == stallingLoadIdx) {
1006            stalled = false;
1007            stallingStoreIsn = 0;
1008            stallingLoadIdx = 0;
1009        }
1010
1011        // Clear the smart pointer to make sure it is decremented.
1012        loadQueue[load_idx]->setSquashed();
1013        loadQueue[load_idx] = NULL;
1014        --loads;
1015
1016        // Inefficient!
1017        loadTail = load_idx;
1018
1019        decrLdIdx(load_idx);
1020        ++lsqSquashedLoads;
1021    }
1022
1023    if (isLoadBlocked) {
1024        if (squashed_num < blockedLoadSeqNum) {
1025            isLoadBlocked = false;
1026            loadBlockedHandled = false;
1027            blockedLoadSeqNum = 0;
1028        }
1029    }
1030
1031    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1032        memDepViolator = NULL;
1033    }
1034
1035    int store_idx = storeTail;
1036    decrStIdx(store_idx);
1037
1038    while (stores != 0 &&
1039           storeQueue[store_idx].inst->seqNum > squashed_num) {
1040        // Instructions marked as can WB are already committed.
1041        if (storeQueue[store_idx].canWB) {
1042            break;
1043        }
1044
1045        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1046                "idx:%i [sn:%lli]\n",
1047                storeQueue[store_idx].inst->pcState(),
1048                store_idx, storeQueue[store_idx].inst->seqNum);
1049
1050        // I don't think this can happen.  It should have been cleared
1051        // by the stalling load.
1052        if (isStalled() &&
1053            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1054            panic("Is stalled should have been cleared by stalling load!\n");
1055            stalled = false;
1056            stallingStoreIsn = 0;
1057        }
1058
1059        // Clear the smart pointer to make sure it is decremented.
1060        storeQueue[store_idx].inst->setSquashed();
1061        storeQueue[store_idx].inst = NULL;
1062        storeQueue[store_idx].canWB = 0;
1063
1064        // Must delete request now that it wasn't handed off to
1065        // memory.  This is quite ugly.  @todo: Figure out the proper
1066        // place to really handle request deletes.
1067        delete storeQueue[store_idx].req;
1068        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1069            delete storeQueue[store_idx].sreqLow;
1070            delete storeQueue[store_idx].sreqHigh;
1071
1072            storeQueue[store_idx].sreqLow = NULL;
1073            storeQueue[store_idx].sreqHigh = NULL;
1074        }
1075
1076        storeQueue[store_idx].req = NULL;
1077        --stores;
1078
1079        // Inefficient!
1080        storeTail = store_idx;
1081
1082        decrStIdx(store_idx);
1083        ++lsqSquashedStores;
1084    }
1085}
1086
1087template <class Impl>
1088void
1089LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1090{
1091    if (isStalled() &&
1092        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1093        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1094                "load idx:%i\n",
1095                stallingStoreIsn, stallingLoadIdx);
1096        stalled = false;
1097        stallingStoreIsn = 0;
1098        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1099    }
1100
1101    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1102        // The store is basically completed at this time. This
1103        // only works so long as the checker doesn't try to
1104        // verify the value in memory for stores.
1105        storeQueue[storeWBIdx].inst->setCompleted();
1106
1107        if (cpu->checker) {
1108            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1109        }
1110    }
1111
1112    if (needsTSO) {
1113        storeInFlight = true;
1114    }
1115
1116    incrStIdx(storeWBIdx);
1117}
1118
1119template <class Impl>
1120void
1121LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1122{
1123    iewStage->wakeCPU();
1124
1125    // Squashed instructions do not need to complete their access.
1126    if (inst->isSquashed()) {
1127        iewStage->decrWb(inst->seqNum);
1128        assert(!inst->isStore());
1129        ++lsqIgnoredResponses;
1130        return;
1131    }
1132
1133    if (!inst->isExecuted()) {
1134        inst->setExecuted();
1135
1136        // Complete access to copy data to proper place.
1137        inst->completeAcc(pkt);
1138    }
1139
1140    // Need to insert instruction into queue to commit
1141    iewStage->instToCommit(inst);
1142
1143    iewStage->activityThisCycle();
1144
1145    // see if this load changed the PC
1146    iewStage->checkMisprediction(inst);
1147}
1148
1149template <class Impl>
1150void
1151LSQUnit<Impl>::completeStore(int store_idx)
1152{
1153    assert(storeQueue[store_idx].inst);
1154    storeQueue[store_idx].completed = true;
1155    --storesToWB;
1156    // A bit conservative because a store completion may not free up entries,
1157    // but hopefully avoids two store completions in one cycle from making
1158    // the CPU tick twice.
1159    cpu->wakeCPU();
1160    cpu->activityThisCycle();
1161
1162    if (store_idx == storeHead) {
1163        do {
1164            incrStIdx(storeHead);
1165
1166            --stores;
1167        } while (storeQueue[storeHead].completed &&
1168                 storeHead != storeTail);
1169
1170        iewStage->updateLSQNextCycle = true;
1171    }
1172
1173    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1174            "idx:%i\n",
1175            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1176
1177#if TRACING_ON
1178    if (DTRACE(O3PipeView)) {
1179        storeQueue[store_idx].inst->storeTick =
1180            curTick() - storeQueue[store_idx].inst->fetchTick;
1181    }
1182#endif
1183
1184    if (isStalled() &&
1185        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1186        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1187                "load idx:%i\n",
1188                stallingStoreIsn, stallingLoadIdx);
1189        stalled = false;
1190        stallingStoreIsn = 0;
1191        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1192    }
1193
1194    storeQueue[store_idx].inst->setCompleted();
1195
1196    if (needsTSO) {
1197        storeInFlight = false;
1198    }
1199
1200    // Tell the checker we've completed this instruction.  Some stores
1201    // may get reported twice to the checker, but the checker can
1202    // handle that case.
1203    if (cpu->checker) {
1204        cpu->checker->verify(storeQueue[store_idx].inst);
1205    }
1206}
1207
1208template <class Impl>
1209bool
1210LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1211{
1212    if (!dcachePort->sendTimingReq(data_pkt)) {
1213        // Need to handle becoming blocked on a store.
1214        isStoreBlocked = true;
1215        ++lsqCacheBlocked;
1216        assert(retryPkt == NULL);
1217        retryPkt = data_pkt;
1218        lsq->setRetryTid(lsqID);
1219        return false;
1220    }
1221    return true;
1222}
1223
1224template <class Impl>
1225void
1226LSQUnit<Impl>::recvRetry()
1227{
1228    if (isStoreBlocked) {
1229        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1230        assert(retryPkt != NULL);
1231
1232        LSQSenderState *state =
1233            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1234
1235        if (dcachePort->sendTimingReq(retryPkt)) {
1236            // Don't finish the store unless this is the last packet.
1237            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1238                    state->pendingPacket == retryPkt) {
1239                state->pktToSend = false;
1240                storePostSend(retryPkt);
1241            }
1242            retryPkt = NULL;
1243            isStoreBlocked = false;
1244            lsq->setRetryTid(InvalidThreadID);
1245
1246            // Send any outstanding packet.
1247            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1248                assert(state->pendingPacket);
1249                if (sendStore(state->pendingPacket)) {
1250                    storePostSend(state->pendingPacket);
1251                }
1252            }
1253        } else {
1254            // Still blocked!
1255            ++lsqCacheBlocked;
1256            lsq->setRetryTid(lsqID);
1257        }
1258    } else if (isLoadBlocked) {
1259        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1260                "no need to resend packet.\n");
1261    } else {
1262        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1263    }
1264}
1265
1266template <class Impl>
1267inline void
1268LSQUnit<Impl>::incrStIdx(int &store_idx) const
1269{
1270    if (++store_idx >= SQEntries)
1271        store_idx = 0;
1272}
1273
1274template <class Impl>
1275inline void
1276LSQUnit<Impl>::decrStIdx(int &store_idx) const
1277{
1278    if (--store_idx < 0)
1279        store_idx += SQEntries;
1280}
1281
1282template <class Impl>
1283inline void
1284LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1285{
1286    if (++load_idx >= LQEntries)
1287        load_idx = 0;
1288}
1289
1290template <class Impl>
1291inline void
1292LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1293{
1294    if (--load_idx < 0)
1295        load_idx += LQEntries;
1296}
1297
1298template <class Impl>
1299void
1300LSQUnit<Impl>::dumpInsts() const
1301{
1302    cprintf("Load store queue: Dumping instructions.\n");
1303    cprintf("Load queue size: %i\n", loads);
1304    cprintf("Load queue: ");
1305
1306    int load_idx = loadHead;
1307
1308    while (load_idx != loadTail && loadQueue[load_idx]) {
1309        const DynInstPtr &inst(loadQueue[load_idx]);
1310        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1311
1312        incrLdIdx(load_idx);
1313    }
1314    cprintf("\n");
1315
1316    cprintf("Store queue size: %i\n", stores);
1317    cprintf("Store queue: ");
1318
1319    int store_idx = storeHead;
1320
1321    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1322        const DynInstPtr &inst(storeQueue[store_idx].inst);
1323        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1324
1325        incrStIdx(store_idx);
1326    }
1327
1328    cprintf("\n");
1329}
1330
1331#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1332