lsq_unit_impl.hh revision 10030
1
2/*
3 * Copyright (c) 2010-2013 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64                                              LSQUnit *lsq_ptr)
65    : Event(Default_Pri, AutoDelete),
66      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74    assert(!lsqPtr->cpu->switchedOut());
75
76    lsqPtr->writeback(inst, pkt);
77
78    if (pkt->senderState)
79        delete pkt->senderState;
80
81    delete pkt->req;
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    assert(!cpu->switchedOut());
111    if (inst->isSquashed()) {
112        iewStage->decrWb(inst->seqNum);
113    } else {
114        if (!state->noWB) {
115            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116                !state->isLoad) {
117                writeback(inst, pkt);
118            } else {
119                writeback(inst, state->mainPkt);
120            }
121        }
122
123        if (inst->isStore()) {
124            completeStore(state->idx);
125        }
126    }
127
128    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129        delete state->mainPkt->req;
130        delete state->mainPkt;
131    }
132
133    pkt->req->setAccessLatency();
134    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
135
136    delete state;
137    delete pkt->req;
138    delete pkt;
139}
140
141template <class Impl>
142LSQUnit<Impl>::LSQUnit()
143    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
144      isStoreBlocked(false), isLoadBlocked(false),
145      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
146{
147}
148
149template<class Impl>
150void
151LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
152        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
153        unsigned id)
154{
155    cpu = cpu_ptr;
156    iewStage = iew_ptr;
157
158    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
159
160    lsq = lsq_ptr;
161
162    lsqID = id;
163
164    // Add 1 for the sentinel entry (they are circular queues).
165    LQEntries = maxLQEntries + 1;
166    SQEntries = maxSQEntries + 1;
167
168    //Due to uint8_t index in LSQSenderState
169    assert(LQEntries <= 256);
170    assert(SQEntries <= 256);
171
172    loadQueue.resize(LQEntries);
173    storeQueue.resize(SQEntries);
174
175    depCheckShift = params->LSQDepCheckShift;
176    checkLoads = params->LSQCheckLoads;
177    cachePorts = params->cachePorts;
178    needsTSO = params->needsTSO;
179
180    resetState();
181}
182
183
184template<class Impl>
185void
186LSQUnit<Impl>::resetState()
187{
188    loads = stores = storesToWB = 0;
189
190    loadHead = loadTail = 0;
191
192    storeHead = storeWBIdx = storeTail = 0;
193
194    usedPorts = 0;
195
196    retryPkt = NULL;
197    memDepViolator = NULL;
198
199    blockedLoadSeqNum = 0;
200
201    stalled = false;
202    isLoadBlocked = false;
203    loadBlockedHandled = false;
204
205    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
206}
207
208template<class Impl>
209std::string
210LSQUnit<Impl>::name() const
211{
212    if (Impl::MaxThreads == 1) {
213        return iewStage->name() + ".lsq";
214    } else {
215        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
216    }
217}
218
219template<class Impl>
220void
221LSQUnit<Impl>::regStats()
222{
223    lsqForwLoads
224        .name(name() + ".forwLoads")
225        .desc("Number of loads that had data forwarded from stores");
226
227    invAddrLoads
228        .name(name() + ".invAddrLoads")
229        .desc("Number of loads ignored due to an invalid address");
230
231    lsqSquashedLoads
232        .name(name() + ".squashedLoads")
233        .desc("Number of loads squashed");
234
235    lsqIgnoredResponses
236        .name(name() + ".ignoredResponses")
237        .desc("Number of memory responses ignored because the instruction is squashed");
238
239    lsqMemOrderViolation
240        .name(name() + ".memOrderViolation")
241        .desc("Number of memory ordering violations");
242
243    lsqSquashedStores
244        .name(name() + ".squashedStores")
245        .desc("Number of stores squashed");
246
247    invAddrSwpfs
248        .name(name() + ".invAddrSwpfs")
249        .desc("Number of software prefetches ignored due to an invalid address");
250
251    lsqBlockedLoads
252        .name(name() + ".blockedLoads")
253        .desc("Number of blocked loads due to partial load-store forwarding");
254
255    lsqRescheduledLoads
256        .name(name() + ".rescheduledLoads")
257        .desc("Number of loads that were rescheduled");
258
259    lsqCacheBlocked
260        .name(name() + ".cacheBlocked")
261        .desc("Number of times an access to memory failed due to the cache being blocked");
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
267{
268    dcachePort = dcache_port;
269}
270
271template<class Impl>
272void
273LSQUnit<Impl>::clearLQ()
274{
275    loadQueue.clear();
276}
277
278template<class Impl>
279void
280LSQUnit<Impl>::clearSQ()
281{
282    storeQueue.clear();
283}
284
285template<class Impl>
286void
287LSQUnit<Impl>::drainSanityCheck() const
288{
289    for (int i = 0; i < loadQueue.size(); ++i)
290        assert(!loadQueue[i]);
291
292    assert(storesToWB == 0);
293    assert(!retryPkt);
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::takeOverFrom()
299{
300    resetState();
301}
302
303template<class Impl>
304void
305LSQUnit<Impl>::resizeLQ(unsigned size)
306{
307    unsigned size_plus_sentinel = size + 1;
308    assert(size_plus_sentinel >= LQEntries);
309
310    if (size_plus_sentinel > LQEntries) {
311        while (size_plus_sentinel > loadQueue.size()) {
312            DynInstPtr dummy;
313            loadQueue.push_back(dummy);
314            LQEntries++;
315        }
316    } else {
317        LQEntries = size_plus_sentinel;
318    }
319
320    assert(LQEntries <= 256);
321}
322
323template<class Impl>
324void
325LSQUnit<Impl>::resizeSQ(unsigned size)
326{
327    unsigned size_plus_sentinel = size + 1;
328    if (size_plus_sentinel > SQEntries) {
329        while (size_plus_sentinel > storeQueue.size()) {
330            SQEntry dummy;
331            storeQueue.push_back(dummy);
332            SQEntries++;
333        }
334    } else {
335        SQEntries = size_plus_sentinel;
336    }
337
338    assert(SQEntries <= 256);
339}
340
341template <class Impl>
342void
343LSQUnit<Impl>::insert(DynInstPtr &inst)
344{
345    assert(inst->isMemRef());
346
347    assert(inst->isLoad() || inst->isStore());
348
349    if (inst->isLoad()) {
350        insertLoad(inst);
351    } else {
352        insertStore(inst);
353    }
354
355    inst->setInLSQ();
356}
357
358template <class Impl>
359void
360LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
361{
362    assert((loadTail + 1) % LQEntries != loadHead);
363    assert(loads < LQEntries);
364
365    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
366            load_inst->pcState(), loadTail, load_inst->seqNum);
367
368    load_inst->lqIdx = loadTail;
369
370    if (stores == 0) {
371        load_inst->sqIdx = -1;
372    } else {
373        load_inst->sqIdx = storeTail;
374    }
375
376    loadQueue[loadTail] = load_inst;
377
378    incrLdIdx(loadTail);
379
380    ++loads;
381}
382
383template <class Impl>
384void
385LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
386{
387    // Make sure it is not full before inserting an instruction.
388    assert((storeTail + 1) % SQEntries != storeHead);
389    assert(stores < SQEntries);
390
391    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
392            store_inst->pcState(), storeTail, store_inst->seqNum);
393
394    store_inst->sqIdx = storeTail;
395    store_inst->lqIdx = loadTail;
396
397    storeQueue[storeTail] = SQEntry(store_inst);
398
399    incrStIdx(storeTail);
400
401    ++stores;
402}
403
404template <class Impl>
405typename Impl::DynInstPtr
406LSQUnit<Impl>::getMemDepViolator()
407{
408    DynInstPtr temp = memDepViolator;
409
410    memDepViolator = NULL;
411
412    return temp;
413}
414
415template <class Impl>
416unsigned
417LSQUnit<Impl>::numFreeEntries()
418{
419    unsigned free_lq_entries = LQEntries - loads;
420    unsigned free_sq_entries = SQEntries - stores;
421
422    // Both the LQ and SQ entries have an extra dummy entry to differentiate
423    // empty/full conditions.  Subtract 1 from the free entries.
424    if (free_lq_entries < free_sq_entries) {
425        return free_lq_entries - 1;
426    } else {
427        return free_sq_entries - 1;
428    }
429}
430
431template <class Impl>
432void
433LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
434{
435    int load_idx = loadHead;
436    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
437
438    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
439    // address. The CPU can speculatively execute a LL operation after a pending
440    // SC operation in the pipeline and that can make the cache monitor the CPU
441    // is connected to valid while it really shouldn't be.
442    for (int x = 0; x < cpu->numContexts(); x++) {
443        ThreadContext *tc = cpu->getContext(x);
444        bool no_squash = cpu->thread[x]->noSquashFromTC;
445        cpu->thread[x]->noSquashFromTC = true;
446        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
447        cpu->thread[x]->noSquashFromTC = no_squash;
448    }
449
450    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
451
452    DynInstPtr ld_inst = loadQueue[load_idx];
453    if (ld_inst) {
454        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
455        // Check that this snoop didn't just invalidate our lock flag
456        if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
457            ld_inst->memReqFlags & Request::LLSC)
458            TheISA::handleLockedSnoopHit(ld_inst.get());
459    }
460
461    // If this is the only load in the LSQ we don't care
462    if (load_idx == loadTail)
463        return;
464
465    incrLdIdx(load_idx);
466
467    while (load_idx != loadTail) {
468        DynInstPtr ld_inst = loadQueue[load_idx];
469
470        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
471            incrLdIdx(load_idx);
472            continue;
473        }
474
475        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
476        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
477                    ld_inst->seqNum, load_addr, invalidate_addr);
478
479        if (load_addr == invalidate_addr) {
480            if (ld_inst->possibleLoadViolation()) {
481                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
482                        pkt->getAddr(), ld_inst->seqNum);
483
484                // Mark the load for re-execution
485                ld_inst->fault = new ReExec;
486            } else {
487                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
488                        pkt->getAddr(), ld_inst->seqNum);
489
490                // Make sure that we don't lose a snoop hitting a LOCKED
491                // address since the LOCK* flags don't get updated until
492                // commit.
493                if (ld_inst->memReqFlags & Request::LLSC)
494                    TheISA::handleLockedSnoopHit(ld_inst.get());
495
496                // If a older load checks this and it's true
497                // then we might have missed the snoop
498                // in which case we need to invalidate to be sure
499                ld_inst->hitExternalSnoop(true);
500            }
501        }
502        incrLdIdx(load_idx);
503    }
504    return;
505}
506
507template <class Impl>
508Fault
509LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
510{
511    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
512    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
513
514    /** @todo in theory you only need to check an instruction that has executed
515     * however, there isn't a good way in the pipeline at the moment to check
516     * all instructions that will execute before the store writes back. Thus,
517     * like the implementation that came before it, we're overly conservative.
518     */
519    while (load_idx != loadTail) {
520        DynInstPtr ld_inst = loadQueue[load_idx];
521        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
522            incrLdIdx(load_idx);
523            continue;
524        }
525
526        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
527        Addr ld_eff_addr2 =
528            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
529
530        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
531            if (inst->isLoad()) {
532                // If this load is to the same block as an external snoop
533                // invalidate that we've observed then the load needs to be
534                // squashed as it could have newer data
535                if (ld_inst->hitExternalSnoop()) {
536                    if (!memDepViolator ||
537                            ld_inst->seqNum < memDepViolator->seqNum) {
538                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
539                                "and [sn:%lli] at address %#x\n",
540                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
541                        memDepViolator = ld_inst;
542
543                        ++lsqMemOrderViolation;
544
545                        return new GenericISA::M5PanicFault(
546                                "Detected fault with inst [sn:%lli] and "
547                                "[sn:%lli] at address %#x\n",
548                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
549                    }
550                }
551
552                // Otherwise, mark the load has a possible load violation
553                // and if we see a snoop before it's commited, we need to squash
554                ld_inst->possibleLoadViolation(true);
555                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
556                        " between instructions [sn:%lli] and [sn:%lli]\n",
557                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
558            } else {
559                // A load/store incorrectly passed this store.
560                // Check if we already have a violator, or if it's newer
561                // squash and refetch.
562                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
563                    break;
564
565                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
566                        "[sn:%lli] at address %#x\n",
567                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
568                memDepViolator = ld_inst;
569
570                ++lsqMemOrderViolation;
571
572                return new GenericISA::M5PanicFault("Detected fault with "
573                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
574                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
575            }
576        }
577
578        incrLdIdx(load_idx);
579    }
580    return NoFault;
581}
582
583
584
585
586template <class Impl>
587Fault
588LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
589{
590    using namespace TheISA;
591    // Execute a specific load.
592    Fault load_fault = NoFault;
593
594    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
595            inst->pcState(), inst->seqNum);
596
597    assert(!inst->isSquashed());
598
599    load_fault = inst->initiateAcc();
600
601    if (inst->isTranslationDelayed() &&
602        load_fault == NoFault)
603        return load_fault;
604
605    // If the instruction faulted or predicated false, then we need to send it
606    // along to commit without the instruction completing.
607    if (load_fault != NoFault || inst->readPredicate() == false) {
608        // Send this instruction to commit, also make sure iew stage
609        // realizes there is activity.
610        // Mark it as executed unless it is an uncached load that
611        // needs to hit the head of commit.
612        if (inst->readPredicate() == false)
613            inst->forwardOldRegs();
614        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
615                inst->seqNum,
616                (load_fault != NoFault ? "fault" : "predication"));
617        if (!(inst->hasRequest() && inst->uncacheable()) ||
618            inst->isAtCommit()) {
619            inst->setExecuted();
620        }
621        iewStage->instToCommit(inst);
622        iewStage->activityThisCycle();
623    } else if (!loadBlocked()) {
624        assert(inst->effAddrValid());
625        int load_idx = inst->lqIdx;
626        incrLdIdx(load_idx);
627
628        if (checkLoads)
629            return checkViolations(load_idx, inst);
630    }
631
632    return load_fault;
633}
634
635template <class Impl>
636Fault
637LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
638{
639    using namespace TheISA;
640    // Make sure that a store exists.
641    assert(stores != 0);
642
643    int store_idx = store_inst->sqIdx;
644
645    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
646            store_inst->pcState(), store_inst->seqNum);
647
648    assert(!store_inst->isSquashed());
649
650    // Check the recently completed loads to see if any match this store's
651    // address.  If so, then we have a memory ordering violation.
652    int load_idx = store_inst->lqIdx;
653
654    Fault store_fault = store_inst->initiateAcc();
655
656    if (store_inst->isTranslationDelayed() &&
657        store_fault == NoFault)
658        return store_fault;
659
660    if (store_inst->readPredicate() == false)
661        store_inst->forwardOldRegs();
662
663    if (storeQueue[store_idx].size == 0) {
664        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
665                store_inst->pcState(), store_inst->seqNum);
666
667        return store_fault;
668    } else if (store_inst->readPredicate() == false) {
669        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
670                store_inst->seqNum);
671        return store_fault;
672    }
673
674    assert(store_fault == NoFault);
675
676    if (store_inst->isStoreConditional()) {
677        // Store conditionals need to set themselves as able to
678        // writeback if we haven't had a fault by here.
679        storeQueue[store_idx].canWB = true;
680
681        ++storesToWB;
682    }
683
684    return checkViolations(load_idx, store_inst);
685
686}
687
688template <class Impl>
689void
690LSQUnit<Impl>::commitLoad()
691{
692    assert(loadQueue[loadHead]);
693
694    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
695            loadQueue[loadHead]->pcState());
696
697    loadQueue[loadHead] = NULL;
698
699    incrLdIdx(loadHead);
700
701    --loads;
702}
703
704template <class Impl>
705void
706LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
707{
708    assert(loads == 0 || loadQueue[loadHead]);
709
710    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
711        commitLoad();
712    }
713}
714
715template <class Impl>
716void
717LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
718{
719    assert(stores == 0 || storeQueue[storeHead].inst);
720
721    int store_idx = storeHead;
722
723    while (store_idx != storeTail) {
724        assert(storeQueue[store_idx].inst);
725        // Mark any stores that are now committed and have not yet
726        // been marked as able to write back.
727        if (!storeQueue[store_idx].canWB) {
728            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
729                break;
730            }
731            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
732                    "%s [sn:%lli]\n",
733                    storeQueue[store_idx].inst->pcState(),
734                    storeQueue[store_idx].inst->seqNum);
735
736            storeQueue[store_idx].canWB = true;
737
738            ++storesToWB;
739        }
740
741        incrStIdx(store_idx);
742    }
743}
744
745template <class Impl>
746void
747LSQUnit<Impl>::writebackPendingStore()
748{
749    if (hasPendingPkt) {
750        assert(pendingPkt != NULL);
751
752        // If the cache is blocked, this will store the packet for retry.
753        if (sendStore(pendingPkt)) {
754            storePostSend(pendingPkt);
755        }
756        pendingPkt = NULL;
757        hasPendingPkt = false;
758    }
759}
760
761template <class Impl>
762void
763LSQUnit<Impl>::writebackStores()
764{
765    // First writeback the second packet from any split store that didn't
766    // complete last cycle because there weren't enough cache ports available.
767    if (TheISA::HasUnalignedMemAcc) {
768        writebackPendingStore();
769    }
770
771    while (storesToWB > 0 &&
772           storeWBIdx != storeTail &&
773           storeQueue[storeWBIdx].inst &&
774           storeQueue[storeWBIdx].canWB &&
775           ((!needsTSO) || (!storeInFlight)) &&
776           usedPorts < cachePorts) {
777
778        if (isStoreBlocked || lsq->cacheBlocked()) {
779            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
780                    " is blocked!\n");
781            break;
782        }
783
784        // Store didn't write any data so no need to write it back to
785        // memory.
786        if (storeQueue[storeWBIdx].size == 0) {
787            completeStore(storeWBIdx);
788
789            incrStIdx(storeWBIdx);
790
791            continue;
792        }
793
794        ++usedPorts;
795
796        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
797            incrStIdx(storeWBIdx);
798
799            continue;
800        }
801
802        assert(storeQueue[storeWBIdx].req);
803        assert(!storeQueue[storeWBIdx].committed);
804
805        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
806            assert(storeQueue[storeWBIdx].sreqLow);
807            assert(storeQueue[storeWBIdx].sreqHigh);
808        }
809
810        DynInstPtr inst = storeQueue[storeWBIdx].inst;
811
812        Request *req = storeQueue[storeWBIdx].req;
813        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
814        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
815
816        storeQueue[storeWBIdx].committed = true;
817
818        assert(!inst->memData);
819        inst->memData = new uint8_t[64];
820
821        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
822
823        MemCmd command =
824            req->isSwap() ? MemCmd::SwapReq :
825            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
826        PacketPtr data_pkt;
827        PacketPtr snd_data_pkt = NULL;
828
829        LSQSenderState *state = new LSQSenderState;
830        state->isLoad = false;
831        state->idx = storeWBIdx;
832        state->inst = inst;
833
834        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
835
836            // Build a single data packet if the store isn't split.
837            data_pkt = new Packet(req, command);
838            data_pkt->dataStatic(inst->memData);
839            data_pkt->senderState = state;
840        } else {
841            // Create two packets if the store is split in two.
842            data_pkt = new Packet(sreqLow, command);
843            snd_data_pkt = new Packet(sreqHigh, command);
844
845            data_pkt->dataStatic(inst->memData);
846            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
847
848            data_pkt->senderState = state;
849            snd_data_pkt->senderState = state;
850
851            state->isSplit = true;
852            state->outstanding = 2;
853
854            // Can delete the main request now.
855            delete req;
856            req = sreqLow;
857        }
858
859        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
860                "to Addr:%#x, data:%#x [sn:%lli]\n",
861                storeWBIdx, inst->pcState(),
862                req->getPaddr(), (int)*(inst->memData),
863                inst->seqNum);
864
865        // @todo: Remove this SC hack once the memory system handles it.
866        if (inst->isStoreConditional()) {
867            assert(!storeQueue[storeWBIdx].isSplit);
868            // Disable recording the result temporarily.  Writing to
869            // misc regs normally updates the result, but this is not
870            // the desired behavior when handling store conditionals.
871            inst->recordResult(false);
872            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
873            inst->recordResult(true);
874
875            if (!success) {
876                // Instantly complete this store.
877                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
878                        "Instantly completing it.\n",
879                        inst->seqNum);
880                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
881                cpu->schedule(wb, curTick() + 1);
882                if (cpu->checker) {
883                    // Make sure to set the LLSC data for verification
884                    // if checker is loaded
885                    inst->reqToVerify->setExtraData(0);
886                    inst->completeAcc(data_pkt);
887                }
888                completeStore(storeWBIdx);
889                incrStIdx(storeWBIdx);
890                continue;
891            }
892        } else {
893            // Non-store conditionals do not need a writeback.
894            state->noWB = true;
895        }
896
897        bool split =
898            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
899
900        ThreadContext *thread = cpu->tcBase(lsqID);
901
902        if (req->isMmappedIpr()) {
903            assert(!inst->isStoreConditional());
904            TheISA::handleIprWrite(thread, data_pkt);
905            delete data_pkt;
906            if (split) {
907                assert(snd_data_pkt->req->isMmappedIpr());
908                TheISA::handleIprWrite(thread, snd_data_pkt);
909                delete snd_data_pkt;
910                delete sreqLow;
911                delete sreqHigh;
912            }
913            delete state;
914            delete req;
915            completeStore(storeWBIdx);
916            incrStIdx(storeWBIdx);
917        } else if (!sendStore(data_pkt)) {
918            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
919                    "retry later\n",
920                    inst->seqNum);
921
922            // Need to store the second packet, if split.
923            if (split) {
924                state->pktToSend = true;
925                state->pendingPacket = snd_data_pkt;
926            }
927        } else {
928
929            // If split, try to send the second packet too
930            if (split) {
931                assert(snd_data_pkt);
932
933                // Ensure there are enough ports to use.
934                if (usedPorts < cachePorts) {
935                    ++usedPorts;
936                    if (sendStore(snd_data_pkt)) {
937                        storePostSend(snd_data_pkt);
938                    } else {
939                        DPRINTF(IEW, "D-Cache became blocked when writing"
940                                " [sn:%lli] second packet, will retry later\n",
941                                inst->seqNum);
942                    }
943                } else {
944
945                    // Store the packet for when there's free ports.
946                    assert(pendingPkt == NULL);
947                    pendingPkt = snd_data_pkt;
948                    hasPendingPkt = true;
949                }
950            } else {
951
952                // Not a split store.
953                storePostSend(data_pkt);
954            }
955        }
956    }
957
958    // Not sure this should set it to 0.
959    usedPorts = 0;
960
961    assert(stores >= 0 && storesToWB >= 0);
962}
963
964/*template <class Impl>
965void
966LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
967{
968    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
969                                              mshrSeqNums.end(),
970                                              seqNum);
971
972    if (mshr_it != mshrSeqNums.end()) {
973        mshrSeqNums.erase(mshr_it);
974        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
975    }
976}*/
977
978template <class Impl>
979void
980LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
981{
982    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
983            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
984
985    int load_idx = loadTail;
986    decrLdIdx(load_idx);
987
988    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
989        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
990                "[sn:%lli]\n",
991                loadQueue[load_idx]->pcState(),
992                loadQueue[load_idx]->seqNum);
993
994        if (isStalled() && load_idx == stallingLoadIdx) {
995            stalled = false;
996            stallingStoreIsn = 0;
997            stallingLoadIdx = 0;
998        }
999
1000        // Clear the smart pointer to make sure it is decremented.
1001        loadQueue[load_idx]->setSquashed();
1002        loadQueue[load_idx] = NULL;
1003        --loads;
1004
1005        // Inefficient!
1006        loadTail = load_idx;
1007
1008        decrLdIdx(load_idx);
1009        ++lsqSquashedLoads;
1010    }
1011
1012    if (isLoadBlocked) {
1013        if (squashed_num < blockedLoadSeqNum) {
1014            isLoadBlocked = false;
1015            loadBlockedHandled = false;
1016            blockedLoadSeqNum = 0;
1017        }
1018    }
1019
1020    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1021        memDepViolator = NULL;
1022    }
1023
1024    int store_idx = storeTail;
1025    decrStIdx(store_idx);
1026
1027    while (stores != 0 &&
1028           storeQueue[store_idx].inst->seqNum > squashed_num) {
1029        // Instructions marked as can WB are already committed.
1030        if (storeQueue[store_idx].canWB) {
1031            break;
1032        }
1033
1034        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1035                "idx:%i [sn:%lli]\n",
1036                storeQueue[store_idx].inst->pcState(),
1037                store_idx, storeQueue[store_idx].inst->seqNum);
1038
1039        // I don't think this can happen.  It should have been cleared
1040        // by the stalling load.
1041        if (isStalled() &&
1042            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1043            panic("Is stalled should have been cleared by stalling load!\n");
1044            stalled = false;
1045            stallingStoreIsn = 0;
1046        }
1047
1048        // Clear the smart pointer to make sure it is decremented.
1049        storeQueue[store_idx].inst->setSquashed();
1050        storeQueue[store_idx].inst = NULL;
1051        storeQueue[store_idx].canWB = 0;
1052
1053        // Must delete request now that it wasn't handed off to
1054        // memory.  This is quite ugly.  @todo: Figure out the proper
1055        // place to really handle request deletes.
1056        delete storeQueue[store_idx].req;
1057        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1058            delete storeQueue[store_idx].sreqLow;
1059            delete storeQueue[store_idx].sreqHigh;
1060
1061            storeQueue[store_idx].sreqLow = NULL;
1062            storeQueue[store_idx].sreqHigh = NULL;
1063        }
1064
1065        storeQueue[store_idx].req = NULL;
1066        --stores;
1067
1068        // Inefficient!
1069        storeTail = store_idx;
1070
1071        decrStIdx(store_idx);
1072        ++lsqSquashedStores;
1073    }
1074}
1075
1076template <class Impl>
1077void
1078LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1079{
1080    if (isStalled() &&
1081        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1082        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1083                "load idx:%i\n",
1084                stallingStoreIsn, stallingLoadIdx);
1085        stalled = false;
1086        stallingStoreIsn = 0;
1087        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1088    }
1089
1090    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1091        // The store is basically completed at this time. This
1092        // only works so long as the checker doesn't try to
1093        // verify the value in memory for stores.
1094        storeQueue[storeWBIdx].inst->setCompleted();
1095
1096        if (cpu->checker) {
1097            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1098        }
1099    }
1100
1101    if (needsTSO) {
1102        storeInFlight = true;
1103    }
1104
1105    incrStIdx(storeWBIdx);
1106}
1107
1108template <class Impl>
1109void
1110LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1111{
1112    iewStage->wakeCPU();
1113
1114    // Squashed instructions do not need to complete their access.
1115    if (inst->isSquashed()) {
1116        iewStage->decrWb(inst->seqNum);
1117        assert(!inst->isStore());
1118        ++lsqIgnoredResponses;
1119        return;
1120    }
1121
1122    if (!inst->isExecuted()) {
1123        inst->setExecuted();
1124
1125        // Complete access to copy data to proper place.
1126        inst->completeAcc(pkt);
1127    }
1128
1129    // Need to insert instruction into queue to commit
1130    iewStage->instToCommit(inst);
1131
1132    iewStage->activityThisCycle();
1133
1134    // see if this load changed the PC
1135    iewStage->checkMisprediction(inst);
1136}
1137
1138template <class Impl>
1139void
1140LSQUnit<Impl>::completeStore(int store_idx)
1141{
1142    assert(storeQueue[store_idx].inst);
1143    storeQueue[store_idx].completed = true;
1144    --storesToWB;
1145    // A bit conservative because a store completion may not free up entries,
1146    // but hopefully avoids two store completions in one cycle from making
1147    // the CPU tick twice.
1148    cpu->wakeCPU();
1149    cpu->activityThisCycle();
1150
1151    if (store_idx == storeHead) {
1152        do {
1153            incrStIdx(storeHead);
1154
1155            --stores;
1156        } while (storeQueue[storeHead].completed &&
1157                 storeHead != storeTail);
1158
1159        iewStage->updateLSQNextCycle = true;
1160    }
1161
1162    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1163            "idx:%i\n",
1164            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1165
1166#if TRACING_ON
1167    if (DTRACE(O3PipeView)) {
1168        storeQueue[store_idx].inst->storeTick =
1169            curTick() - storeQueue[store_idx].inst->fetchTick;
1170    }
1171#endif
1172
1173    if (isStalled() &&
1174        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1175        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1176                "load idx:%i\n",
1177                stallingStoreIsn, stallingLoadIdx);
1178        stalled = false;
1179        stallingStoreIsn = 0;
1180        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1181    }
1182
1183    storeQueue[store_idx].inst->setCompleted();
1184
1185    if (needsTSO) {
1186        storeInFlight = false;
1187    }
1188
1189    // Tell the checker we've completed this instruction.  Some stores
1190    // may get reported twice to the checker, but the checker can
1191    // handle that case.
1192    if (cpu->checker) {
1193        cpu->checker->verify(storeQueue[store_idx].inst);
1194    }
1195}
1196
1197template <class Impl>
1198bool
1199LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1200{
1201    if (!dcachePort->sendTimingReq(data_pkt)) {
1202        // Need to handle becoming blocked on a store.
1203        isStoreBlocked = true;
1204        ++lsqCacheBlocked;
1205        assert(retryPkt == NULL);
1206        retryPkt = data_pkt;
1207        lsq->setRetryTid(lsqID);
1208        return false;
1209    }
1210    return true;
1211}
1212
1213template <class Impl>
1214void
1215LSQUnit<Impl>::recvRetry()
1216{
1217    if (isStoreBlocked) {
1218        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1219        assert(retryPkt != NULL);
1220
1221        LSQSenderState *state =
1222            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1223
1224        if (dcachePort->sendTimingReq(retryPkt)) {
1225            // Don't finish the store unless this is the last packet.
1226            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1227                    state->pendingPacket == retryPkt) {
1228                state->pktToSend = false;
1229                storePostSend(retryPkt);
1230            }
1231            retryPkt = NULL;
1232            isStoreBlocked = false;
1233            lsq->setRetryTid(InvalidThreadID);
1234
1235            // Send any outstanding packet.
1236            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1237                assert(state->pendingPacket);
1238                if (sendStore(state->pendingPacket)) {
1239                    storePostSend(state->pendingPacket);
1240                }
1241            }
1242        } else {
1243            // Still blocked!
1244            ++lsqCacheBlocked;
1245            lsq->setRetryTid(lsqID);
1246        }
1247    } else if (isLoadBlocked) {
1248        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1249                "no need to resend packet.\n");
1250    } else {
1251        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1252    }
1253}
1254
1255template <class Impl>
1256inline void
1257LSQUnit<Impl>::incrStIdx(int &store_idx) const
1258{
1259    if (++store_idx >= SQEntries)
1260        store_idx = 0;
1261}
1262
1263template <class Impl>
1264inline void
1265LSQUnit<Impl>::decrStIdx(int &store_idx) const
1266{
1267    if (--store_idx < 0)
1268        store_idx += SQEntries;
1269}
1270
1271template <class Impl>
1272inline void
1273LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1274{
1275    if (++load_idx >= LQEntries)
1276        load_idx = 0;
1277}
1278
1279template <class Impl>
1280inline void
1281LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1282{
1283    if (--load_idx < 0)
1284        load_idx += LQEntries;
1285}
1286
1287template <class Impl>
1288void
1289LSQUnit<Impl>::dumpInsts() const
1290{
1291    cprintf("Load store queue: Dumping instructions.\n");
1292    cprintf("Load queue size: %i\n", loads);
1293    cprintf("Load queue: ");
1294
1295    int load_idx = loadHead;
1296
1297    while (load_idx != loadTail && loadQueue[load_idx]) {
1298        const DynInstPtr &inst(loadQueue[load_idx]);
1299        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1300
1301        incrLdIdx(load_idx);
1302    }
1303    cprintf("\n");
1304
1305    cprintf("Store queue size: %i\n", stores);
1306    cprintf("Store queue: ");
1307
1308    int store_idx = storeHead;
1309
1310    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1311        const DynInstPtr &inst(storeQueue[store_idx].inst);
1312        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1313
1314        incrStIdx(store_idx);
1315    }
1316
1317    cprintf("\n");
1318}
1319
1320#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1321