lsq_unit.hh revision 9444
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 * Korey Sewell 42 */ 43 44#ifndef __CPU_O3_LSQ_UNIT_HH__ 45#define __CPU_O3_LSQ_UNIT_HH__ 46 47#include <algorithm> 48#include <cstring> 49#include <map> 50#include <queue> 51 52#include "arch/generic/debugfaults.hh" 53#include "arch/isa_traits.hh" 54#include "arch/locked_mem.hh" 55#include "arch/mmapped_ipr.hh" 56#include "base/hashmap.hh" 57#include "config/the_isa.hh" 58#include "cpu/inst_seq.hh" 59#include "cpu/timebuf.hh" 60#include "debug/LSQUnit.hh" 61#include "mem/packet.hh" 62#include "mem/port.hh" 63#include "sim/fault_fwd.hh" 64 65struct DerivO3CPUParams; 66 67/** 68 * Class that implements the actual LQ and SQ for each specific 69 * thread. Both are circular queues; load entries are freed upon 70 * committing, while store entries are freed once they writeback. The 71 * LSQUnit tracks if there are memory ordering violations, and also 72 * detects partial load to store forwarding cases (a store only has 73 * part of a load's data) that requires the load to wait until the 74 * store writes back. In the former case it holds onto the instruction 75 * until the dependence unit looks at it, and in the latter it stalls 76 * the LSQ until the store writes back. At that point the load is 77 * replayed. 78 */ 79template <class Impl> 80class LSQUnit { 81 public: 82 typedef typename Impl::O3CPU O3CPU; 83 typedef typename Impl::DynInstPtr DynInstPtr; 84 typedef typename Impl::CPUPol::IEW IEW; 85 typedef typename Impl::CPUPol::LSQ LSQ; 86 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 87 88 public: 89 /** Constructs an LSQ unit. init() must be called prior to use. */ 90 LSQUnit(); 91 92 /** Initializes the LSQ unit with the specified number of entries. */ 93 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 94 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 95 unsigned id); 96 97 /** Returns the name of the LSQ unit. */ 98 std::string name() const; 99 100 /** Registers statistics. */ 101 void regStats(); 102 103 /** Sets the pointer to the dcache port. */ 104 void setDcachePort(MasterPort *dcache_port); 105 106 /** Perform sanity checks after a drain. */ 107 void drainSanityCheck() const; 108 109 /** Takes over from another CPU's thread. */ 110 void takeOverFrom(); 111 112 /** Ticks the LSQ unit, which in this case only resets the number of 113 * used cache ports. 114 * @todo: Move the number of used ports up to the LSQ level so it can 115 * be shared by all LSQ units. 116 */ 117 void tick() { usedPorts = 0; } 118 119 /** Inserts an instruction. */ 120 void insert(DynInstPtr &inst); 121 /** Inserts a load instruction. */ 122 void insertLoad(DynInstPtr &load_inst); 123 /** Inserts a store instruction. */ 124 void insertStore(DynInstPtr &store_inst); 125 126 /** Check for ordering violations in the LSQ. For a store squash if we 127 * ever find a conflicting load. For a load, only squash if we 128 * an external snoop invalidate has been seen for that load address 129 * @param load_idx index to start checking at 130 * @param inst the instruction to check 131 */ 132 Fault checkViolations(int load_idx, DynInstPtr &inst); 133 134 /** Check if an incoming invalidate hits in the lsq on a load 135 * that might have issued out of order wrt another load beacuse 136 * of the intermediate invalidate. 137 */ 138 void checkSnoop(PacketPtr pkt); 139 140 /** Executes a load instruction. */ 141 Fault executeLoad(DynInstPtr &inst); 142 143 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 144 /** Executes a store instruction. */ 145 Fault executeStore(DynInstPtr &inst); 146 147 /** Commits the head load. */ 148 void commitLoad(); 149 /** Commits loads older than a specific sequence number. */ 150 void commitLoads(InstSeqNum &youngest_inst); 151 152 /** Commits stores older than a specific sequence number. */ 153 void commitStores(InstSeqNum &youngest_inst); 154 155 /** Writes back stores. */ 156 void writebackStores(); 157 158 /** Completes the data access that has been returned from the 159 * memory system. */ 160 void completeDataAccess(PacketPtr pkt); 161 162 /** Clears all the entries in the LQ. */ 163 void clearLQ(); 164 165 /** Clears all the entries in the SQ. */ 166 void clearSQ(); 167 168 /** Resizes the LQ to a given size. */ 169 void resizeLQ(unsigned size); 170 171 /** Resizes the SQ to a given size. */ 172 void resizeSQ(unsigned size); 173 174 /** Squashes all instructions younger than a specific sequence number. */ 175 void squash(const InstSeqNum &squashed_num); 176 177 /** Returns if there is a memory ordering violation. Value is reset upon 178 * call to getMemDepViolator(). 179 */ 180 bool violation() { return memDepViolator; } 181 182 /** Returns the memory ordering violator. */ 183 DynInstPtr getMemDepViolator(); 184 185 /** Returns if a load became blocked due to the memory system. */ 186 bool loadBlocked() 187 { return isLoadBlocked; } 188 189 /** Clears the signal that a load became blocked. */ 190 void clearLoadBlocked() 191 { isLoadBlocked = false; } 192 193 /** Returns if the blocked load was handled. */ 194 bool isLoadBlockedHandled() 195 { return loadBlockedHandled; } 196 197 /** Records the blocked load as being handled. */ 198 void setLoadBlockedHandled() 199 { loadBlockedHandled = true; } 200 201 /** Returns the number of free entries (min of free LQ and SQ entries). */ 202 unsigned numFreeEntries(); 203 204 /** Returns the number of loads in the LQ. */ 205 int numLoads() { return loads; } 206 207 /** Returns the number of stores in the SQ. */ 208 int numStores() { return stores; } 209 210 /** Returns if either the LQ or SQ is full. */ 211 bool isFull() { return lqFull() || sqFull(); } 212 213 /** Returns if both the LQ and SQ are empty. */ 214 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 215 216 /** Returns if the LQ is full. */ 217 bool lqFull() { return loads >= (LQEntries - 1); } 218 219 /** Returns if the SQ is full. */ 220 bool sqFull() { return stores >= (SQEntries - 1); } 221 222 /** Returns if the LQ is empty. */ 223 bool lqEmpty() const { return loads == 0; } 224 225 /** Returns if the SQ is empty. */ 226 bool sqEmpty() const { return stores == 0; } 227 228 /** Returns the number of instructions in the LSQ. */ 229 unsigned getCount() { return loads + stores; } 230 231 /** Returns if there are any stores to writeback. */ 232 bool hasStoresToWB() { return storesToWB; } 233 234 /** Returns the number of stores to writeback. */ 235 int numStoresToWB() { return storesToWB; } 236 237 /** Returns if the LSQ unit will writeback on this cycle. */ 238 bool willWB() { return storeQueue[storeWBIdx].canWB && 239 !storeQueue[storeWBIdx].completed && 240 !isStoreBlocked; } 241 242 /** Handles doing the retry. */ 243 void recvRetry(); 244 245 private: 246 /** Reset the LSQ state */ 247 void resetState(); 248 249 /** Writes back the instruction, sending it to IEW. */ 250 void writeback(DynInstPtr &inst, PacketPtr pkt); 251 252 /** Writes back a store that couldn't be completed the previous cycle. */ 253 void writebackPendingStore(); 254 255 /** Handles completing the send of a store to memory. */ 256 void storePostSend(PacketPtr pkt); 257 258 /** Completes the store at the specified index. */ 259 void completeStore(int store_idx); 260 261 /** Attempts to send a store to the cache. */ 262 bool sendStore(PacketPtr data_pkt); 263 264 /** Increments the given store index (circular queue). */ 265 inline void incrStIdx(int &store_idx) const; 266 /** Decrements the given store index (circular queue). */ 267 inline void decrStIdx(int &store_idx) const; 268 /** Increments the given load index (circular queue). */ 269 inline void incrLdIdx(int &load_idx) const; 270 /** Decrements the given load index (circular queue). */ 271 inline void decrLdIdx(int &load_idx) const; 272 273 public: 274 /** Debugging function to dump instructions in the LSQ. */ 275 void dumpInsts() const; 276 277 private: 278 /** Pointer to the CPU. */ 279 O3CPU *cpu; 280 281 /** Pointer to the IEW stage. */ 282 IEW *iewStage; 283 284 /** Pointer to the LSQ. */ 285 LSQ *lsq; 286 287 /** Pointer to the dcache port. Used only for sending. */ 288 MasterPort *dcachePort; 289 290 /** Derived class to hold any sender state the LSQ needs. */ 291 class LSQSenderState : public Packet::SenderState 292 { 293 public: 294 /** Default constructor. */ 295 LSQSenderState() 296 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 297 noWB(false), isSplit(false), pktToSend(false) 298 { } 299 300 /** Instruction who initiated the access to memory. */ 301 DynInstPtr inst; 302 /** The main packet from a split load, used during writeback. */ 303 PacketPtr mainPkt; 304 /** A second packet from a split store that needs sending. */ 305 PacketPtr pendingPacket; 306 /** The LQ/SQ index of the instruction. */ 307 uint8_t idx; 308 /** Number of outstanding packets to complete. */ 309 uint8_t outstanding; 310 /** Whether or not it is a load. */ 311 bool isLoad; 312 /** Whether or not the instruction will need to writeback. */ 313 bool noWB; 314 /** Whether or not this access is split in two. */ 315 bool isSplit; 316 /** Whether or not there is a packet that needs sending. */ 317 bool pktToSend; 318 319 /** Completes a packet and returns whether the access is finished. */ 320 inline bool complete() { return --outstanding == 0; } 321 }; 322 323 /** Writeback event, specifically for when stores forward data to loads. */ 324 class WritebackEvent : public Event { 325 public: 326 /** Constructs a writeback event. */ 327 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 328 329 /** Processes the writeback event. */ 330 void process(); 331 332 /** Returns the description of this event. */ 333 const char *description() const; 334 335 private: 336 /** Instruction whose results are being written back. */ 337 DynInstPtr inst; 338 339 /** The packet that would have been sent to memory. */ 340 PacketPtr pkt; 341 342 /** The pointer to the LSQ unit that issued the store. */ 343 LSQUnit<Impl> *lsqPtr; 344 }; 345 346 public: 347 struct SQEntry { 348 /** Constructs an empty store queue entry. */ 349 SQEntry() 350 : inst(NULL), req(NULL), size(0), 351 canWB(0), committed(0), completed(0) 352 { 353 std::memset(data, 0, sizeof(data)); 354 } 355 356 ~SQEntry() 357 { 358 inst = NULL; 359 } 360 361 /** Constructs a store queue entry for a given instruction. */ 362 SQEntry(DynInstPtr &_inst) 363 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 364 isSplit(0), canWB(0), committed(0), completed(0) 365 { 366 std::memset(data, 0, sizeof(data)); 367 } 368 /** The store data. */ 369 char data[16]; 370 /** The store instruction. */ 371 DynInstPtr inst; 372 /** The request for the store. */ 373 RequestPtr req; 374 /** The split requests for the store. */ 375 RequestPtr sreqLow; 376 RequestPtr sreqHigh; 377 /** The size of the store. */ 378 uint8_t size; 379 /** Whether or not the store is split into two requests. */ 380 bool isSplit; 381 /** Whether or not the store can writeback. */ 382 bool canWB; 383 /** Whether or not the store is committed. */ 384 bool committed; 385 /** Whether or not the store is completed. */ 386 bool completed; 387 }; 388 389 private: 390 /** The LSQUnit thread id. */ 391 ThreadID lsqID; 392 393 /** The store queue. */ 394 std::vector<SQEntry> storeQueue; 395 396 /** The load queue. */ 397 std::vector<DynInstPtr> loadQueue; 398 399 /** The number of LQ entries, plus a sentinel entry (circular queue). 400 * @todo: Consider having var that records the true number of LQ entries. 401 */ 402 unsigned LQEntries; 403 /** The number of SQ entries, plus a sentinel entry (circular queue). 404 * @todo: Consider having var that records the true number of SQ entries. 405 */ 406 unsigned SQEntries; 407 408 /** The number of places to shift addresses in the LSQ before checking 409 * for dependency violations 410 */ 411 unsigned depCheckShift; 412 413 /** Should loads be checked for dependency issues */ 414 bool checkLoads; 415 416 /** The number of load instructions in the LQ. */ 417 int loads; 418 /** The number of store instructions in the SQ. */ 419 int stores; 420 /** The number of store instructions in the SQ waiting to writeback. */ 421 int storesToWB; 422 423 /** The index of the head instruction in the LQ. */ 424 int loadHead; 425 /** The index of the tail instruction in the LQ. */ 426 int loadTail; 427 428 /** The index of the head instruction in the SQ. */ 429 int storeHead; 430 /** The index of the first instruction that may be ready to be 431 * written back, and has not yet been written back. 432 */ 433 int storeWBIdx; 434 /** The index of the tail instruction in the SQ. */ 435 int storeTail; 436 437 /// @todo Consider moving to a more advanced model with write vs read ports 438 /** The number of cache ports available each cycle. */ 439 int cachePorts; 440 441 /** The number of used cache ports in this cycle. */ 442 int usedPorts; 443 444 //list<InstSeqNum> mshrSeqNums; 445 446 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 447 Addr cacheBlockMask; 448 449 /** Wire to read information from the issue stage time queue. */ 450 typename TimeBuffer<IssueStruct>::wire fromIssue; 451 452 /** Whether or not the LSQ is stalled. */ 453 bool stalled; 454 /** The store that causes the stall due to partial store to load 455 * forwarding. 456 */ 457 InstSeqNum stallingStoreIsn; 458 /** The index of the above store. */ 459 int stallingLoadIdx; 460 461 /** The packet that needs to be retried. */ 462 PacketPtr retryPkt; 463 464 /** Whehter or not a store is blocked due to the memory system. */ 465 bool isStoreBlocked; 466 467 /** Whether or not a load is blocked due to the memory system. */ 468 bool isLoadBlocked; 469 470 /** Has the blocked load been handled. */ 471 bool loadBlockedHandled; 472 473 /** Whether or not a store is in flight. */ 474 bool storeInFlight; 475 476 /** The sequence number of the blocked load. */ 477 InstSeqNum blockedLoadSeqNum; 478 479 /** The oldest load that caused a memory ordering violation. */ 480 DynInstPtr memDepViolator; 481 482 /** Whether or not there is a packet that couldn't be sent because of 483 * a lack of cache ports. */ 484 bool hasPendingPkt; 485 486 /** The packet that is pending free cache ports. */ 487 PacketPtr pendingPkt; 488 489 /** Flag for memory model. */ 490 bool needsTSO; 491 492 // Will also need how many read/write ports the Dcache has. Or keep track 493 // of that in stage that is one level up, and only call executeLoad/Store 494 // the appropriate number of times. 495 /** Total number of loads forwaded from LSQ stores. */ 496 Stats::Scalar lsqForwLoads; 497 498 /** Total number of loads ignored due to invalid addresses. */ 499 Stats::Scalar invAddrLoads; 500 501 /** Total number of squashed loads. */ 502 Stats::Scalar lsqSquashedLoads; 503 504 /** Total number of responses from the memory system that are 505 * ignored due to the instruction already being squashed. */ 506 Stats::Scalar lsqIgnoredResponses; 507 508 /** Tota number of memory ordering violations. */ 509 Stats::Scalar lsqMemOrderViolation; 510 511 /** Total number of squashed stores. */ 512 Stats::Scalar lsqSquashedStores; 513 514 /** Total number of software prefetches ignored due to invalid addresses. */ 515 Stats::Scalar invAddrSwpfs; 516 517 /** Ready loads blocked due to partial store-forwarding. */ 518 Stats::Scalar lsqBlockedLoads; 519 520 /** Number of loads that were rescheduled. */ 521 Stats::Scalar lsqRescheduledLoads; 522 523 /** Number of times the LSQ is blocked due to the cache. */ 524 Stats::Scalar lsqCacheBlocked; 525 526 public: 527 /** Executes the load at the given index. */ 528 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 529 uint8_t *data, int load_idx); 530 531 /** Executes the store at the given index. */ 532 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 533 uint8_t *data, int store_idx); 534 535 /** Returns the index of the head load instruction. */ 536 int getLoadHead() { return loadHead; } 537 /** Returns the sequence number of the head load instruction. */ 538 InstSeqNum getLoadHeadSeqNum() 539 { 540 if (loadQueue[loadHead]) { 541 return loadQueue[loadHead]->seqNum; 542 } else { 543 return 0; 544 } 545 546 } 547 548 /** Returns the index of the head store instruction. */ 549 int getStoreHead() { return storeHead; } 550 /** Returns the sequence number of the head store instruction. */ 551 InstSeqNum getStoreHeadSeqNum() 552 { 553 if (storeQueue[storeHead].inst) { 554 return storeQueue[storeHead].inst->seqNum; 555 } else { 556 return 0; 557 } 558 559 } 560 561 /** Returns whether or not the LSQ unit is stalled. */ 562 bool isStalled() { return stalled; } 563}; 564 565template <class Impl> 566Fault 567LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 568 uint8_t *data, int load_idx) 569{ 570 DynInstPtr load_inst = loadQueue[load_idx]; 571 572 assert(load_inst); 573 574 assert(!load_inst->isExecuted()); 575 576 // Make sure this isn't an uncacheable access 577 // A bit of a hackish way to get uncached accesses to work only if they're 578 // at the head of the LSQ and are ready to commit (at the head of the ROB 579 // too). 580 if (req->isUncacheable() && 581 (load_idx != loadHead || !load_inst->isAtCommit())) { 582 iewStage->rescheduleMemInst(load_inst); 583 ++lsqRescheduledLoads; 584 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 585 load_inst->seqNum, load_inst->pcState()); 586 587 // Must delete request now that it wasn't handed off to 588 // memory. This is quite ugly. @todo: Figure out the proper 589 // place to really handle request deletes. 590 delete req; 591 if (TheISA::HasUnalignedMemAcc && sreqLow) { 592 delete sreqLow; 593 delete sreqHigh; 594 } 595 return new GenericISA::M5PanicFault( 596 "Uncachable load [sn:%llx] PC %s\n", 597 load_inst->seqNum, load_inst->pcState()); 598 } 599 600 // Check the SQ for any previous stores that might lead to forwarding 601 int store_idx = load_inst->sqIdx; 602 603 int store_size = 0; 604 605 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 606 "storeHead: %i addr: %#x%s\n", 607 load_idx, store_idx, storeHead, req->getPaddr(), 608 sreqLow ? " split" : ""); 609 610 if (req->isLLSC()) { 611 assert(!sreqLow); 612 // Disable recording the result temporarily. Writing to misc 613 // regs normally updates the result, but this is not the 614 // desired behavior when handling store conditionals. 615 load_inst->recordResult(false); 616 TheISA::handleLockedRead(load_inst.get(), req); 617 load_inst->recordResult(true); 618 } 619 620 if (req->isMmappedIpr()) { 621 assert(!load_inst->memData); 622 load_inst->memData = new uint8_t[64]; 623 624 ThreadContext *thread = cpu->tcBase(lsqID); 625 Cycles delay(0); 626 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 627 628 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 629 data_pkt->dataStatic(load_inst->memData); 630 delay = TheISA::handleIprRead(thread, data_pkt); 631 } else { 632 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 633 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 634 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 635 636 fst_data_pkt->dataStatic(load_inst->memData); 637 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 638 639 delay = TheISA::handleIprRead(thread, fst_data_pkt); 640 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 641 if (delay2 > delay) 642 delay = delay2; 643 644 delete sreqLow; 645 delete sreqHigh; 646 delete fst_data_pkt; 647 delete snd_data_pkt; 648 } 649 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 650 cpu->schedule(wb, cpu->clockEdge(delay)); 651 return NoFault; 652 } 653 654 while (store_idx != -1) { 655 // End once we've reached the top of the LSQ 656 if (store_idx == storeWBIdx) { 657 break; 658 } 659 660 // Move the index to one younger 661 if (--store_idx < 0) 662 store_idx += SQEntries; 663 664 assert(storeQueue[store_idx].inst); 665 666 store_size = storeQueue[store_idx].size; 667 668 if (store_size == 0) 669 continue; 670 else if (storeQueue[store_idx].inst->uncacheable()) 671 continue; 672 673 assert(storeQueue[store_idx].inst->effAddrValid()); 674 675 // Check if the store data is within the lower and upper bounds of 676 // addresses that the request needs. 677 bool store_has_lower_limit = 678 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 679 bool store_has_upper_limit = 680 (req->getVaddr() + req->getSize()) <= 681 (storeQueue[store_idx].inst->effAddr + store_size); 682 bool lower_load_has_store_part = 683 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 684 store_size); 685 bool upper_load_has_store_part = 686 (req->getVaddr() + req->getSize()) > 687 storeQueue[store_idx].inst->effAddr; 688 689 // If the store's data has all of the data needed, we can forward. 690 if ((store_has_lower_limit && store_has_upper_limit)) { 691 // Get shift amount for offset into the store's data. 692 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 693 694 memcpy(data, storeQueue[store_idx].data + shift_amt, 695 req->getSize()); 696 697 assert(!load_inst->memData); 698 load_inst->memData = new uint8_t[64]; 699 700 memcpy(load_inst->memData, 701 storeQueue[store_idx].data + shift_amt, req->getSize()); 702 703 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 704 "addr %#x, data %#x\n", 705 store_idx, req->getVaddr(), data); 706 707 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 708 data_pkt->dataStatic(load_inst->memData); 709 710 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 711 712 // We'll say this has a 1 cycle load-store forwarding latency 713 // for now. 714 // @todo: Need to make this a parameter. 715 cpu->schedule(wb, curTick()); 716 717 // Don't need to do anything special for split loads. 718 if (TheISA::HasUnalignedMemAcc && sreqLow) { 719 delete sreqLow; 720 delete sreqHigh; 721 } 722 723 ++lsqForwLoads; 724 return NoFault; 725 } else if ((store_has_lower_limit && lower_load_has_store_part) || 726 (store_has_upper_limit && upper_load_has_store_part) || 727 (lower_load_has_store_part && upper_load_has_store_part)) { 728 // This is the partial store-load forwarding case where a store 729 // has only part of the load's data. 730 731 // If it's already been written back, then don't worry about 732 // stalling on it. 733 if (storeQueue[store_idx].completed) { 734 panic("Should not check one of these"); 735 continue; 736 } 737 738 // Must stall load and force it to retry, so long as it's the oldest 739 // load that needs to do so. 740 if (!stalled || 741 (stalled && 742 load_inst->seqNum < 743 loadQueue[stallingLoadIdx]->seqNum)) { 744 stalled = true; 745 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 746 stallingLoadIdx = load_idx; 747 } 748 749 // Tell IQ/mem dep unit that this instruction will need to be 750 // rescheduled eventually 751 iewStage->rescheduleMemInst(load_inst); 752 iewStage->decrWb(load_inst->seqNum); 753 load_inst->clearIssued(); 754 ++lsqRescheduledLoads; 755 756 // Do not generate a writeback event as this instruction is not 757 // complete. 758 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 759 "Store idx %i to load addr %#x\n", 760 store_idx, req->getVaddr()); 761 762 // Must delete request now that it wasn't handed off to 763 // memory. This is quite ugly. @todo: Figure out the 764 // proper place to really handle request deletes. 765 delete req; 766 if (TheISA::HasUnalignedMemAcc && sreqLow) { 767 delete sreqLow; 768 delete sreqHigh; 769 } 770 771 return NoFault; 772 } 773 } 774 775 // If there's no forwarding case, then go access memory 776 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 777 load_inst->seqNum, load_inst->pcState()); 778 779 assert(!load_inst->memData); 780 load_inst->memData = new uint8_t[64]; 781 782 ++usedPorts; 783 784 // if we the cache is not blocked, do cache access 785 bool completedFirst = false; 786 if (!lsq->cacheBlocked()) { 787 MemCmd command = 788 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 789 PacketPtr data_pkt = new Packet(req, command); 790 PacketPtr fst_data_pkt = NULL; 791 PacketPtr snd_data_pkt = NULL; 792 793 data_pkt->dataStatic(load_inst->memData); 794 795 LSQSenderState *state = new LSQSenderState; 796 state->isLoad = true; 797 state->idx = load_idx; 798 state->inst = load_inst; 799 data_pkt->senderState = state; 800 801 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 802 803 // Point the first packet at the main data packet. 804 fst_data_pkt = data_pkt; 805 } else { 806 807 // Create the split packets. 808 fst_data_pkt = new Packet(sreqLow, command); 809 snd_data_pkt = new Packet(sreqHigh, command); 810 811 fst_data_pkt->dataStatic(load_inst->memData); 812 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 813 814 fst_data_pkt->senderState = state; 815 snd_data_pkt->senderState = state; 816 817 state->isSplit = true; 818 state->outstanding = 2; 819 state->mainPkt = data_pkt; 820 } 821 822 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 823 // Delete state and data packet because a load retry 824 // initiates a pipeline restart; it does not retry. 825 delete state; 826 delete data_pkt->req; 827 delete data_pkt; 828 if (TheISA::HasUnalignedMemAcc && sreqLow) { 829 delete fst_data_pkt->req; 830 delete fst_data_pkt; 831 delete snd_data_pkt->req; 832 delete snd_data_pkt; 833 sreqLow = NULL; 834 sreqHigh = NULL; 835 } 836 837 req = NULL; 838 839 // If the access didn't succeed, tell the LSQ by setting 840 // the retry thread id. 841 lsq->setRetryTid(lsqID); 842 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 843 completedFirst = true; 844 845 // The first packet was sent without problems, so send this one 846 // too. If there is a problem with this packet then the whole 847 // load will be squashed, so indicate this to the state object. 848 // The first packet will return in completeDataAccess and be 849 // handled there. 850 ++usedPorts; 851 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 852 853 // The main packet will be deleted in completeDataAccess. 854 delete snd_data_pkt->req; 855 delete snd_data_pkt; 856 857 state->complete(); 858 859 req = NULL; 860 sreqHigh = NULL; 861 862 lsq->setRetryTid(lsqID); 863 } 864 } 865 } 866 867 // If the cache was blocked, or has become blocked due to the access, 868 // handle it. 869 if (lsq->cacheBlocked()) { 870 if (req) 871 delete req; 872 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 873 delete sreqLow; 874 delete sreqHigh; 875 } 876 877 ++lsqCacheBlocked; 878 879 // If the first part of a split access succeeds, then let the LSQ 880 // handle the decrWb when completeDataAccess is called upon return 881 // of the requested first part of data 882 if (!completedFirst) 883 iewStage->decrWb(load_inst->seqNum); 884 885 // There's an older load that's already going to squash. 886 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 887 return NoFault; 888 889 // Record that the load was blocked due to memory. This 890 // load will squash all instructions after it, be 891 // refetched, and re-executed. 892 isLoadBlocked = true; 893 loadBlockedHandled = false; 894 blockedLoadSeqNum = load_inst->seqNum; 895 // No fault occurred, even though the interface is blocked. 896 return NoFault; 897 } 898 899 return NoFault; 900} 901 902template <class Impl> 903Fault 904LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 905 uint8_t *data, int store_idx) 906{ 907 assert(storeQueue[store_idx].inst); 908 909 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 910 " | storeHead:%i [sn:%i]\n", 911 store_idx, req->getPaddr(), data, storeHead, 912 storeQueue[store_idx].inst->seqNum); 913 914 storeQueue[store_idx].req = req; 915 storeQueue[store_idx].sreqLow = sreqLow; 916 storeQueue[store_idx].sreqHigh = sreqHigh; 917 unsigned size = req->getSize(); 918 storeQueue[store_idx].size = size; 919 assert(size <= sizeof(storeQueue[store_idx].data)); 920 921 // Split stores can only occur in ISAs with unaligned memory accesses. If 922 // a store request has been split, sreqLow and sreqHigh will be non-null. 923 if (TheISA::HasUnalignedMemAcc && sreqLow) { 924 storeQueue[store_idx].isSplit = true; 925 } 926 927 memcpy(storeQueue[store_idx].data, data, size); 928 929 // This function only writes the data to the store queue, so no fault 930 // can happen here. 931 return NoFault; 932} 933 934#endif // __CPU_O3_LSQ_UNIT_HH__ 935