lsq_unit.hh revision 9046:a1104cc13db2
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/generic/debugfaults.hh"
41#include "arch/isa_traits.hh"
42#include "arch/locked_mem.hh"
43#include "arch/mmapped_ipr.hh"
44#include "base/hashmap.hh"
45#include "config/the_isa.hh"
46#include "cpu/inst_seq.hh"
47#include "cpu/timebuf.hh"
48#include "debug/LSQUnit.hh"
49#include "mem/packet.hh"
50#include "mem/port.hh"
51#include "sim/fault_fwd.hh"
52
53struct DerivO3CPUParams;
54
55/**
56 * Class that implements the actual LQ and SQ for each specific
57 * thread.  Both are circular queues; load entries are freed upon
58 * committing, while store entries are freed once they writeback. The
59 * LSQUnit tracks if there are memory ordering violations, and also
60 * detects partial load to store forwarding cases (a store only has
61 * part of a load's data) that requires the load to wait until the
62 * store writes back. In the former case it holds onto the instruction
63 * until the dependence unit looks at it, and in the latter it stalls
64 * the LSQ until the store writes back. At that point the load is
65 * replayed.
66 */
67template <class Impl>
68class LSQUnit {
69  public:
70    typedef typename Impl::O3CPU O3CPU;
71    typedef typename Impl::DynInstPtr DynInstPtr;
72    typedef typename Impl::CPUPol::IEW IEW;
73    typedef typename Impl::CPUPol::LSQ LSQ;
74    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
75
76  public:
77    /** Constructs an LSQ unit. init() must be called prior to use. */
78    LSQUnit();
79
80    /** Initializes the LSQ unit with the specified number of entries. */
81    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
82            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
83            unsigned id);
84
85    /** Returns the name of the LSQ unit. */
86    std::string name() const;
87
88    /** Registers statistics. */
89    void regStats();
90
91    /** Sets the pointer to the dcache port. */
92    void setDcachePort(MasterPort *dcache_port);
93
94    /** Switches out LSQ unit. */
95    void switchOut();
96
97    /** Takes over from another CPU's thread. */
98    void takeOverFrom();
99
100    /** Returns if the LSQ is switched out. */
101    bool isSwitchedOut() { return switchedOut; }
102
103    /** Ticks the LSQ unit, which in this case only resets the number of
104     * used cache ports.
105     * @todo: Move the number of used ports up to the LSQ level so it can
106     * be shared by all LSQ units.
107     */
108    void tick() { usedPorts = 0; }
109
110    /** Inserts an instruction. */
111    void insert(DynInstPtr &inst);
112    /** Inserts a load instruction. */
113    void insertLoad(DynInstPtr &load_inst);
114    /** Inserts a store instruction. */
115    void insertStore(DynInstPtr &store_inst);
116
117    /** Check for ordering violations in the LSQ. For a store squash if we
118     * ever find a conflicting load. For a load, only squash if we
119     * an external snoop invalidate has been seen for that load address
120     * @param load_idx index to start checking at
121     * @param inst the instruction to check
122     */
123    Fault checkViolations(int load_idx, DynInstPtr &inst);
124
125    /** Check if an incoming invalidate hits in the lsq on a load
126     * that might have issued out of order wrt another load beacuse
127     * of the intermediate invalidate.
128     */
129    void checkSnoop(PacketPtr pkt);
130
131    /** Executes a load instruction. */
132    Fault executeLoad(DynInstPtr &inst);
133
134    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
135    /** Executes a store instruction. */
136    Fault executeStore(DynInstPtr &inst);
137
138    /** Commits the head load. */
139    void commitLoad();
140    /** Commits loads older than a specific sequence number. */
141    void commitLoads(InstSeqNum &youngest_inst);
142
143    /** Commits stores older than a specific sequence number. */
144    void commitStores(InstSeqNum &youngest_inst);
145
146    /** Writes back stores. */
147    void writebackStores();
148
149    /** Completes the data access that has been returned from the
150     * memory system. */
151    void completeDataAccess(PacketPtr pkt);
152
153    /** Clears all the entries in the LQ. */
154    void clearLQ();
155
156    /** Clears all the entries in the SQ. */
157    void clearSQ();
158
159    /** Resizes the LQ to a given size. */
160    void resizeLQ(unsigned size);
161
162    /** Resizes the SQ to a given size. */
163    void resizeSQ(unsigned size);
164
165    /** Squashes all instructions younger than a specific sequence number. */
166    void squash(const InstSeqNum &squashed_num);
167
168    /** Returns if there is a memory ordering violation. Value is reset upon
169     * call to getMemDepViolator().
170     */
171    bool violation() { return memDepViolator; }
172
173    /** Returns the memory ordering violator. */
174    DynInstPtr getMemDepViolator();
175
176    /** Returns if a load became blocked due to the memory system. */
177    bool loadBlocked()
178    { return isLoadBlocked; }
179
180    /** Clears the signal that a load became blocked. */
181    void clearLoadBlocked()
182    { isLoadBlocked = false; }
183
184    /** Returns if the blocked load was handled. */
185    bool isLoadBlockedHandled()
186    { return loadBlockedHandled; }
187
188    /** Records the blocked load as being handled. */
189    void setLoadBlockedHandled()
190    { loadBlockedHandled = true; }
191
192    /** Returns the number of free entries (min of free LQ and SQ entries). */
193    unsigned numFreeEntries();
194
195    /** Returns the number of loads ready to execute. */
196    int numLoadsReady();
197
198    /** Returns the number of loads in the LQ. */
199    int numLoads() { return loads; }
200
201    /** Returns the number of stores in the SQ. */
202    int numStores() { return stores; }
203
204    /** Returns if either the LQ or SQ is full. */
205    bool isFull() { return lqFull() || sqFull(); }
206
207    /** Returns if the LQ is full. */
208    bool lqFull() { return loads >= (LQEntries - 1); }
209
210    /** Returns if the SQ is full. */
211    bool sqFull() { return stores >= (SQEntries - 1); }
212
213    /** Returns the number of instructions in the LSQ. */
214    unsigned getCount() { return loads + stores; }
215
216    /** Returns if there are any stores to writeback. */
217    bool hasStoresToWB() { return storesToWB; }
218
219    /** Returns the number of stores to writeback. */
220    int numStoresToWB() { return storesToWB; }
221
222    /** Returns if the LSQ unit will writeback on this cycle. */
223    bool willWB() { return storeQueue[storeWBIdx].canWB &&
224                        !storeQueue[storeWBIdx].completed &&
225                        !isStoreBlocked; }
226
227    /** Handles doing the retry. */
228    void recvRetry();
229
230  private:
231    /** Writes back the instruction, sending it to IEW. */
232    void writeback(DynInstPtr &inst, PacketPtr pkt);
233
234    /** Writes back a store that couldn't be completed the previous cycle. */
235    void writebackPendingStore();
236
237    /** Handles completing the send of a store to memory. */
238    void storePostSend(PacketPtr pkt);
239
240    /** Completes the store at the specified index. */
241    void completeStore(int store_idx);
242
243    /** Attempts to send a store to the cache. */
244    bool sendStore(PacketPtr data_pkt);
245
246    /** Increments the given store index (circular queue). */
247    inline void incrStIdx(int &store_idx);
248    /** Decrements the given store index (circular queue). */
249    inline void decrStIdx(int &store_idx);
250    /** Increments the given load index (circular queue). */
251    inline void incrLdIdx(int &load_idx);
252    /** Decrements the given load index (circular queue). */
253    inline void decrLdIdx(int &load_idx);
254
255  public:
256    /** Debugging function to dump instructions in the LSQ. */
257    void dumpInsts();
258
259  private:
260    /** Pointer to the CPU. */
261    O3CPU *cpu;
262
263    /** Pointer to the IEW stage. */
264    IEW *iewStage;
265
266    /** Pointer to the LSQ. */
267    LSQ *lsq;
268
269    /** Pointer to the dcache port.  Used only for sending. */
270    MasterPort *dcachePort;
271
272    /** Derived class to hold any sender state the LSQ needs. */
273    class LSQSenderState : public Packet::SenderState
274    {
275      public:
276        /** Default constructor. */
277        LSQSenderState()
278            : mainPkt(NULL), pendingPacket(NULL), outstanding(1),
279              noWB(false), isSplit(false), pktToSend(false)
280          { }
281
282        /** Instruction who initiated the access to memory. */
283        DynInstPtr inst;
284        /** The main packet from a split load, used during writeback. */
285        PacketPtr mainPkt;
286        /** A second packet from a split store that needs sending. */
287        PacketPtr pendingPacket;
288        /** The LQ/SQ index of the instruction. */
289        uint8_t idx;
290        /** Number of outstanding packets to complete. */
291        uint8_t outstanding;
292        /** Whether or not it is a load. */
293        bool isLoad;
294        /** Whether or not the instruction will need to writeback. */
295        bool noWB;
296        /** Whether or not this access is split in two. */
297        bool isSplit;
298        /** Whether or not there is a packet that needs sending. */
299        bool pktToSend;
300
301        /** Completes a packet and returns whether the access is finished. */
302        inline bool complete() { return --outstanding == 0; }
303    };
304
305    /** Writeback event, specifically for when stores forward data to loads. */
306    class WritebackEvent : public Event {
307      public:
308        /** Constructs a writeback event. */
309        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
310
311        /** Processes the writeback event. */
312        void process();
313
314        /** Returns the description of this event. */
315        const char *description() const;
316
317      private:
318        /** Instruction whose results are being written back. */
319        DynInstPtr inst;
320
321        /** The packet that would have been sent to memory. */
322        PacketPtr pkt;
323
324        /** The pointer to the LSQ unit that issued the store. */
325        LSQUnit<Impl> *lsqPtr;
326    };
327
328  public:
329    struct SQEntry {
330        /** Constructs an empty store queue entry. */
331        SQEntry()
332            : inst(NULL), req(NULL), size(0),
333              canWB(0), committed(0), completed(0)
334        {
335            std::memset(data, 0, sizeof(data));
336        }
337
338        /** Constructs a store queue entry for a given instruction. */
339        SQEntry(DynInstPtr &_inst)
340            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
341              isSplit(0), canWB(0), committed(0), completed(0)
342        {
343            std::memset(data, 0, sizeof(data));
344        }
345        /** The store data. */
346        char data[16];
347        /** The store instruction. */
348        DynInstPtr inst;
349        /** The request for the store. */
350        RequestPtr req;
351        /** The split requests for the store. */
352        RequestPtr sreqLow;
353        RequestPtr sreqHigh;
354        /** The size of the store. */
355        uint8_t size;
356        /** Whether or not the store is split into two requests. */
357        bool isSplit;
358        /** Whether or not the store can writeback. */
359        bool canWB;
360        /** Whether or not the store is committed. */
361        bool committed;
362        /** Whether or not the store is completed. */
363        bool completed;
364    };
365
366  private:
367    /** The LSQUnit thread id. */
368    ThreadID lsqID;
369
370    /** The store queue. */
371    std::vector<SQEntry> storeQueue;
372
373    /** The load queue. */
374    std::vector<DynInstPtr> loadQueue;
375
376    /** The number of LQ entries, plus a sentinel entry (circular queue).
377     *  @todo: Consider having var that records the true number of LQ entries.
378     */
379    unsigned LQEntries;
380    /** The number of SQ entries, plus a sentinel entry (circular queue).
381     *  @todo: Consider having var that records the true number of SQ entries.
382     */
383    unsigned SQEntries;
384
385    /** The number of places to shift addresses in the LSQ before checking
386     * for dependency violations
387     */
388    unsigned depCheckShift;
389
390    /** Should loads be checked for dependency issues */
391    bool checkLoads;
392
393    /** The number of load instructions in the LQ. */
394    int loads;
395    /** The number of store instructions in the SQ. */
396    int stores;
397    /** The number of store instructions in the SQ waiting to writeback. */
398    int storesToWB;
399
400    /** The index of the head instruction in the LQ. */
401    int loadHead;
402    /** The index of the tail instruction in the LQ. */
403    int loadTail;
404
405    /** The index of the head instruction in the SQ. */
406    int storeHead;
407    /** The index of the first instruction that may be ready to be
408     * written back, and has not yet been written back.
409     */
410    int storeWBIdx;
411    /** The index of the tail instruction in the SQ. */
412    int storeTail;
413
414    /// @todo Consider moving to a more advanced model with write vs read ports
415    /** The number of cache ports available each cycle. */
416    int cachePorts;
417
418    /** The number of used cache ports in this cycle. */
419    int usedPorts;
420
421    /** Is the LSQ switched out. */
422    bool switchedOut;
423
424    //list<InstSeqNum> mshrSeqNums;
425
426    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
427    Addr cacheBlockMask;
428
429    /** Wire to read information from the issue stage time queue. */
430    typename TimeBuffer<IssueStruct>::wire fromIssue;
431
432    /** Whether or not the LSQ is stalled. */
433    bool stalled;
434    /** The store that causes the stall due to partial store to load
435     * forwarding.
436     */
437    InstSeqNum stallingStoreIsn;
438    /** The index of the above store. */
439    int stallingLoadIdx;
440
441    /** The packet that needs to be retried. */
442    PacketPtr retryPkt;
443
444    /** Whehter or not a store is blocked due to the memory system. */
445    bool isStoreBlocked;
446
447    /** Whether or not a load is blocked due to the memory system. */
448    bool isLoadBlocked;
449
450    /** Has the blocked load been handled. */
451    bool loadBlockedHandled;
452
453    /** Whether or not a store is in flight. */
454    bool storeInFlight;
455
456    /** The sequence number of the blocked load. */
457    InstSeqNum blockedLoadSeqNum;
458
459    /** The oldest load that caused a memory ordering violation. */
460    DynInstPtr memDepViolator;
461
462    /** Whether or not there is a packet that couldn't be sent because of
463     * a lack of cache ports. */
464    bool hasPendingPkt;
465
466    /** The packet that is pending free cache ports. */
467    PacketPtr pendingPkt;
468
469    /** Flag for memory model. */
470    bool needsTSO;
471
472    // Will also need how many read/write ports the Dcache has.  Or keep track
473    // of that in stage that is one level up, and only call executeLoad/Store
474    // the appropriate number of times.
475    /** Total number of loads forwaded from LSQ stores. */
476    Stats::Scalar lsqForwLoads;
477
478    /** Total number of loads ignored due to invalid addresses. */
479    Stats::Scalar invAddrLoads;
480
481    /** Total number of squashed loads. */
482    Stats::Scalar lsqSquashedLoads;
483
484    /** Total number of responses from the memory system that are
485     * ignored due to the instruction already being squashed. */
486    Stats::Scalar lsqIgnoredResponses;
487
488    /** Tota number of memory ordering violations. */
489    Stats::Scalar lsqMemOrderViolation;
490
491    /** Total number of squashed stores. */
492    Stats::Scalar lsqSquashedStores;
493
494    /** Total number of software prefetches ignored due to invalid addresses. */
495    Stats::Scalar invAddrSwpfs;
496
497    /** Ready loads blocked due to partial store-forwarding. */
498    Stats::Scalar lsqBlockedLoads;
499
500    /** Number of loads that were rescheduled. */
501    Stats::Scalar lsqRescheduledLoads;
502
503    /** Number of times the LSQ is blocked due to the cache. */
504    Stats::Scalar lsqCacheBlocked;
505
506  public:
507    /** Executes the load at the given index. */
508    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
509               uint8_t *data, int load_idx);
510
511    /** Executes the store at the given index. */
512    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
513                uint8_t *data, int store_idx);
514
515    /** Returns the index of the head load instruction. */
516    int getLoadHead() { return loadHead; }
517    /** Returns the sequence number of the head load instruction. */
518    InstSeqNum getLoadHeadSeqNum()
519    {
520        if (loadQueue[loadHead]) {
521            return loadQueue[loadHead]->seqNum;
522        } else {
523            return 0;
524        }
525
526    }
527
528    /** Returns the index of the head store instruction. */
529    int getStoreHead() { return storeHead; }
530    /** Returns the sequence number of the head store instruction. */
531    InstSeqNum getStoreHeadSeqNum()
532    {
533        if (storeQueue[storeHead].inst) {
534            return storeQueue[storeHead].inst->seqNum;
535        } else {
536            return 0;
537        }
538
539    }
540
541    /** Returns whether or not the LSQ unit is stalled. */
542    bool isStalled()  { return stalled; }
543};
544
545template <class Impl>
546Fault
547LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
548                    uint8_t *data, int load_idx)
549{
550    DynInstPtr load_inst = loadQueue[load_idx];
551
552    assert(load_inst);
553
554    assert(!load_inst->isExecuted());
555
556    // Make sure this isn't an uncacheable access
557    // A bit of a hackish way to get uncached accesses to work only if they're
558    // at the head of the LSQ and are ready to commit (at the head of the ROB
559    // too).
560    if (req->isUncacheable() &&
561        (load_idx != loadHead || !load_inst->isAtCommit())) {
562        iewStage->rescheduleMemInst(load_inst);
563        ++lsqRescheduledLoads;
564        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
565                load_inst->seqNum, load_inst->pcState());
566
567        // Must delete request now that it wasn't handed off to
568        // memory.  This is quite ugly.  @todo: Figure out the proper
569        // place to really handle request deletes.
570        delete req;
571        if (TheISA::HasUnalignedMemAcc && sreqLow) {
572            delete sreqLow;
573            delete sreqHigh;
574        }
575        return new GenericISA::M5PanicFault(
576                "Uncachable load [sn:%llx] PC %s\n",
577                load_inst->seqNum, load_inst->pcState());
578    }
579
580    // Check the SQ for any previous stores that might lead to forwarding
581    int store_idx = load_inst->sqIdx;
582
583    int store_size = 0;
584
585    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
586            "storeHead: %i addr: %#x%s\n",
587            load_idx, store_idx, storeHead, req->getPaddr(),
588            sreqLow ? " split" : "");
589
590    if (req->isLLSC()) {
591        assert(!sreqLow);
592        // Disable recording the result temporarily.  Writing to misc
593        // regs normally updates the result, but this is not the
594        // desired behavior when handling store conditionals.
595        load_inst->recordResult(false);
596        TheISA::handleLockedRead(load_inst.get(), req);
597        load_inst->recordResult(true);
598    }
599
600    if (req->isMmappedIpr()) {
601        assert(!load_inst->memData);
602        load_inst->memData = new uint8_t[64];
603
604        ThreadContext *thread = cpu->tcBase(lsqID);
605        Tick delay;
606        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
607
608        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
609            data_pkt->dataStatic(load_inst->memData);
610            delay = TheISA::handleIprRead(thread, data_pkt);
611        } else {
612            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
613            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
614            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
615
616            fst_data_pkt->dataStatic(load_inst->memData);
617            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
618
619            delay = TheISA::handleIprRead(thread, fst_data_pkt);
620            unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
621            if (delay2 > delay)
622                delay = delay2;
623
624            delete sreqLow;
625            delete sreqHigh;
626            delete fst_data_pkt;
627            delete snd_data_pkt;
628        }
629        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
630        cpu->schedule(wb, curTick() + delay);
631        return NoFault;
632    }
633
634    while (store_idx != -1) {
635        // End once we've reached the top of the LSQ
636        if (store_idx == storeWBIdx) {
637            break;
638        }
639
640        // Move the index to one younger
641        if (--store_idx < 0)
642            store_idx += SQEntries;
643
644        assert(storeQueue[store_idx].inst);
645
646        store_size = storeQueue[store_idx].size;
647
648        if (store_size == 0)
649            continue;
650        else if (storeQueue[store_idx].inst->uncacheable())
651            continue;
652
653        assert(storeQueue[store_idx].inst->effAddrValid());
654
655        // Check if the store data is within the lower and upper bounds of
656        // addresses that the request needs.
657        bool store_has_lower_limit =
658            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
659        bool store_has_upper_limit =
660            (req->getVaddr() + req->getSize()) <=
661            (storeQueue[store_idx].inst->effAddr + store_size);
662        bool lower_load_has_store_part =
663            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
664                           store_size);
665        bool upper_load_has_store_part =
666            (req->getVaddr() + req->getSize()) >
667            storeQueue[store_idx].inst->effAddr;
668
669        // If the store's data has all of the data needed, we can forward.
670        if ((store_has_lower_limit && store_has_upper_limit)) {
671            // Get shift amount for offset into the store's data.
672            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
673
674            memcpy(data, storeQueue[store_idx].data + shift_amt,
675                   req->getSize());
676
677            assert(!load_inst->memData);
678            load_inst->memData = new uint8_t[64];
679
680            memcpy(load_inst->memData,
681                    storeQueue[store_idx].data + shift_amt, req->getSize());
682
683            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
684                    "addr %#x, data %#x\n",
685                    store_idx, req->getVaddr(), data);
686
687            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
688            data_pkt->dataStatic(load_inst->memData);
689
690            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
691
692            // We'll say this has a 1 cycle load-store forwarding latency
693            // for now.
694            // @todo: Need to make this a parameter.
695            cpu->schedule(wb, curTick());
696
697            // Don't need to do anything special for split loads.
698            if (TheISA::HasUnalignedMemAcc && sreqLow) {
699                delete sreqLow;
700                delete sreqHigh;
701            }
702
703            ++lsqForwLoads;
704            return NoFault;
705        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
706                   (store_has_upper_limit && upper_load_has_store_part) ||
707                   (lower_load_has_store_part && upper_load_has_store_part)) {
708            // This is the partial store-load forwarding case where a store
709            // has only part of the load's data.
710
711            // If it's already been written back, then don't worry about
712            // stalling on it.
713            if (storeQueue[store_idx].completed) {
714                panic("Should not check one of these");
715                continue;
716            }
717
718            // Must stall load and force it to retry, so long as it's the oldest
719            // load that needs to do so.
720            if (!stalled ||
721                (stalled &&
722                 load_inst->seqNum <
723                 loadQueue[stallingLoadIdx]->seqNum)) {
724                stalled = true;
725                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
726                stallingLoadIdx = load_idx;
727            }
728
729            // Tell IQ/mem dep unit that this instruction will need to be
730            // rescheduled eventually
731            iewStage->rescheduleMemInst(load_inst);
732            iewStage->decrWb(load_inst->seqNum);
733            load_inst->clearIssued();
734            ++lsqRescheduledLoads;
735
736            // Do not generate a writeback event as this instruction is not
737            // complete.
738            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
739                    "Store idx %i to load addr %#x\n",
740                    store_idx, req->getVaddr());
741
742            // Must delete request now that it wasn't handed off to
743            // memory.  This is quite ugly.  @todo: Figure out the
744            // proper place to really handle request deletes.
745            delete req;
746            if (TheISA::HasUnalignedMemAcc && sreqLow) {
747                delete sreqLow;
748                delete sreqHigh;
749            }
750
751            return NoFault;
752        }
753    }
754
755    // If there's no forwarding case, then go access memory
756    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
757            load_inst->seqNum, load_inst->pcState());
758
759    assert(!load_inst->memData);
760    load_inst->memData = new uint8_t[64];
761
762    ++usedPorts;
763
764    // if we the cache is not blocked, do cache access
765    bool completedFirst = false;
766    if (!lsq->cacheBlocked()) {
767        MemCmd command =
768            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
769        PacketPtr data_pkt = new Packet(req, command);
770        PacketPtr fst_data_pkt = NULL;
771        PacketPtr snd_data_pkt = NULL;
772
773        data_pkt->dataStatic(load_inst->memData);
774
775        LSQSenderState *state = new LSQSenderState;
776        state->isLoad = true;
777        state->idx = load_idx;
778        state->inst = load_inst;
779        data_pkt->senderState = state;
780
781        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
782
783            // Point the first packet at the main data packet.
784            fst_data_pkt = data_pkt;
785        } else {
786
787            // Create the split packets.
788            fst_data_pkt = new Packet(sreqLow, command);
789            snd_data_pkt = new Packet(sreqHigh, command);
790
791            fst_data_pkt->dataStatic(load_inst->memData);
792            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
793
794            fst_data_pkt->senderState = state;
795            snd_data_pkt->senderState = state;
796
797            state->isSplit = true;
798            state->outstanding = 2;
799            state->mainPkt = data_pkt;
800        }
801
802        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
803            // Delete state and data packet because a load retry
804            // initiates a pipeline restart; it does not retry.
805            delete state;
806            delete data_pkt->req;
807            delete data_pkt;
808            if (TheISA::HasUnalignedMemAcc && sreqLow) {
809                delete fst_data_pkt->req;
810                delete fst_data_pkt;
811                delete snd_data_pkt->req;
812                delete snd_data_pkt;
813                sreqLow = NULL;
814                sreqHigh = NULL;
815            }
816
817            req = NULL;
818
819            // If the access didn't succeed, tell the LSQ by setting
820            // the retry thread id.
821            lsq->setRetryTid(lsqID);
822        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
823            completedFirst = true;
824
825            // The first packet was sent without problems, so send this one
826            // too. If there is a problem with this packet then the whole
827            // load will be squashed, so indicate this to the state object.
828            // The first packet will return in completeDataAccess and be
829            // handled there.
830            ++usedPorts;
831            if (!dcachePort->sendTimingReq(snd_data_pkt)) {
832
833                // The main packet will be deleted in completeDataAccess.
834                delete snd_data_pkt->req;
835                delete snd_data_pkt;
836
837                state->complete();
838
839                req = NULL;
840                sreqHigh = NULL;
841
842                lsq->setRetryTid(lsqID);
843            }
844        }
845    }
846
847    // If the cache was blocked, or has become blocked due to the access,
848    // handle it.
849    if (lsq->cacheBlocked()) {
850        if (req)
851            delete req;
852        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
853            delete sreqLow;
854            delete sreqHigh;
855        }
856
857        ++lsqCacheBlocked;
858
859        // If the first part of a split access succeeds, then let the LSQ
860        // handle the decrWb when completeDataAccess is called upon return
861        // of the requested first part of data
862        if (!completedFirst)
863            iewStage->decrWb(load_inst->seqNum);
864
865        // There's an older load that's already going to squash.
866        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
867            return NoFault;
868
869        // Record that the load was blocked due to memory.  This
870        // load will squash all instructions after it, be
871        // refetched, and re-executed.
872        isLoadBlocked = true;
873        loadBlockedHandled = false;
874        blockedLoadSeqNum = load_inst->seqNum;
875        // No fault occurred, even though the interface is blocked.
876        return NoFault;
877    }
878
879    return NoFault;
880}
881
882template <class Impl>
883Fault
884LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
885                     uint8_t *data, int store_idx)
886{
887    assert(storeQueue[store_idx].inst);
888
889    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
890            " | storeHead:%i [sn:%i]\n",
891            store_idx, req->getPaddr(), data, storeHead,
892            storeQueue[store_idx].inst->seqNum);
893
894    storeQueue[store_idx].req = req;
895    storeQueue[store_idx].sreqLow = sreqLow;
896    storeQueue[store_idx].sreqHigh = sreqHigh;
897    unsigned size = req->getSize();
898    storeQueue[store_idx].size = size;
899    assert(size <= sizeof(storeQueue[store_idx].data));
900
901    // Split stores can only occur in ISAs with unaligned memory accesses.  If
902    // a store request has been split, sreqLow and sreqHigh will be non-null.
903    if (TheISA::HasUnalignedMemAcc && sreqLow) {
904        storeQueue[store_idx].isSplit = true;
905    }
906
907    memcpy(storeQueue[store_idx].data, data, size);
908
909    // This function only writes the data to the store queue, so no fault
910    // can happen here.
911    return NoFault;
912}
913
914#endif // __CPU_O3_LSQ_UNIT_HH__
915