lsq_unit.hh revision 8506
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/isa_traits.hh" 42#include "arch/locked_mem.hh" 43#include "arch/mmapped_ipr.hh" 44#include "base/fast_alloc.hh" 45#include "base/hashmap.hh" 46#include "config/full_system.hh" 47#include "config/the_isa.hh" 48#include "cpu/inst_seq.hh" 49#include "cpu/timebuf.hh" 50#include "debug/LSQUnit.hh" 51#include "mem/packet.hh" 52#include "mem/port.hh" 53 54class DerivO3CPUParams; 55 56/** 57 * Class that implements the actual LQ and SQ for each specific 58 * thread. Both are circular queues; load entries are freed upon 59 * committing, while store entries are freed once they writeback. The 60 * LSQUnit tracks if there are memory ordering violations, and also 61 * detects partial load to store forwarding cases (a store only has 62 * part of a load's data) that requires the load to wait until the 63 * store writes back. In the former case it holds onto the instruction 64 * until the dependence unit looks at it, and in the latter it stalls 65 * the LSQ until the store writes back. At that point the load is 66 * replayed. 67 */ 68template <class Impl> 69class LSQUnit { 70 public: 71 typedef typename Impl::O3CPU O3CPU; 72 typedef typename Impl::DynInstPtr DynInstPtr; 73 typedef typename Impl::CPUPol::IEW IEW; 74 typedef typename Impl::CPUPol::LSQ LSQ; 75 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 76 77 public: 78 /** Constructs an LSQ unit. init() must be called prior to use. */ 79 LSQUnit(); 80 81 /** Initializes the LSQ unit with the specified number of entries. */ 82 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 83 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 84 unsigned id); 85 86 /** Returns the name of the LSQ unit. */ 87 std::string name() const; 88 89 /** Registers statistics. */ 90 void regStats(); 91 92 /** Sets the pointer to the dcache port. */ 93 void setDcachePort(Port *dcache_port); 94 95 /** Switches out LSQ unit. */ 96 void switchOut(); 97 98 /** Takes over from another CPU's thread. */ 99 void takeOverFrom(); 100 101 /** Returns if the LSQ is switched out. */ 102 bool isSwitchedOut() { return switchedOut; } 103 104 /** Ticks the LSQ unit, which in this case only resets the number of 105 * used cache ports. 106 * @todo: Move the number of used ports up to the LSQ level so it can 107 * be shared by all LSQ units. 108 */ 109 void tick() { usedPorts = 0; } 110 111 /** Inserts an instruction. */ 112 void insert(DynInstPtr &inst); 113 /** Inserts a load instruction. */ 114 void insertLoad(DynInstPtr &load_inst); 115 /** Inserts a store instruction. */ 116 void insertStore(DynInstPtr &store_inst); 117 118 /** Check for ordering violations in the LSQ 119 * @param load_idx index to start checking at 120 * @param inst the instruction to check 121 */ 122 Fault checkViolations(int load_idx, DynInstPtr &inst); 123 124 /** Executes a load instruction. */ 125 Fault executeLoad(DynInstPtr &inst); 126 127 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 128 /** Executes a store instruction. */ 129 Fault executeStore(DynInstPtr &inst); 130 131 /** Commits the head load. */ 132 void commitLoad(); 133 /** Commits loads older than a specific sequence number. */ 134 void commitLoads(InstSeqNum &youngest_inst); 135 136 /** Commits stores older than a specific sequence number. */ 137 void commitStores(InstSeqNum &youngest_inst); 138 139 /** Writes back stores. */ 140 void writebackStores(); 141 142 /** Completes the data access that has been returned from the 143 * memory system. */ 144 void completeDataAccess(PacketPtr pkt); 145 146 /** Clears all the entries in the LQ. */ 147 void clearLQ(); 148 149 /** Clears all the entries in the SQ. */ 150 void clearSQ(); 151 152 /** Resizes the LQ to a given size. */ 153 void resizeLQ(unsigned size); 154 155 /** Resizes the SQ to a given size. */ 156 void resizeSQ(unsigned size); 157 158 /** Squashes all instructions younger than a specific sequence number. */ 159 void squash(const InstSeqNum &squashed_num); 160 161 /** Returns if there is a memory ordering violation. Value is reset upon 162 * call to getMemDepViolator(). 163 */ 164 bool violation() { return memDepViolator; } 165 166 /** Returns the memory ordering violator. */ 167 DynInstPtr getMemDepViolator(); 168 169 /** Returns if a load became blocked due to the memory system. */ 170 bool loadBlocked() 171 { return isLoadBlocked; } 172 173 /** Clears the signal that a load became blocked. */ 174 void clearLoadBlocked() 175 { isLoadBlocked = false; } 176 177 /** Returns if the blocked load was handled. */ 178 bool isLoadBlockedHandled() 179 { return loadBlockedHandled; } 180 181 /** Records the blocked load as being handled. */ 182 void setLoadBlockedHandled() 183 { loadBlockedHandled = true; } 184 185 /** Returns the number of free entries (min of free LQ and SQ entries). */ 186 unsigned numFreeEntries(); 187 188 /** Returns the number of loads ready to execute. */ 189 int numLoadsReady(); 190 191 /** Returns the number of loads in the LQ. */ 192 int numLoads() { return loads; } 193 194 /** Returns the number of stores in the SQ. */ 195 int numStores() { return stores; } 196 197 /** Returns if either the LQ or SQ is full. */ 198 bool isFull() { return lqFull() || sqFull(); } 199 200 /** Returns if the LQ is full. */ 201 bool lqFull() { return loads >= (LQEntries - 1); } 202 203 /** Returns if the SQ is full. */ 204 bool sqFull() { return stores >= (SQEntries - 1); } 205 206 /** Returns the number of instructions in the LSQ. */ 207 unsigned getCount() { return loads + stores; } 208 209 /** Returns if there are any stores to writeback. */ 210 bool hasStoresToWB() { return storesToWB; } 211 212 /** Returns the number of stores to writeback. */ 213 int numStoresToWB() { return storesToWB; } 214 215 /** Returns if the LSQ unit will writeback on this cycle. */ 216 bool willWB() { return storeQueue[storeWBIdx].canWB && 217 !storeQueue[storeWBIdx].completed && 218 !isStoreBlocked; } 219 220 /** Handles doing the retry. */ 221 void recvRetry(); 222 223 private: 224 /** Writes back the instruction, sending it to IEW. */ 225 void writeback(DynInstPtr &inst, PacketPtr pkt); 226 227 /** Writes back a store that couldn't be completed the previous cycle. */ 228 void writebackPendingStore(); 229 230 /** Handles completing the send of a store to memory. */ 231 void storePostSend(PacketPtr pkt); 232 233 /** Completes the store at the specified index. */ 234 void completeStore(int store_idx); 235 236 /** Attempts to send a store to the cache. */ 237 bool sendStore(PacketPtr data_pkt); 238 239 /** Increments the given store index (circular queue). */ 240 inline void incrStIdx(int &store_idx); 241 /** Decrements the given store index (circular queue). */ 242 inline void decrStIdx(int &store_idx); 243 /** Increments the given load index (circular queue). */ 244 inline void incrLdIdx(int &load_idx); 245 /** Decrements the given load index (circular queue). */ 246 inline void decrLdIdx(int &load_idx); 247 248 public: 249 /** Debugging function to dump instructions in the LSQ. */ 250 void dumpInsts(); 251 252 private: 253 /** Pointer to the CPU. */ 254 O3CPU *cpu; 255 256 /** Pointer to the IEW stage. */ 257 IEW *iewStage; 258 259 /** Pointer to the LSQ. */ 260 LSQ *lsq; 261 262 /** Pointer to the dcache port. Used only for sending. */ 263 Port *dcachePort; 264 265 /** Derived class to hold any sender state the LSQ needs. */ 266 class LSQSenderState : public Packet::SenderState, public FastAlloc 267 { 268 public: 269 /** Default constructor. */ 270 LSQSenderState() 271 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 272 mainPkt(NULL), pendingPacket(NULL) 273 { } 274 275 /** Instruction who initiated the access to memory. */ 276 DynInstPtr inst; 277 /** Whether or not it is a load. */ 278 bool isLoad; 279 /** The LQ/SQ index of the instruction. */ 280 int idx; 281 /** Whether or not the instruction will need to writeback. */ 282 bool noWB; 283 /** Whether or not this access is split in two. */ 284 bool isSplit; 285 /** Whether or not there is a packet that needs sending. */ 286 bool pktToSend; 287 /** Number of outstanding packets to complete. */ 288 int outstanding; 289 /** The main packet from a split load, used during writeback. */ 290 PacketPtr mainPkt; 291 /** A second packet from a split store that needs sending. */ 292 PacketPtr pendingPacket; 293 294 /** Completes a packet and returns whether the access is finished. */ 295 inline bool complete() { return --outstanding == 0; } 296 }; 297 298 /** Writeback event, specifically for when stores forward data to loads. */ 299 class WritebackEvent : public Event { 300 public: 301 /** Constructs a writeback event. */ 302 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 303 304 /** Processes the writeback event. */ 305 void process(); 306 307 /** Returns the description of this event. */ 308 const char *description() const; 309 310 private: 311 /** Instruction whose results are being written back. */ 312 DynInstPtr inst; 313 314 /** The packet that would have been sent to memory. */ 315 PacketPtr pkt; 316 317 /** The pointer to the LSQ unit that issued the store. */ 318 LSQUnit<Impl> *lsqPtr; 319 }; 320 321 public: 322 struct SQEntry { 323 /** Constructs an empty store queue entry. */ 324 SQEntry() 325 : inst(NULL), req(NULL), size(0), 326 canWB(0), committed(0), completed(0) 327 { 328 std::memset(data, 0, sizeof(data)); 329 } 330 331 /** Constructs a store queue entry for a given instruction. */ 332 SQEntry(DynInstPtr &_inst) 333 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 334 isSplit(0), canWB(0), committed(0), completed(0) 335 { 336 std::memset(data, 0, sizeof(data)); 337 } 338 339 /** The store instruction. */ 340 DynInstPtr inst; 341 /** The request for the store. */ 342 RequestPtr req; 343 /** The split requests for the store. */ 344 RequestPtr sreqLow; 345 RequestPtr sreqHigh; 346 /** The size of the store. */ 347 int size; 348 /** The store data. */ 349 char data[16]; 350 /** Whether or not the store is split into two requests. */ 351 bool isSplit; 352 /** Whether or not the store can writeback. */ 353 bool canWB; 354 /** Whether or not the store is committed. */ 355 bool committed; 356 /** Whether or not the store is completed. */ 357 bool completed; 358 }; 359 360 private: 361 /** The LSQUnit thread id. */ 362 ThreadID lsqID; 363 364 /** The store queue. */ 365 std::vector<SQEntry> storeQueue; 366 367 /** The load queue. */ 368 std::vector<DynInstPtr> loadQueue; 369 370 /** The number of LQ entries, plus a sentinel entry (circular queue). 371 * @todo: Consider having var that records the true number of LQ entries. 372 */ 373 unsigned LQEntries; 374 /** The number of SQ entries, plus a sentinel entry (circular queue). 375 * @todo: Consider having var that records the true number of SQ entries. 376 */ 377 unsigned SQEntries; 378 379 /** The number of places to shift addresses in the LSQ before checking 380 * for dependency violations 381 */ 382 unsigned depCheckShift; 383 384 /** Should loads be checked for dependency issues */ 385 bool checkLoads; 386 387 /** The number of load instructions in the LQ. */ 388 int loads; 389 /** The number of store instructions in the SQ. */ 390 int stores; 391 /** The number of store instructions in the SQ waiting to writeback. */ 392 int storesToWB; 393 394 /** The index of the head instruction in the LQ. */ 395 int loadHead; 396 /** The index of the tail instruction in the LQ. */ 397 int loadTail; 398 399 /** The index of the head instruction in the SQ. */ 400 int storeHead; 401 /** The index of the first instruction that may be ready to be 402 * written back, and has not yet been written back. 403 */ 404 int storeWBIdx; 405 /** The index of the tail instruction in the SQ. */ 406 int storeTail; 407 408 /// @todo Consider moving to a more advanced model with write vs read ports 409 /** The number of cache ports available each cycle. */ 410 int cachePorts; 411 412 /** The number of used cache ports in this cycle. */ 413 int usedPorts; 414 415 /** Is the LSQ switched out. */ 416 bool switchedOut; 417 418 //list<InstSeqNum> mshrSeqNums; 419 420 /** Wire to read information from the issue stage time queue. */ 421 typename TimeBuffer<IssueStruct>::wire fromIssue; 422 423 /** Whether or not the LSQ is stalled. */ 424 bool stalled; 425 /** The store that causes the stall due to partial store to load 426 * forwarding. 427 */ 428 InstSeqNum stallingStoreIsn; 429 /** The index of the above store. */ 430 int stallingLoadIdx; 431 432 /** The packet that needs to be retried. */ 433 PacketPtr retryPkt; 434 435 /** Whehter or not a store is blocked due to the memory system. */ 436 bool isStoreBlocked; 437 438 /** Whether or not a load is blocked due to the memory system. */ 439 bool isLoadBlocked; 440 441 /** Has the blocked load been handled. */ 442 bool loadBlockedHandled; 443 444 /** The sequence number of the blocked load. */ 445 InstSeqNum blockedLoadSeqNum; 446 447 /** The oldest load that caused a memory ordering violation. */ 448 DynInstPtr memDepViolator; 449 450 /** Whether or not there is a packet that couldn't be sent because of 451 * a lack of cache ports. */ 452 bool hasPendingPkt; 453 454 /** The packet that is pending free cache ports. */ 455 PacketPtr pendingPkt; 456 457 // Will also need how many read/write ports the Dcache has. Or keep track 458 // of that in stage that is one level up, and only call executeLoad/Store 459 // the appropriate number of times. 460 /** Total number of loads forwaded from LSQ stores. */ 461 Stats::Scalar lsqForwLoads; 462 463 /** Total number of loads ignored due to invalid addresses. */ 464 Stats::Scalar invAddrLoads; 465 466 /** Total number of squashed loads. */ 467 Stats::Scalar lsqSquashedLoads; 468 469 /** Total number of responses from the memory system that are 470 * ignored due to the instruction already being squashed. */ 471 Stats::Scalar lsqIgnoredResponses; 472 473 /** Tota number of memory ordering violations. */ 474 Stats::Scalar lsqMemOrderViolation; 475 476 /** Total number of squashed stores. */ 477 Stats::Scalar lsqSquashedStores; 478 479 /** Total number of software prefetches ignored due to invalid addresses. */ 480 Stats::Scalar invAddrSwpfs; 481 482 /** Ready loads blocked due to partial store-forwarding. */ 483 Stats::Scalar lsqBlockedLoads; 484 485 /** Number of loads that were rescheduled. */ 486 Stats::Scalar lsqRescheduledLoads; 487 488 /** Number of times the LSQ is blocked due to the cache. */ 489 Stats::Scalar lsqCacheBlocked; 490 491 public: 492 /** Executes the load at the given index. */ 493 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 494 uint8_t *data, int load_idx); 495 496 /** Executes the store at the given index. */ 497 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 498 uint8_t *data, int store_idx); 499 500 /** Returns the index of the head load instruction. */ 501 int getLoadHead() { return loadHead; } 502 /** Returns the sequence number of the head load instruction. */ 503 InstSeqNum getLoadHeadSeqNum() 504 { 505 if (loadQueue[loadHead]) { 506 return loadQueue[loadHead]->seqNum; 507 } else { 508 return 0; 509 } 510 511 } 512 513 /** Returns the index of the head store instruction. */ 514 int getStoreHead() { return storeHead; } 515 /** Returns the sequence number of the head store instruction. */ 516 InstSeqNum getStoreHeadSeqNum() 517 { 518 if (storeQueue[storeHead].inst) { 519 return storeQueue[storeHead].inst->seqNum; 520 } else { 521 return 0; 522 } 523 524 } 525 526 /** Returns whether or not the LSQ unit is stalled. */ 527 bool isStalled() { return stalled; } 528}; 529 530template <class Impl> 531Fault 532LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 533 uint8_t *data, int load_idx) 534{ 535 DynInstPtr load_inst = loadQueue[load_idx]; 536 537 assert(load_inst); 538 539 assert(!load_inst->isExecuted()); 540 541 // Make sure this isn't an uncacheable access 542 // A bit of a hackish way to get uncached accesses to work only if they're 543 // at the head of the LSQ and are ready to commit (at the head of the ROB 544 // too). 545 if (req->isUncacheable() && 546 (load_idx != loadHead || !load_inst->isAtCommit())) { 547 iewStage->rescheduleMemInst(load_inst); 548 ++lsqRescheduledLoads; 549 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 550 load_inst->seqNum, load_inst->pcState()); 551 552 // Must delete request now that it wasn't handed off to 553 // memory. This is quite ugly. @todo: Figure out the proper 554 // place to really handle request deletes. 555 delete req; 556 if (TheISA::HasUnalignedMemAcc && sreqLow) { 557 delete sreqLow; 558 delete sreqHigh; 559 } 560 return TheISA::genMachineCheckFault(); 561 } 562 563 // Check the SQ for any previous stores that might lead to forwarding 564 int store_idx = load_inst->sqIdx; 565 566 int store_size = 0; 567 568 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 569 "storeHead: %i addr: %#x%s\n", 570 load_idx, store_idx, storeHead, req->getPaddr(), 571 sreqLow ? " split" : ""); 572 573 if (req->isLLSC()) { 574 assert(!sreqLow); 575 // Disable recording the result temporarily. Writing to misc 576 // regs normally updates the result, but this is not the 577 // desired behavior when handling store conditionals. 578 load_inst->recordResult = false; 579 TheISA::handleLockedRead(load_inst.get(), req); 580 load_inst->recordResult = true; 581 } 582 583 if (req->isMmappedIpr()) { 584 assert(!load_inst->memData); 585 load_inst->memData = new uint8_t[64]; 586 587 ThreadContext *thread = cpu->tcBase(lsqID); 588 Tick delay; 589 PacketPtr data_pkt = 590 new Packet(req, MemCmd::ReadReq, Packet::Broadcast); 591 592 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 593 data_pkt->dataStatic(load_inst->memData); 594 delay = TheISA::handleIprRead(thread, data_pkt); 595 } else { 596 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 597 PacketPtr fst_data_pkt = 598 new Packet(sreqLow, MemCmd::ReadReq, Packet::Broadcast); 599 PacketPtr snd_data_pkt = 600 new Packet(sreqHigh, MemCmd::ReadReq, Packet::Broadcast); 601 602 fst_data_pkt->dataStatic(load_inst->memData); 603 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 604 605 delay = TheISA::handleIprRead(thread, fst_data_pkt); 606 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 607 if (delay2 > delay) 608 delay = delay2; 609 610 delete sreqLow; 611 delete sreqHigh; 612 delete fst_data_pkt; 613 delete snd_data_pkt; 614 } 615 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 616 cpu->schedule(wb, curTick() + delay); 617 return NoFault; 618 } 619 620 while (store_idx != -1) { 621 // End once we've reached the top of the LSQ 622 if (store_idx == storeWBIdx) { 623 break; 624 } 625 626 // Move the index to one younger 627 if (--store_idx < 0) 628 store_idx += SQEntries; 629 630 assert(storeQueue[store_idx].inst); 631 632 store_size = storeQueue[store_idx].size; 633 634 if (store_size == 0) 635 continue; 636 else if (storeQueue[store_idx].inst->uncacheable()) 637 continue; 638 639 assert(storeQueue[store_idx].inst->effAddrValid); 640 641 // Check if the store data is within the lower and upper bounds of 642 // addresses that the request needs. 643 bool store_has_lower_limit = 644 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 645 bool store_has_upper_limit = 646 (req->getVaddr() + req->getSize()) <= 647 (storeQueue[store_idx].inst->effAddr + store_size); 648 bool lower_load_has_store_part = 649 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 650 store_size); 651 bool upper_load_has_store_part = 652 (req->getVaddr() + req->getSize()) > 653 storeQueue[store_idx].inst->effAddr; 654 655 // If the store's data has all of the data needed, we can forward. 656 if ((store_has_lower_limit && store_has_upper_limit)) { 657 // Get shift amount for offset into the store's data. 658 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 659 660 memcpy(data, storeQueue[store_idx].data + shift_amt, 661 req->getSize()); 662 663 assert(!load_inst->memData); 664 load_inst->memData = new uint8_t[64]; 665 666 memcpy(load_inst->memData, 667 storeQueue[store_idx].data + shift_amt, req->getSize()); 668 669 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 670 "addr %#x, data %#x\n", 671 store_idx, req->getVaddr(), data); 672 673 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 674 Packet::Broadcast); 675 data_pkt->dataStatic(load_inst->memData); 676 677 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 678 679 // We'll say this has a 1 cycle load-store forwarding latency 680 // for now. 681 // @todo: Need to make this a parameter. 682 cpu->schedule(wb, curTick()); 683 684 // Don't need to do anything special for split loads. 685 if (TheISA::HasUnalignedMemAcc && sreqLow) { 686 delete sreqLow; 687 delete sreqHigh; 688 } 689 690 ++lsqForwLoads; 691 return NoFault; 692 } else if ((store_has_lower_limit && lower_load_has_store_part) || 693 (store_has_upper_limit && upper_load_has_store_part) || 694 (lower_load_has_store_part && upper_load_has_store_part)) { 695 // This is the partial store-load forwarding case where a store 696 // has only part of the load's data. 697 698 // If it's already been written back, then don't worry about 699 // stalling on it. 700 if (storeQueue[store_idx].completed) { 701 panic("Should not check one of these"); 702 continue; 703 } 704 705 // Must stall load and force it to retry, so long as it's the oldest 706 // load that needs to do so. 707 if (!stalled || 708 (stalled && 709 load_inst->seqNum < 710 loadQueue[stallingLoadIdx]->seqNum)) { 711 stalled = true; 712 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 713 stallingLoadIdx = load_idx; 714 } 715 716 // Tell IQ/mem dep unit that this instruction will need to be 717 // rescheduled eventually 718 iewStage->rescheduleMemInst(load_inst); 719 iewStage->decrWb(load_inst->seqNum); 720 load_inst->clearIssued(); 721 ++lsqRescheduledLoads; 722 723 // Do not generate a writeback event as this instruction is not 724 // complete. 725 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 726 "Store idx %i to load addr %#x\n", 727 store_idx, req->getVaddr()); 728 729 // Must delete request now that it wasn't handed off to 730 // memory. This is quite ugly. @todo: Figure out the 731 // proper place to really handle request deletes. 732 delete req; 733 if (TheISA::HasUnalignedMemAcc && sreqLow) { 734 delete sreqLow; 735 delete sreqHigh; 736 } 737 738 return NoFault; 739 } 740 } 741 742 // If there's no forwarding case, then go access memory 743 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 744 load_inst->seqNum, load_inst->pcState()); 745 746 assert(!load_inst->memData); 747 load_inst->memData = new uint8_t[64]; 748 749 ++usedPorts; 750 751 // if we the cache is not blocked, do cache access 752 bool completedFirst = false; 753 if (!lsq->cacheBlocked()) { 754 MemCmd command = 755 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 756 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 757 PacketPtr fst_data_pkt = NULL; 758 PacketPtr snd_data_pkt = NULL; 759 760 data_pkt->dataStatic(load_inst->memData); 761 762 LSQSenderState *state = new LSQSenderState; 763 state->isLoad = true; 764 state->idx = load_idx; 765 state->inst = load_inst; 766 data_pkt->senderState = state; 767 768 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 769 770 // Point the first packet at the main data packet. 771 fst_data_pkt = data_pkt; 772 } else { 773 774 // Create the split packets. 775 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 776 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 777 778 fst_data_pkt->dataStatic(load_inst->memData); 779 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 780 781 fst_data_pkt->senderState = state; 782 snd_data_pkt->senderState = state; 783 784 state->isSplit = true; 785 state->outstanding = 2; 786 state->mainPkt = data_pkt; 787 } 788 789 if (!dcachePort->sendTiming(fst_data_pkt)) { 790 // Delete state and data packet because a load retry 791 // initiates a pipeline restart; it does not retry. 792 delete state; 793 delete data_pkt->req; 794 delete data_pkt; 795 if (TheISA::HasUnalignedMemAcc && sreqLow) { 796 delete fst_data_pkt->req; 797 delete fst_data_pkt; 798 delete snd_data_pkt->req; 799 delete snd_data_pkt; 800 sreqLow = NULL; 801 sreqHigh = NULL; 802 } 803 804 req = NULL; 805 806 // If the access didn't succeed, tell the LSQ by setting 807 // the retry thread id. 808 lsq->setRetryTid(lsqID); 809 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 810 completedFirst = true; 811 812 // The first packet was sent without problems, so send this one 813 // too. If there is a problem with this packet then the whole 814 // load will be squashed, so indicate this to the state object. 815 // The first packet will return in completeDataAccess and be 816 // handled there. 817 ++usedPorts; 818 if (!dcachePort->sendTiming(snd_data_pkt)) { 819 820 // The main packet will be deleted in completeDataAccess. 821 delete snd_data_pkt->req; 822 delete snd_data_pkt; 823 824 state->complete(); 825 826 req = NULL; 827 sreqHigh = NULL; 828 829 lsq->setRetryTid(lsqID); 830 } 831 } 832 } 833 834 // If the cache was blocked, or has become blocked due to the access, 835 // handle it. 836 if (lsq->cacheBlocked()) { 837 if (req) 838 delete req; 839 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 840 delete sreqLow; 841 delete sreqHigh; 842 } 843 844 ++lsqCacheBlocked; 845 846 // If the first part of a split access succeeds, then let the LSQ 847 // handle the decrWb when completeDataAccess is called upon return 848 // of the requested first part of data 849 if (!completedFirst) 850 iewStage->decrWb(load_inst->seqNum); 851 852 // There's an older load that's already going to squash. 853 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 854 return NoFault; 855 856 // Record that the load was blocked due to memory. This 857 // load will squash all instructions after it, be 858 // refetched, and re-executed. 859 isLoadBlocked = true; 860 loadBlockedHandled = false; 861 blockedLoadSeqNum = load_inst->seqNum; 862 // No fault occurred, even though the interface is blocked. 863 return NoFault; 864 } 865 866 return NoFault; 867} 868 869template <class Impl> 870Fault 871LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 872 uint8_t *data, int store_idx) 873{ 874 assert(storeQueue[store_idx].inst); 875 876 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 877 " | storeHead:%i [sn:%i]\n", 878 store_idx, req->getPaddr(), data, storeHead, 879 storeQueue[store_idx].inst->seqNum); 880 881 storeQueue[store_idx].req = req; 882 storeQueue[store_idx].sreqLow = sreqLow; 883 storeQueue[store_idx].sreqHigh = sreqHigh; 884 unsigned size = req->getSize(); 885 storeQueue[store_idx].size = size; 886 assert(size <= sizeof(storeQueue[store_idx].data)); 887 888 // Split stores can only occur in ISAs with unaligned memory accesses. If 889 // a store request has been split, sreqLow and sreqHigh will be non-null. 890 if (TheISA::HasUnalignedMemAcc && sreqLow) { 891 storeQueue[store_idx].isSplit = true; 892 } 893 894 memcpy(storeQueue[store_idx].data, data, size); 895 896 // This function only writes the data to the store queue, so no fault 897 // can happen here. 898 return NoFault; 899} 900 901#endif // __CPU_O3_LSQ_UNIT_HH__ 902