lsq_unit.hh revision 8232
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/locked_mem.hh" 42#include "base/fast_alloc.hh" 43#include "base/hashmap.hh" 44#include "config/full_system.hh" 45#include "config/the_isa.hh" 46#include "cpu/inst_seq.hh" 47#include "cpu/timebuf.hh" 48#include "debug/LSQUnit.hh" 49#include "mem/packet.hh" 50#include "mem/port.hh" 51 52class DerivO3CPUParams; 53 54/** 55 * Class that implements the actual LQ and SQ for each specific 56 * thread. Both are circular queues; load entries are freed upon 57 * committing, while store entries are freed once they writeback. The 58 * LSQUnit tracks if there are memory ordering violations, and also 59 * detects partial load to store forwarding cases (a store only has 60 * part of a load's data) that requires the load to wait until the 61 * store writes back. In the former case it holds onto the instruction 62 * until the dependence unit looks at it, and in the latter it stalls 63 * the LSQ until the store writes back. At that point the load is 64 * replayed. 65 */ 66template <class Impl> 67class LSQUnit { 68 public: 69 typedef typename Impl::O3CPU O3CPU; 70 typedef typename Impl::DynInstPtr DynInstPtr; 71 typedef typename Impl::CPUPol::IEW IEW; 72 typedef typename Impl::CPUPol::LSQ LSQ; 73 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 74 75 public: 76 /** Constructs an LSQ unit. init() must be called prior to use. */ 77 LSQUnit(); 78 79 /** Initializes the LSQ unit with the specified number of entries. */ 80 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 81 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 82 unsigned id); 83 84 /** Returns the name of the LSQ unit. */ 85 std::string name() const; 86 87 /** Registers statistics. */ 88 void regStats(); 89 90 /** Sets the pointer to the dcache port. */ 91 void setDcachePort(Port *dcache_port); 92 93 /** Switches out LSQ unit. */ 94 void switchOut(); 95 96 /** Takes over from another CPU's thread. */ 97 void takeOverFrom(); 98 99 /** Returns if the LSQ is switched out. */ 100 bool isSwitchedOut() { return switchedOut; } 101 102 /** Ticks the LSQ unit, which in this case only resets the number of 103 * used cache ports. 104 * @todo: Move the number of used ports up to the LSQ level so it can 105 * be shared by all LSQ units. 106 */ 107 void tick() { usedPorts = 0; } 108 109 /** Inserts an instruction. */ 110 void insert(DynInstPtr &inst); 111 /** Inserts a load instruction. */ 112 void insertLoad(DynInstPtr &load_inst); 113 /** Inserts a store instruction. */ 114 void insertStore(DynInstPtr &store_inst); 115 116 /** Check for ordering violations in the LSQ 117 * @param load_idx index to start checking at 118 * @param inst the instruction to check 119 */ 120 Fault checkViolations(int load_idx, DynInstPtr &inst); 121 122 /** Executes a load instruction. */ 123 Fault executeLoad(DynInstPtr &inst); 124 125 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 126 /** Executes a store instruction. */ 127 Fault executeStore(DynInstPtr &inst); 128 129 /** Commits the head load. */ 130 void commitLoad(); 131 /** Commits loads older than a specific sequence number. */ 132 void commitLoads(InstSeqNum &youngest_inst); 133 134 /** Commits stores older than a specific sequence number. */ 135 void commitStores(InstSeqNum &youngest_inst); 136 137 /** Writes back stores. */ 138 void writebackStores(); 139 140 /** Completes the data access that has been returned from the 141 * memory system. */ 142 void completeDataAccess(PacketPtr pkt); 143 144 /** Clears all the entries in the LQ. */ 145 void clearLQ(); 146 147 /** Clears all the entries in the SQ. */ 148 void clearSQ(); 149 150 /** Resizes the LQ to a given size. */ 151 void resizeLQ(unsigned size); 152 153 /** Resizes the SQ to a given size. */ 154 void resizeSQ(unsigned size); 155 156 /** Squashes all instructions younger than a specific sequence number. */ 157 void squash(const InstSeqNum &squashed_num); 158 159 /** Returns if there is a memory ordering violation. Value is reset upon 160 * call to getMemDepViolator(). 161 */ 162 bool violation() { return memDepViolator; } 163 164 /** Returns the memory ordering violator. */ 165 DynInstPtr getMemDepViolator(); 166 167 /** Returns if a load became blocked due to the memory system. */ 168 bool loadBlocked() 169 { return isLoadBlocked; } 170 171 /** Clears the signal that a load became blocked. */ 172 void clearLoadBlocked() 173 { isLoadBlocked = false; } 174 175 /** Returns if the blocked load was handled. */ 176 bool isLoadBlockedHandled() 177 { return loadBlockedHandled; } 178 179 /** Records the blocked load as being handled. */ 180 void setLoadBlockedHandled() 181 { loadBlockedHandled = true; } 182 183 /** Returns the number of free entries (min of free LQ and SQ entries). */ 184 unsigned numFreeEntries(); 185 186 /** Returns the number of loads ready to execute. */ 187 int numLoadsReady(); 188 189 /** Returns the number of loads in the LQ. */ 190 int numLoads() { return loads; } 191 192 /** Returns the number of stores in the SQ. */ 193 int numStores() { return stores; } 194 195 /** Returns if either the LQ or SQ is full. */ 196 bool isFull() { return lqFull() || sqFull(); } 197 198 /** Returns if the LQ is full. */ 199 bool lqFull() { return loads >= (LQEntries - 1); } 200 201 /** Returns if the SQ is full. */ 202 bool sqFull() { return stores >= (SQEntries - 1); } 203 204 /** Returns the number of instructions in the LSQ. */ 205 unsigned getCount() { return loads + stores; } 206 207 /** Returns if there are any stores to writeback. */ 208 bool hasStoresToWB() { return storesToWB; } 209 210 /** Returns the number of stores to writeback. */ 211 int numStoresToWB() { return storesToWB; } 212 213 /** Returns if the LSQ unit will writeback on this cycle. */ 214 bool willWB() { return storeQueue[storeWBIdx].canWB && 215 !storeQueue[storeWBIdx].completed && 216 !isStoreBlocked; } 217 218 /** Handles doing the retry. */ 219 void recvRetry(); 220 221 private: 222 /** Writes back the instruction, sending it to IEW. */ 223 void writeback(DynInstPtr &inst, PacketPtr pkt); 224 225 /** Writes back a store that couldn't be completed the previous cycle. */ 226 void writebackPendingStore(); 227 228 /** Handles completing the send of a store to memory. */ 229 void storePostSend(PacketPtr pkt); 230 231 /** Completes the store at the specified index. */ 232 void completeStore(int store_idx); 233 234 /** Attempts to send a store to the cache. */ 235 bool sendStore(PacketPtr data_pkt); 236 237 /** Increments the given store index (circular queue). */ 238 inline void incrStIdx(int &store_idx); 239 /** Decrements the given store index (circular queue). */ 240 inline void decrStIdx(int &store_idx); 241 /** Increments the given load index (circular queue). */ 242 inline void incrLdIdx(int &load_idx); 243 /** Decrements the given load index (circular queue). */ 244 inline void decrLdIdx(int &load_idx); 245 246 public: 247 /** Debugging function to dump instructions in the LSQ. */ 248 void dumpInsts(); 249 250 private: 251 /** Pointer to the CPU. */ 252 O3CPU *cpu; 253 254 /** Pointer to the IEW stage. */ 255 IEW *iewStage; 256 257 /** Pointer to the LSQ. */ 258 LSQ *lsq; 259 260 /** Pointer to the dcache port. Used only for sending. */ 261 Port *dcachePort; 262 263 /** Derived class to hold any sender state the LSQ needs. */ 264 class LSQSenderState : public Packet::SenderState, public FastAlloc 265 { 266 public: 267 /** Default constructor. */ 268 LSQSenderState() 269 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 270 mainPkt(NULL), pendingPacket(NULL) 271 { } 272 273 /** Instruction who initiated the access to memory. */ 274 DynInstPtr inst; 275 /** Whether or not it is a load. */ 276 bool isLoad; 277 /** The LQ/SQ index of the instruction. */ 278 int idx; 279 /** Whether or not the instruction will need to writeback. */ 280 bool noWB; 281 /** Whether or not this access is split in two. */ 282 bool isSplit; 283 /** Whether or not there is a packet that needs sending. */ 284 bool pktToSend; 285 /** Number of outstanding packets to complete. */ 286 int outstanding; 287 /** The main packet from a split load, used during writeback. */ 288 PacketPtr mainPkt; 289 /** A second packet from a split store that needs sending. */ 290 PacketPtr pendingPacket; 291 292 /** Completes a packet and returns whether the access is finished. */ 293 inline bool complete() { return --outstanding == 0; } 294 }; 295 296 /** Writeback event, specifically for when stores forward data to loads. */ 297 class WritebackEvent : public Event { 298 public: 299 /** Constructs a writeback event. */ 300 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 301 302 /** Processes the writeback event. */ 303 void process(); 304 305 /** Returns the description of this event. */ 306 const char *description() const; 307 308 private: 309 /** Instruction whose results are being written back. */ 310 DynInstPtr inst; 311 312 /** The packet that would have been sent to memory. */ 313 PacketPtr pkt; 314 315 /** The pointer to the LSQ unit that issued the store. */ 316 LSQUnit<Impl> *lsqPtr; 317 }; 318 319 public: 320 struct SQEntry { 321 /** Constructs an empty store queue entry. */ 322 SQEntry() 323 : inst(NULL), req(NULL), size(0), 324 canWB(0), committed(0), completed(0) 325 { 326 std::memset(data, 0, sizeof(data)); 327 } 328 329 /** Constructs a store queue entry for a given instruction. */ 330 SQEntry(DynInstPtr &_inst) 331 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 332 isSplit(0), canWB(0), committed(0), completed(0) 333 { 334 std::memset(data, 0, sizeof(data)); 335 } 336 337 /** The store instruction. */ 338 DynInstPtr inst; 339 /** The request for the store. */ 340 RequestPtr req; 341 /** The split requests for the store. */ 342 RequestPtr sreqLow; 343 RequestPtr sreqHigh; 344 /** The size of the store. */ 345 int size; 346 /** The store data. */ 347 char data[16]; 348 /** Whether or not the store is split into two requests. */ 349 bool isSplit; 350 /** Whether or not the store can writeback. */ 351 bool canWB; 352 /** Whether or not the store is committed. */ 353 bool committed; 354 /** Whether or not the store is completed. */ 355 bool completed; 356 }; 357 358 private: 359 /** The LSQUnit thread id. */ 360 ThreadID lsqID; 361 362 /** The store queue. */ 363 std::vector<SQEntry> storeQueue; 364 365 /** The load queue. */ 366 std::vector<DynInstPtr> loadQueue; 367 368 /** The number of LQ entries, plus a sentinel entry (circular queue). 369 * @todo: Consider having var that records the true number of LQ entries. 370 */ 371 unsigned LQEntries; 372 /** The number of SQ entries, plus a sentinel entry (circular queue). 373 * @todo: Consider having var that records the true number of SQ entries. 374 */ 375 unsigned SQEntries; 376 377 /** The number of places to shift addresses in the LSQ before checking 378 * for dependency violations 379 */ 380 unsigned depCheckShift; 381 382 /** Should loads be checked for dependency issues */ 383 bool checkLoads; 384 385 /** The number of load instructions in the LQ. */ 386 int loads; 387 /** The number of store instructions in the SQ. */ 388 int stores; 389 /** The number of store instructions in the SQ waiting to writeback. */ 390 int storesToWB; 391 392 /** The index of the head instruction in the LQ. */ 393 int loadHead; 394 /** The index of the tail instruction in the LQ. */ 395 int loadTail; 396 397 /** The index of the head instruction in the SQ. */ 398 int storeHead; 399 /** The index of the first instruction that may be ready to be 400 * written back, and has not yet been written back. 401 */ 402 int storeWBIdx; 403 /** The index of the tail instruction in the SQ. */ 404 int storeTail; 405 406 /// @todo Consider moving to a more advanced model with write vs read ports 407 /** The number of cache ports available each cycle. */ 408 int cachePorts; 409 410 /** The number of used cache ports in this cycle. */ 411 int usedPorts; 412 413 /** Is the LSQ switched out. */ 414 bool switchedOut; 415 416 //list<InstSeqNum> mshrSeqNums; 417 418 /** Wire to read information from the issue stage time queue. */ 419 typename TimeBuffer<IssueStruct>::wire fromIssue; 420 421 /** Whether or not the LSQ is stalled. */ 422 bool stalled; 423 /** The store that causes the stall due to partial store to load 424 * forwarding. 425 */ 426 InstSeqNum stallingStoreIsn; 427 /** The index of the above store. */ 428 int stallingLoadIdx; 429 430 /** The packet that needs to be retried. */ 431 PacketPtr retryPkt; 432 433 /** Whehter or not a store is blocked due to the memory system. */ 434 bool isStoreBlocked; 435 436 /** Whether or not a load is blocked due to the memory system. */ 437 bool isLoadBlocked; 438 439 /** Has the blocked load been handled. */ 440 bool loadBlockedHandled; 441 442 /** The sequence number of the blocked load. */ 443 InstSeqNum blockedLoadSeqNum; 444 445 /** The oldest load that caused a memory ordering violation. */ 446 DynInstPtr memDepViolator; 447 448 /** Whether or not there is a packet that couldn't be sent because of 449 * a lack of cache ports. */ 450 bool hasPendingPkt; 451 452 /** The packet that is pending free cache ports. */ 453 PacketPtr pendingPkt; 454 455 // Will also need how many read/write ports the Dcache has. Or keep track 456 // of that in stage that is one level up, and only call executeLoad/Store 457 // the appropriate number of times. 458 /** Total number of loads forwaded from LSQ stores. */ 459 Stats::Scalar lsqForwLoads; 460 461 /** Total number of loads ignored due to invalid addresses. */ 462 Stats::Scalar invAddrLoads; 463 464 /** Total number of squashed loads. */ 465 Stats::Scalar lsqSquashedLoads; 466 467 /** Total number of responses from the memory system that are 468 * ignored due to the instruction already being squashed. */ 469 Stats::Scalar lsqIgnoredResponses; 470 471 /** Tota number of memory ordering violations. */ 472 Stats::Scalar lsqMemOrderViolation; 473 474 /** Total number of squashed stores. */ 475 Stats::Scalar lsqSquashedStores; 476 477 /** Total number of software prefetches ignored due to invalid addresses. */ 478 Stats::Scalar invAddrSwpfs; 479 480 /** Ready loads blocked due to partial store-forwarding. */ 481 Stats::Scalar lsqBlockedLoads; 482 483 /** Number of loads that were rescheduled. */ 484 Stats::Scalar lsqRescheduledLoads; 485 486 /** Number of times the LSQ is blocked due to the cache. */ 487 Stats::Scalar lsqCacheBlocked; 488 489 public: 490 /** Executes the load at the given index. */ 491 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 492 uint8_t *data, int load_idx); 493 494 /** Executes the store at the given index. */ 495 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 496 uint8_t *data, int store_idx); 497 498 /** Returns the index of the head load instruction. */ 499 int getLoadHead() { return loadHead; } 500 /** Returns the sequence number of the head load instruction. */ 501 InstSeqNum getLoadHeadSeqNum() 502 { 503 if (loadQueue[loadHead]) { 504 return loadQueue[loadHead]->seqNum; 505 } else { 506 return 0; 507 } 508 509 } 510 511 /** Returns the index of the head store instruction. */ 512 int getStoreHead() { return storeHead; } 513 /** Returns the sequence number of the head store instruction. */ 514 InstSeqNum getStoreHeadSeqNum() 515 { 516 if (storeQueue[storeHead].inst) { 517 return storeQueue[storeHead].inst->seqNum; 518 } else { 519 return 0; 520 } 521 522 } 523 524 /** Returns whether or not the LSQ unit is stalled. */ 525 bool isStalled() { return stalled; } 526}; 527 528template <class Impl> 529Fault 530LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 531 uint8_t *data, int load_idx) 532{ 533 DynInstPtr load_inst = loadQueue[load_idx]; 534 535 assert(load_inst); 536 537 assert(!load_inst->isExecuted()); 538 539 // Make sure this isn't an uncacheable access 540 // A bit of a hackish way to get uncached accesses to work only if they're 541 // at the head of the LSQ and are ready to commit (at the head of the ROB 542 // too). 543 if (req->isUncacheable() && 544 (load_idx != loadHead || !load_inst->isAtCommit())) { 545 iewStage->rescheduleMemInst(load_inst); 546 ++lsqRescheduledLoads; 547 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 548 load_inst->seqNum, load_inst->pcState()); 549 550 // Must delete request now that it wasn't handed off to 551 // memory. This is quite ugly. @todo: Figure out the proper 552 // place to really handle request deletes. 553 delete req; 554 if (TheISA::HasUnalignedMemAcc && sreqLow) { 555 delete sreqLow; 556 delete sreqHigh; 557 } 558 return TheISA::genMachineCheckFault(); 559 } 560 561 // Check the SQ for any previous stores that might lead to forwarding 562 int store_idx = load_inst->sqIdx; 563 564 int store_size = 0; 565 566 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 567 "storeHead: %i addr: %#x%s\n", 568 load_idx, store_idx, storeHead, req->getPaddr(), 569 sreqLow ? " split" : ""); 570 571 if (req->isLLSC()) { 572 assert(!sreqLow); 573 // Disable recording the result temporarily. Writing to misc 574 // regs normally updates the result, but this is not the 575 // desired behavior when handling store conditionals. 576 load_inst->recordResult = false; 577 TheISA::handleLockedRead(load_inst.get(), req); 578 load_inst->recordResult = true; 579 } 580 581 while (store_idx != -1) { 582 // End once we've reached the top of the LSQ 583 if (store_idx == storeWBIdx) { 584 break; 585 } 586 587 // Move the index to one younger 588 if (--store_idx < 0) 589 store_idx += SQEntries; 590 591 assert(storeQueue[store_idx].inst); 592 593 store_size = storeQueue[store_idx].size; 594 595 if (store_size == 0) 596 continue; 597 else if (storeQueue[store_idx].inst->uncacheable()) 598 continue; 599 600 assert(storeQueue[store_idx].inst->effAddrValid); 601 602 // Check if the store data is within the lower and upper bounds of 603 // addresses that the request needs. 604 bool store_has_lower_limit = 605 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 606 bool store_has_upper_limit = 607 (req->getVaddr() + req->getSize()) <= 608 (storeQueue[store_idx].inst->effAddr + store_size); 609 bool lower_load_has_store_part = 610 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 611 store_size); 612 bool upper_load_has_store_part = 613 (req->getVaddr() + req->getSize()) > 614 storeQueue[store_idx].inst->effAddr; 615 616 // If the store's data has all of the data needed, we can forward. 617 if ((store_has_lower_limit && store_has_upper_limit)) { 618 // Get shift amount for offset into the store's data. 619 int shift_amt = req->getVaddr() & (store_size - 1); 620 621 memcpy(data, storeQueue[store_idx].data + shift_amt, 622 req->getSize()); 623 624 assert(!load_inst->memData); 625 load_inst->memData = new uint8_t[64]; 626 627 memcpy(load_inst->memData, 628 storeQueue[store_idx].data + shift_amt, req->getSize()); 629 630 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 631 "addr %#x, data %#x\n", 632 store_idx, req->getVaddr(), data); 633 634 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 635 Packet::Broadcast); 636 data_pkt->dataStatic(load_inst->memData); 637 638 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 639 640 // We'll say this has a 1 cycle load-store forwarding latency 641 // for now. 642 // @todo: Need to make this a parameter. 643 cpu->schedule(wb, curTick()); 644 645 // Don't need to do anything special for split loads. 646 if (TheISA::HasUnalignedMemAcc && sreqLow) { 647 delete sreqLow; 648 delete sreqHigh; 649 } 650 651 ++lsqForwLoads; 652 return NoFault; 653 } else if ((store_has_lower_limit && lower_load_has_store_part) || 654 (store_has_upper_limit && upper_load_has_store_part) || 655 (lower_load_has_store_part && upper_load_has_store_part)) { 656 // This is the partial store-load forwarding case where a store 657 // has only part of the load's data. 658 659 // If it's already been written back, then don't worry about 660 // stalling on it. 661 if (storeQueue[store_idx].completed) { 662 panic("Should not check one of these"); 663 continue; 664 } 665 666 // Must stall load and force it to retry, so long as it's the oldest 667 // load that needs to do so. 668 if (!stalled || 669 (stalled && 670 load_inst->seqNum < 671 loadQueue[stallingLoadIdx]->seqNum)) { 672 stalled = true; 673 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 674 stallingLoadIdx = load_idx; 675 } 676 677 // Tell IQ/mem dep unit that this instruction will need to be 678 // rescheduled eventually 679 iewStage->rescheduleMemInst(load_inst); 680 iewStage->decrWb(load_inst->seqNum); 681 load_inst->clearIssued(); 682 ++lsqRescheduledLoads; 683 684 // Do not generate a writeback event as this instruction is not 685 // complete. 686 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 687 "Store idx %i to load addr %#x\n", 688 store_idx, req->getVaddr()); 689 690 // Must delete request now that it wasn't handed off to 691 // memory. This is quite ugly. @todo: Figure out the 692 // proper place to really handle request deletes. 693 delete req; 694 if (TheISA::HasUnalignedMemAcc && sreqLow) { 695 delete sreqLow; 696 delete sreqHigh; 697 } 698 699 return NoFault; 700 } 701 } 702 703 // If there's no forwarding case, then go access memory 704 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 705 load_inst->seqNum, load_inst->pcState()); 706 707 assert(!load_inst->memData); 708 load_inst->memData = new uint8_t[64]; 709 710 ++usedPorts; 711 712 // if we the cache is not blocked, do cache access 713 bool completedFirst = false; 714 if (!lsq->cacheBlocked()) { 715 MemCmd command = 716 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 717 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 718 PacketPtr fst_data_pkt = NULL; 719 PacketPtr snd_data_pkt = NULL; 720 721 data_pkt->dataStatic(load_inst->memData); 722 723 LSQSenderState *state = new LSQSenderState; 724 state->isLoad = true; 725 state->idx = load_idx; 726 state->inst = load_inst; 727 data_pkt->senderState = state; 728 729 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 730 731 // Point the first packet at the main data packet. 732 fst_data_pkt = data_pkt; 733 } else { 734 735 // Create the split packets. 736 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 737 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 738 739 fst_data_pkt->dataStatic(load_inst->memData); 740 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 741 742 fst_data_pkt->senderState = state; 743 snd_data_pkt->senderState = state; 744 745 state->isSplit = true; 746 state->outstanding = 2; 747 state->mainPkt = data_pkt; 748 } 749 750 if (!dcachePort->sendTiming(fst_data_pkt)) { 751 // Delete state and data packet because a load retry 752 // initiates a pipeline restart; it does not retry. 753 delete state; 754 delete data_pkt->req; 755 delete data_pkt; 756 if (TheISA::HasUnalignedMemAcc && sreqLow) { 757 delete fst_data_pkt->req; 758 delete fst_data_pkt; 759 delete snd_data_pkt->req; 760 delete snd_data_pkt; 761 sreqLow = NULL; 762 sreqHigh = NULL; 763 } 764 765 req = NULL; 766 767 // If the access didn't succeed, tell the LSQ by setting 768 // the retry thread id. 769 lsq->setRetryTid(lsqID); 770 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 771 completedFirst = true; 772 773 // The first packet was sent without problems, so send this one 774 // too. If there is a problem with this packet then the whole 775 // load will be squashed, so indicate this to the state object. 776 // The first packet will return in completeDataAccess and be 777 // handled there. 778 ++usedPorts; 779 if (!dcachePort->sendTiming(snd_data_pkt)) { 780 781 // The main packet will be deleted in completeDataAccess. 782 delete snd_data_pkt->req; 783 delete snd_data_pkt; 784 785 state->complete(); 786 787 req = NULL; 788 sreqHigh = NULL; 789 790 lsq->setRetryTid(lsqID); 791 } 792 } 793 } 794 795 // If the cache was blocked, or has become blocked due to the access, 796 // handle it. 797 if (lsq->cacheBlocked()) { 798 if (req) 799 delete req; 800 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 801 delete sreqLow; 802 delete sreqHigh; 803 } 804 805 ++lsqCacheBlocked; 806 807 iewStage->decrWb(load_inst->seqNum); 808 // There's an older load that's already going to squash. 809 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 810 return NoFault; 811 812 // Record that the load was blocked due to memory. This 813 // load will squash all instructions after it, be 814 // refetched, and re-executed. 815 isLoadBlocked = true; 816 loadBlockedHandled = false; 817 blockedLoadSeqNum = load_inst->seqNum; 818 // No fault occurred, even though the interface is blocked. 819 return NoFault; 820 } 821 822 return NoFault; 823} 824 825template <class Impl> 826Fault 827LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 828 uint8_t *data, int store_idx) 829{ 830 assert(storeQueue[store_idx].inst); 831 832 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 833 " | storeHead:%i [sn:%i]\n", 834 store_idx, req->getPaddr(), data, storeHead, 835 storeQueue[store_idx].inst->seqNum); 836 837 storeQueue[store_idx].req = req; 838 storeQueue[store_idx].sreqLow = sreqLow; 839 storeQueue[store_idx].sreqHigh = sreqHigh; 840 unsigned size = req->getSize(); 841 storeQueue[store_idx].size = size; 842 assert(size <= sizeof(storeQueue[store_idx].data)); 843 844 // Split stores can only occur in ISAs with unaligned memory accesses. If 845 // a store request has been split, sreqLow and sreqHigh will be non-null. 846 if (TheISA::HasUnalignedMemAcc && sreqLow) { 847 storeQueue[store_idx].isSplit = true; 848 } 849 850 memcpy(storeQueue[store_idx].data, data, size); 851 852 // This function only writes the data to the store queue, so no fault 853 // can happen here. 854 return NoFault; 855} 856 857#endif // __CPU_O3_LSQ_UNIT_HH__ 858