lsq_unit.hh revision 8232
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/faults.hh"
41#include "arch/locked_mem.hh"
42#include "base/fast_alloc.hh"
43#include "base/hashmap.hh"
44#include "config/full_system.hh"
45#include "config/the_isa.hh"
46#include "cpu/inst_seq.hh"
47#include "cpu/timebuf.hh"
48#include "debug/LSQUnit.hh"
49#include "mem/packet.hh"
50#include "mem/port.hh"
51
52class DerivO3CPUParams;
53
54/**
55 * Class that implements the actual LQ and SQ for each specific
56 * thread.  Both are circular queues; load entries are freed upon
57 * committing, while store entries are freed once they writeback. The
58 * LSQUnit tracks if there are memory ordering violations, and also
59 * detects partial load to store forwarding cases (a store only has
60 * part of a load's data) that requires the load to wait until the
61 * store writes back. In the former case it holds onto the instruction
62 * until the dependence unit looks at it, and in the latter it stalls
63 * the LSQ until the store writes back. At that point the load is
64 * replayed.
65 */
66template <class Impl>
67class LSQUnit {
68  public:
69    typedef typename Impl::O3CPU O3CPU;
70    typedef typename Impl::DynInstPtr DynInstPtr;
71    typedef typename Impl::CPUPol::IEW IEW;
72    typedef typename Impl::CPUPol::LSQ LSQ;
73    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
74
75  public:
76    /** Constructs an LSQ unit. init() must be called prior to use. */
77    LSQUnit();
78
79    /** Initializes the LSQ unit with the specified number of entries. */
80    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
81            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
82            unsigned id);
83
84    /** Returns the name of the LSQ unit. */
85    std::string name() const;
86
87    /** Registers statistics. */
88    void regStats();
89
90    /** Sets the pointer to the dcache port. */
91    void setDcachePort(Port *dcache_port);
92
93    /** Switches out LSQ unit. */
94    void switchOut();
95
96    /** Takes over from another CPU's thread. */
97    void takeOverFrom();
98
99    /** Returns if the LSQ is switched out. */
100    bool isSwitchedOut() { return switchedOut; }
101
102    /** Ticks the LSQ unit, which in this case only resets the number of
103     * used cache ports.
104     * @todo: Move the number of used ports up to the LSQ level so it can
105     * be shared by all LSQ units.
106     */
107    void tick() { usedPorts = 0; }
108
109    /** Inserts an instruction. */
110    void insert(DynInstPtr &inst);
111    /** Inserts a load instruction. */
112    void insertLoad(DynInstPtr &load_inst);
113    /** Inserts a store instruction. */
114    void insertStore(DynInstPtr &store_inst);
115
116    /** Check for ordering violations in the LSQ
117     * @param load_idx index to start checking at
118     * @param inst the instruction to check
119     */
120    Fault checkViolations(int load_idx, DynInstPtr &inst);
121
122    /** Executes a load instruction. */
123    Fault executeLoad(DynInstPtr &inst);
124
125    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
126    /** Executes a store instruction. */
127    Fault executeStore(DynInstPtr &inst);
128
129    /** Commits the head load. */
130    void commitLoad();
131    /** Commits loads older than a specific sequence number. */
132    void commitLoads(InstSeqNum &youngest_inst);
133
134    /** Commits stores older than a specific sequence number. */
135    void commitStores(InstSeqNum &youngest_inst);
136
137    /** Writes back stores. */
138    void writebackStores();
139
140    /** Completes the data access that has been returned from the
141     * memory system. */
142    void completeDataAccess(PacketPtr pkt);
143
144    /** Clears all the entries in the LQ. */
145    void clearLQ();
146
147    /** Clears all the entries in the SQ. */
148    void clearSQ();
149
150    /** Resizes the LQ to a given size. */
151    void resizeLQ(unsigned size);
152
153    /** Resizes the SQ to a given size. */
154    void resizeSQ(unsigned size);
155
156    /** Squashes all instructions younger than a specific sequence number. */
157    void squash(const InstSeqNum &squashed_num);
158
159    /** Returns if there is a memory ordering violation. Value is reset upon
160     * call to getMemDepViolator().
161     */
162    bool violation() { return memDepViolator; }
163
164    /** Returns the memory ordering violator. */
165    DynInstPtr getMemDepViolator();
166
167    /** Returns if a load became blocked due to the memory system. */
168    bool loadBlocked()
169    { return isLoadBlocked; }
170
171    /** Clears the signal that a load became blocked. */
172    void clearLoadBlocked()
173    { isLoadBlocked = false; }
174
175    /** Returns if the blocked load was handled. */
176    bool isLoadBlockedHandled()
177    { return loadBlockedHandled; }
178
179    /** Records the blocked load as being handled. */
180    void setLoadBlockedHandled()
181    { loadBlockedHandled = true; }
182
183    /** Returns the number of free entries (min of free LQ and SQ entries). */
184    unsigned numFreeEntries();
185
186    /** Returns the number of loads ready to execute. */
187    int numLoadsReady();
188
189    /** Returns the number of loads in the LQ. */
190    int numLoads() { return loads; }
191
192    /** Returns the number of stores in the SQ. */
193    int numStores() { return stores; }
194
195    /** Returns if either the LQ or SQ is full. */
196    bool isFull() { return lqFull() || sqFull(); }
197
198    /** Returns if the LQ is full. */
199    bool lqFull() { return loads >= (LQEntries - 1); }
200
201    /** Returns if the SQ is full. */
202    bool sqFull() { return stores >= (SQEntries - 1); }
203
204    /** Returns the number of instructions in the LSQ. */
205    unsigned getCount() { return loads + stores; }
206
207    /** Returns if there are any stores to writeback. */
208    bool hasStoresToWB() { return storesToWB; }
209
210    /** Returns the number of stores to writeback. */
211    int numStoresToWB() { return storesToWB; }
212
213    /** Returns if the LSQ unit will writeback on this cycle. */
214    bool willWB() { return storeQueue[storeWBIdx].canWB &&
215                        !storeQueue[storeWBIdx].completed &&
216                        !isStoreBlocked; }
217
218    /** Handles doing the retry. */
219    void recvRetry();
220
221  private:
222    /** Writes back the instruction, sending it to IEW. */
223    void writeback(DynInstPtr &inst, PacketPtr pkt);
224
225    /** Writes back a store that couldn't be completed the previous cycle. */
226    void writebackPendingStore();
227
228    /** Handles completing the send of a store to memory. */
229    void storePostSend(PacketPtr pkt);
230
231    /** Completes the store at the specified index. */
232    void completeStore(int store_idx);
233
234    /** Attempts to send a store to the cache. */
235    bool sendStore(PacketPtr data_pkt);
236
237    /** Increments the given store index (circular queue). */
238    inline void incrStIdx(int &store_idx);
239    /** Decrements the given store index (circular queue). */
240    inline void decrStIdx(int &store_idx);
241    /** Increments the given load index (circular queue). */
242    inline void incrLdIdx(int &load_idx);
243    /** Decrements the given load index (circular queue). */
244    inline void decrLdIdx(int &load_idx);
245
246  public:
247    /** Debugging function to dump instructions in the LSQ. */
248    void dumpInsts();
249
250  private:
251    /** Pointer to the CPU. */
252    O3CPU *cpu;
253
254    /** Pointer to the IEW stage. */
255    IEW *iewStage;
256
257    /** Pointer to the LSQ. */
258    LSQ *lsq;
259
260    /** Pointer to the dcache port.  Used only for sending. */
261    Port *dcachePort;
262
263    /** Derived class to hold any sender state the LSQ needs. */
264    class LSQSenderState : public Packet::SenderState, public FastAlloc
265    {
266      public:
267        /** Default constructor. */
268        LSQSenderState()
269            : noWB(false), isSplit(false), pktToSend(false), outstanding(1),
270              mainPkt(NULL), pendingPacket(NULL)
271        { }
272
273        /** Instruction who initiated the access to memory. */
274        DynInstPtr inst;
275        /** Whether or not it is a load. */
276        bool isLoad;
277        /** The LQ/SQ index of the instruction. */
278        int idx;
279        /** Whether or not the instruction will need to writeback. */
280        bool noWB;
281        /** Whether or not this access is split in two. */
282        bool isSplit;
283        /** Whether or not there is a packet that needs sending. */
284        bool pktToSend;
285        /** Number of outstanding packets to complete. */
286        int outstanding;
287        /** The main packet from a split load, used during writeback. */
288        PacketPtr mainPkt;
289        /** A second packet from a split store that needs sending. */
290        PacketPtr pendingPacket;
291
292        /** Completes a packet and returns whether the access is finished. */
293        inline bool complete() { return --outstanding == 0; }
294    };
295
296    /** Writeback event, specifically for when stores forward data to loads. */
297    class WritebackEvent : public Event {
298      public:
299        /** Constructs a writeback event. */
300        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
301
302        /** Processes the writeback event. */
303        void process();
304
305        /** Returns the description of this event. */
306        const char *description() const;
307
308      private:
309        /** Instruction whose results are being written back. */
310        DynInstPtr inst;
311
312        /** The packet that would have been sent to memory. */
313        PacketPtr pkt;
314
315        /** The pointer to the LSQ unit that issued the store. */
316        LSQUnit<Impl> *lsqPtr;
317    };
318
319  public:
320    struct SQEntry {
321        /** Constructs an empty store queue entry. */
322        SQEntry()
323            : inst(NULL), req(NULL), size(0),
324              canWB(0), committed(0), completed(0)
325        {
326            std::memset(data, 0, sizeof(data));
327        }
328
329        /** Constructs a store queue entry for a given instruction. */
330        SQEntry(DynInstPtr &_inst)
331            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
332              isSplit(0), canWB(0), committed(0), completed(0)
333        {
334            std::memset(data, 0, sizeof(data));
335        }
336
337        /** The store instruction. */
338        DynInstPtr inst;
339        /** The request for the store. */
340        RequestPtr req;
341        /** The split requests for the store. */
342        RequestPtr sreqLow;
343        RequestPtr sreqHigh;
344        /** The size of the store. */
345        int size;
346        /** The store data. */
347        char data[16];
348        /** Whether or not the store is split into two requests. */
349        bool isSplit;
350        /** Whether or not the store can writeback. */
351        bool canWB;
352        /** Whether or not the store is committed. */
353        bool committed;
354        /** Whether or not the store is completed. */
355        bool completed;
356    };
357
358  private:
359    /** The LSQUnit thread id. */
360    ThreadID lsqID;
361
362    /** The store queue. */
363    std::vector<SQEntry> storeQueue;
364
365    /** The load queue. */
366    std::vector<DynInstPtr> loadQueue;
367
368    /** The number of LQ entries, plus a sentinel entry (circular queue).
369     *  @todo: Consider having var that records the true number of LQ entries.
370     */
371    unsigned LQEntries;
372    /** The number of SQ entries, plus a sentinel entry (circular queue).
373     *  @todo: Consider having var that records the true number of SQ entries.
374     */
375    unsigned SQEntries;
376
377    /** The number of places to shift addresses in the LSQ before checking
378     * for dependency violations
379     */
380    unsigned depCheckShift;
381
382    /** Should loads be checked for dependency issues */
383    bool checkLoads;
384
385    /** The number of load instructions in the LQ. */
386    int loads;
387    /** The number of store instructions in the SQ. */
388    int stores;
389    /** The number of store instructions in the SQ waiting to writeback. */
390    int storesToWB;
391
392    /** The index of the head instruction in the LQ. */
393    int loadHead;
394    /** The index of the tail instruction in the LQ. */
395    int loadTail;
396
397    /** The index of the head instruction in the SQ. */
398    int storeHead;
399    /** The index of the first instruction that may be ready to be
400     * written back, and has not yet been written back.
401     */
402    int storeWBIdx;
403    /** The index of the tail instruction in the SQ. */
404    int storeTail;
405
406    /// @todo Consider moving to a more advanced model with write vs read ports
407    /** The number of cache ports available each cycle. */
408    int cachePorts;
409
410    /** The number of used cache ports in this cycle. */
411    int usedPorts;
412
413    /** Is the LSQ switched out. */
414    bool switchedOut;
415
416    //list<InstSeqNum> mshrSeqNums;
417
418    /** Wire to read information from the issue stage time queue. */
419    typename TimeBuffer<IssueStruct>::wire fromIssue;
420
421    /** Whether or not the LSQ is stalled. */
422    bool stalled;
423    /** The store that causes the stall due to partial store to load
424     * forwarding.
425     */
426    InstSeqNum stallingStoreIsn;
427    /** The index of the above store. */
428    int stallingLoadIdx;
429
430    /** The packet that needs to be retried. */
431    PacketPtr retryPkt;
432
433    /** Whehter or not a store is blocked due to the memory system. */
434    bool isStoreBlocked;
435
436    /** Whether or not a load is blocked due to the memory system. */
437    bool isLoadBlocked;
438
439    /** Has the blocked load been handled. */
440    bool loadBlockedHandled;
441
442    /** The sequence number of the blocked load. */
443    InstSeqNum blockedLoadSeqNum;
444
445    /** The oldest load that caused a memory ordering violation. */
446    DynInstPtr memDepViolator;
447
448    /** Whether or not there is a packet that couldn't be sent because of
449     * a lack of cache ports. */
450    bool hasPendingPkt;
451
452    /** The packet that is pending free cache ports. */
453    PacketPtr pendingPkt;
454
455    // Will also need how many read/write ports the Dcache has.  Or keep track
456    // of that in stage that is one level up, and only call executeLoad/Store
457    // the appropriate number of times.
458    /** Total number of loads forwaded from LSQ stores. */
459    Stats::Scalar lsqForwLoads;
460
461    /** Total number of loads ignored due to invalid addresses. */
462    Stats::Scalar invAddrLoads;
463
464    /** Total number of squashed loads. */
465    Stats::Scalar lsqSquashedLoads;
466
467    /** Total number of responses from the memory system that are
468     * ignored due to the instruction already being squashed. */
469    Stats::Scalar lsqIgnoredResponses;
470
471    /** Tota number of memory ordering violations. */
472    Stats::Scalar lsqMemOrderViolation;
473
474    /** Total number of squashed stores. */
475    Stats::Scalar lsqSquashedStores;
476
477    /** Total number of software prefetches ignored due to invalid addresses. */
478    Stats::Scalar invAddrSwpfs;
479
480    /** Ready loads blocked due to partial store-forwarding. */
481    Stats::Scalar lsqBlockedLoads;
482
483    /** Number of loads that were rescheduled. */
484    Stats::Scalar lsqRescheduledLoads;
485
486    /** Number of times the LSQ is blocked due to the cache. */
487    Stats::Scalar lsqCacheBlocked;
488
489  public:
490    /** Executes the load at the given index. */
491    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
492               uint8_t *data, int load_idx);
493
494    /** Executes the store at the given index. */
495    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
496                uint8_t *data, int store_idx);
497
498    /** Returns the index of the head load instruction. */
499    int getLoadHead() { return loadHead; }
500    /** Returns the sequence number of the head load instruction. */
501    InstSeqNum getLoadHeadSeqNum()
502    {
503        if (loadQueue[loadHead]) {
504            return loadQueue[loadHead]->seqNum;
505        } else {
506            return 0;
507        }
508
509    }
510
511    /** Returns the index of the head store instruction. */
512    int getStoreHead() { return storeHead; }
513    /** Returns the sequence number of the head store instruction. */
514    InstSeqNum getStoreHeadSeqNum()
515    {
516        if (storeQueue[storeHead].inst) {
517            return storeQueue[storeHead].inst->seqNum;
518        } else {
519            return 0;
520        }
521
522    }
523
524    /** Returns whether or not the LSQ unit is stalled. */
525    bool isStalled()  { return stalled; }
526};
527
528template <class Impl>
529Fault
530LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
531                    uint8_t *data, int load_idx)
532{
533    DynInstPtr load_inst = loadQueue[load_idx];
534
535    assert(load_inst);
536
537    assert(!load_inst->isExecuted());
538
539    // Make sure this isn't an uncacheable access
540    // A bit of a hackish way to get uncached accesses to work only if they're
541    // at the head of the LSQ and are ready to commit (at the head of the ROB
542    // too).
543    if (req->isUncacheable() &&
544        (load_idx != loadHead || !load_inst->isAtCommit())) {
545        iewStage->rescheduleMemInst(load_inst);
546        ++lsqRescheduledLoads;
547        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
548                load_inst->seqNum, load_inst->pcState());
549
550        // Must delete request now that it wasn't handed off to
551        // memory.  This is quite ugly.  @todo: Figure out the proper
552        // place to really handle request deletes.
553        delete req;
554        if (TheISA::HasUnalignedMemAcc && sreqLow) {
555            delete sreqLow;
556            delete sreqHigh;
557        }
558        return TheISA::genMachineCheckFault();
559    }
560
561    // Check the SQ for any previous stores that might lead to forwarding
562    int store_idx = load_inst->sqIdx;
563
564    int store_size = 0;
565
566    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
567            "storeHead: %i addr: %#x%s\n",
568            load_idx, store_idx, storeHead, req->getPaddr(),
569            sreqLow ? " split" : "");
570
571    if (req->isLLSC()) {
572        assert(!sreqLow);
573        // Disable recording the result temporarily.  Writing to misc
574        // regs normally updates the result, but this is not the
575        // desired behavior when handling store conditionals.
576        load_inst->recordResult = false;
577        TheISA::handleLockedRead(load_inst.get(), req);
578        load_inst->recordResult = true;
579    }
580
581    while (store_idx != -1) {
582        // End once we've reached the top of the LSQ
583        if (store_idx == storeWBIdx) {
584            break;
585        }
586
587        // Move the index to one younger
588        if (--store_idx < 0)
589            store_idx += SQEntries;
590
591        assert(storeQueue[store_idx].inst);
592
593        store_size = storeQueue[store_idx].size;
594
595        if (store_size == 0)
596            continue;
597        else if (storeQueue[store_idx].inst->uncacheable())
598            continue;
599
600        assert(storeQueue[store_idx].inst->effAddrValid);
601
602        // Check if the store data is within the lower and upper bounds of
603        // addresses that the request needs.
604        bool store_has_lower_limit =
605            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
606        bool store_has_upper_limit =
607            (req->getVaddr() + req->getSize()) <=
608            (storeQueue[store_idx].inst->effAddr + store_size);
609        bool lower_load_has_store_part =
610            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
611                           store_size);
612        bool upper_load_has_store_part =
613            (req->getVaddr() + req->getSize()) >
614            storeQueue[store_idx].inst->effAddr;
615
616        // If the store's data has all of the data needed, we can forward.
617        if ((store_has_lower_limit && store_has_upper_limit)) {
618            // Get shift amount for offset into the store's data.
619            int shift_amt = req->getVaddr() & (store_size - 1);
620
621            memcpy(data, storeQueue[store_idx].data + shift_amt,
622                   req->getSize());
623
624            assert(!load_inst->memData);
625            load_inst->memData = new uint8_t[64];
626
627            memcpy(load_inst->memData,
628                    storeQueue[store_idx].data + shift_amt, req->getSize());
629
630            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
631                    "addr %#x, data %#x\n",
632                    store_idx, req->getVaddr(), data);
633
634            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
635                                            Packet::Broadcast);
636            data_pkt->dataStatic(load_inst->memData);
637
638            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
639
640            // We'll say this has a 1 cycle load-store forwarding latency
641            // for now.
642            // @todo: Need to make this a parameter.
643            cpu->schedule(wb, curTick());
644
645            // Don't need to do anything special for split loads.
646            if (TheISA::HasUnalignedMemAcc && sreqLow) {
647                delete sreqLow;
648                delete sreqHigh;
649            }
650
651            ++lsqForwLoads;
652            return NoFault;
653        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
654                   (store_has_upper_limit && upper_load_has_store_part) ||
655                   (lower_load_has_store_part && upper_load_has_store_part)) {
656            // This is the partial store-load forwarding case where a store
657            // has only part of the load's data.
658
659            // If it's already been written back, then don't worry about
660            // stalling on it.
661            if (storeQueue[store_idx].completed) {
662                panic("Should not check one of these");
663                continue;
664            }
665
666            // Must stall load and force it to retry, so long as it's the oldest
667            // load that needs to do so.
668            if (!stalled ||
669                (stalled &&
670                 load_inst->seqNum <
671                 loadQueue[stallingLoadIdx]->seqNum)) {
672                stalled = true;
673                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
674                stallingLoadIdx = load_idx;
675            }
676
677            // Tell IQ/mem dep unit that this instruction will need to be
678            // rescheduled eventually
679            iewStage->rescheduleMemInst(load_inst);
680            iewStage->decrWb(load_inst->seqNum);
681            load_inst->clearIssued();
682            ++lsqRescheduledLoads;
683
684            // Do not generate a writeback event as this instruction is not
685            // complete.
686            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
687                    "Store idx %i to load addr %#x\n",
688                    store_idx, req->getVaddr());
689
690            // Must delete request now that it wasn't handed off to
691            // memory.  This is quite ugly.  @todo: Figure out the
692            // proper place to really handle request deletes.
693            delete req;
694            if (TheISA::HasUnalignedMemAcc && sreqLow) {
695                delete sreqLow;
696                delete sreqHigh;
697            }
698
699            return NoFault;
700        }
701    }
702
703    // If there's no forwarding case, then go access memory
704    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
705            load_inst->seqNum, load_inst->pcState());
706
707    assert(!load_inst->memData);
708    load_inst->memData = new uint8_t[64];
709
710    ++usedPorts;
711
712    // if we the cache is not blocked, do cache access
713    bool completedFirst = false;
714    if (!lsq->cacheBlocked()) {
715        MemCmd command =
716            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
717        PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast);
718        PacketPtr fst_data_pkt = NULL;
719        PacketPtr snd_data_pkt = NULL;
720
721        data_pkt->dataStatic(load_inst->memData);
722
723        LSQSenderState *state = new LSQSenderState;
724        state->isLoad = true;
725        state->idx = load_idx;
726        state->inst = load_inst;
727        data_pkt->senderState = state;
728
729        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
730
731            // Point the first packet at the main data packet.
732            fst_data_pkt = data_pkt;
733        } else {
734
735            // Create the split packets.
736            fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
737            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
738
739            fst_data_pkt->dataStatic(load_inst->memData);
740            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
741
742            fst_data_pkt->senderState = state;
743            snd_data_pkt->senderState = state;
744
745            state->isSplit = true;
746            state->outstanding = 2;
747            state->mainPkt = data_pkt;
748        }
749
750        if (!dcachePort->sendTiming(fst_data_pkt)) {
751            // Delete state and data packet because a load retry
752            // initiates a pipeline restart; it does not retry.
753            delete state;
754            delete data_pkt->req;
755            delete data_pkt;
756            if (TheISA::HasUnalignedMemAcc && sreqLow) {
757                delete fst_data_pkt->req;
758                delete fst_data_pkt;
759                delete snd_data_pkt->req;
760                delete snd_data_pkt;
761                sreqLow = NULL;
762                sreqHigh = NULL;
763            }
764
765            req = NULL;
766
767            // If the access didn't succeed, tell the LSQ by setting
768            // the retry thread id.
769            lsq->setRetryTid(lsqID);
770        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
771            completedFirst = true;
772
773            // The first packet was sent without problems, so send this one
774            // too. If there is a problem with this packet then the whole
775            // load will be squashed, so indicate this to the state object.
776            // The first packet will return in completeDataAccess and be
777            // handled there.
778            ++usedPorts;
779            if (!dcachePort->sendTiming(snd_data_pkt)) {
780
781                // The main packet will be deleted in completeDataAccess.
782                delete snd_data_pkt->req;
783                delete snd_data_pkt;
784
785                state->complete();
786
787                req = NULL;
788                sreqHigh = NULL;
789
790                lsq->setRetryTid(lsqID);
791            }
792        }
793    }
794
795    // If the cache was blocked, or has become blocked due to the access,
796    // handle it.
797    if (lsq->cacheBlocked()) {
798        if (req)
799            delete req;
800        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
801            delete sreqLow;
802            delete sreqHigh;
803        }
804
805        ++lsqCacheBlocked;
806
807        iewStage->decrWb(load_inst->seqNum);
808        // There's an older load that's already going to squash.
809        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
810            return NoFault;
811
812        // Record that the load was blocked due to memory.  This
813        // load will squash all instructions after it, be
814        // refetched, and re-executed.
815        isLoadBlocked = true;
816        loadBlockedHandled = false;
817        blockedLoadSeqNum = load_inst->seqNum;
818        // No fault occurred, even though the interface is blocked.
819        return NoFault;
820    }
821
822    return NoFault;
823}
824
825template <class Impl>
826Fault
827LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
828                     uint8_t *data, int store_idx)
829{
830    assert(storeQueue[store_idx].inst);
831
832    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
833            " | storeHead:%i [sn:%i]\n",
834            store_idx, req->getPaddr(), data, storeHead,
835            storeQueue[store_idx].inst->seqNum);
836
837    storeQueue[store_idx].req = req;
838    storeQueue[store_idx].sreqLow = sreqLow;
839    storeQueue[store_idx].sreqHigh = sreqHigh;
840    unsigned size = req->getSize();
841    storeQueue[store_idx].size = size;
842    assert(size <= sizeof(storeQueue[store_idx].data));
843
844    // Split stores can only occur in ISAs with unaligned memory accesses.  If
845    // a store request has been split, sreqLow and sreqHigh will be non-null.
846    if (TheISA::HasUnalignedMemAcc && sreqLow) {
847        storeQueue[store_idx].isSplit = true;
848    }
849
850    memcpy(storeQueue[store_idx].data, data, size);
851
852    // This function only writes the data to the store queue, so no fault
853    // can happen here.
854    return NoFault;
855}
856
857#endif // __CPU_O3_LSQ_UNIT_HH__
858