lsq_unit.hh revision 4022
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "arch/locked_mem.hh"
41#include "config/full_system.hh"
42#include "base/hashmap.hh"
43#include "cpu/inst_seq.hh"
44#include "mem/packet.hh"
45#include "mem/port.hh"
46
47/**
48 * Class that implements the actual LQ and SQ for each specific
49 * thread.  Both are circular queues; load entries are freed upon
50 * committing, while store entries are freed once they writeback. The
51 * LSQUnit tracks if there are memory ordering violations, and also
52 * detects partial load to store forwarding cases (a store only has
53 * part of a load's data) that requires the load to wait until the
54 * store writes back. In the former case it holds onto the instruction
55 * until the dependence unit looks at it, and in the latter it stalls
56 * the LSQ until the store writes back. At that point the load is
57 * replayed.
58 */
59template <class Impl>
60class LSQUnit {
61  protected:
62    typedef TheISA::IntReg IntReg;
63  public:
64    typedef typename Impl::Params Params;
65    typedef typename Impl::O3CPU O3CPU;
66    typedef typename Impl::DynInstPtr DynInstPtr;
67    typedef typename Impl::CPUPol::IEW IEW;
68    typedef typename Impl::CPUPol::LSQ LSQ;
69    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
70
71  public:
72    /** Constructs an LSQ unit. init() must be called prior to use. */
73    LSQUnit();
74
75    /** Initializes the LSQ unit with the specified number of entries. */
76    void init(Params *params, LSQ *lsq_ptr, unsigned maxLQEntries,
77              unsigned maxSQEntries, unsigned id);
78
79    /** Returns the name of the LSQ unit. */
80    std::string name() const;
81
82    /** Registers statistics. */
83    void regStats();
84
85    /** Sets the CPU pointer. */
86    void setCPU(O3CPU *cpu_ptr);
87
88    /** Sets the IEW stage pointer. */
89    void setIEW(IEW *iew_ptr)
90    { iewStage = iew_ptr; }
91
92    /** Sets the pointer to the dcache port. */
93    void setDcachePort(Port *dcache_port)
94    { dcachePort = dcache_port; }
95
96    /** Switches out LSQ unit. */
97    void switchOut();
98
99    /** Takes over from another CPU's thread. */
100    void takeOverFrom();
101
102    /** Returns if the LSQ is switched out. */
103    bool isSwitchedOut() { return switchedOut; }
104
105    /** Ticks the LSQ unit, which in this case only resets the number of
106     * used cache ports.
107     * @todo: Move the number of used ports up to the LSQ level so it can
108     * be shared by all LSQ units.
109     */
110    void tick() { usedPorts = 0; }
111
112    /** Inserts an instruction. */
113    void insert(DynInstPtr &inst);
114    /** Inserts a load instruction. */
115    void insertLoad(DynInstPtr &load_inst);
116    /** Inserts a store instruction. */
117    void insertStore(DynInstPtr &store_inst);
118
119    /** Executes a load instruction. */
120    Fault executeLoad(DynInstPtr &inst);
121
122    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
123    /** Executes a store instruction. */
124    Fault executeStore(DynInstPtr &inst);
125
126    /** Commits the head load. */
127    void commitLoad();
128    /** Commits loads older than a specific sequence number. */
129    void commitLoads(InstSeqNum &youngest_inst);
130
131    /** Commits stores older than a specific sequence number. */
132    void commitStores(InstSeqNum &youngest_inst);
133
134    /** Writes back stores. */
135    void writebackStores();
136
137    /** Completes the data access that has been returned from the
138     * memory system. */
139    void completeDataAccess(PacketPtr pkt);
140
141    /** Clears all the entries in the LQ. */
142    void clearLQ();
143
144    /** Clears all the entries in the SQ. */
145    void clearSQ();
146
147    /** Resizes the LQ to a given size. */
148    void resizeLQ(unsigned size);
149
150    /** Resizes the SQ to a given size. */
151    void resizeSQ(unsigned size);
152
153    /** Squashes all instructions younger than a specific sequence number. */
154    void squash(const InstSeqNum &squashed_num);
155
156    /** Returns if there is a memory ordering violation. Value is reset upon
157     * call to getMemDepViolator().
158     */
159    bool violation() { return memDepViolator; }
160
161    /** Returns the memory ordering violator. */
162    DynInstPtr getMemDepViolator();
163
164    /** Returns if a load became blocked due to the memory system. */
165    bool loadBlocked()
166    { return isLoadBlocked; }
167
168    /** Clears the signal that a load became blocked. */
169    void clearLoadBlocked()
170    { isLoadBlocked = false; }
171
172    /** Returns if the blocked load was handled. */
173    bool isLoadBlockedHandled()
174    { return loadBlockedHandled; }
175
176    /** Records the blocked load as being handled. */
177    void setLoadBlockedHandled()
178    { loadBlockedHandled = true; }
179
180    /** Returns the number of free entries (min of free LQ and SQ entries). */
181    unsigned numFreeEntries();
182
183    /** Returns the number of loads ready to execute. */
184    int numLoadsReady();
185
186    /** Returns the number of loads in the LQ. */
187    int numLoads() { return loads; }
188
189    /** Returns the number of stores in the SQ. */
190    int numStores() { return stores; }
191
192    /** Returns if either the LQ or SQ is full. */
193    bool isFull() { return lqFull() || sqFull(); }
194
195    /** Returns if the LQ is full. */
196    bool lqFull() { return loads >= (LQEntries - 1); }
197
198    /** Returns if the SQ is full. */
199    bool sqFull() { return stores >= (SQEntries - 1); }
200
201    /** Returns the number of instructions in the LSQ. */
202    unsigned getCount() { return loads + stores; }
203
204    /** Returns if there are any stores to writeback. */
205    bool hasStoresToWB() { return storesToWB; }
206
207    /** Returns the number of stores to writeback. */
208    int numStoresToWB() { return storesToWB; }
209
210    /** Returns if the LSQ unit will writeback on this cycle. */
211    bool willWB() { return storeQueue[storeWBIdx].canWB &&
212                        !storeQueue[storeWBIdx].completed &&
213                        !isStoreBlocked; }
214
215    /** Handles doing the retry. */
216    void recvRetry();
217
218  private:
219    /** Writes back the instruction, sending it to IEW. */
220    void writeback(DynInstPtr &inst, PacketPtr pkt);
221
222    /** Handles completing the send of a store to memory. */
223    void storePostSend(PacketPtr pkt);
224
225    /** Completes the store at the specified index. */
226    void completeStore(int store_idx);
227
228    /** Increments the given store index (circular queue). */
229    inline void incrStIdx(int &store_idx);
230    /** Decrements the given store index (circular queue). */
231    inline void decrStIdx(int &store_idx);
232    /** Increments the given load index (circular queue). */
233    inline void incrLdIdx(int &load_idx);
234    /** Decrements the given load index (circular queue). */
235    inline void decrLdIdx(int &load_idx);
236
237  public:
238    /** Debugging function to dump instructions in the LSQ. */
239    void dumpInsts();
240
241  private:
242    /** Pointer to the CPU. */
243    O3CPU *cpu;
244
245    /** Pointer to the IEW stage. */
246    IEW *iewStage;
247
248    /** Pointer to the LSQ. */
249    LSQ *lsq;
250
251    /** Pointer to the dcache port.  Used only for sending. */
252    Port *dcachePort;
253
254    /** Derived class to hold any sender state the LSQ needs. */
255    class LSQSenderState : public Packet::SenderState
256    {
257      public:
258        /** Default constructor. */
259        LSQSenderState()
260            : noWB(false)
261        { }
262
263        /** Instruction who initiated the access to memory. */
264        DynInstPtr inst;
265        /** Whether or not it is a load. */
266        bool isLoad;
267        /** The LQ/SQ index of the instruction. */
268        int idx;
269        /** Whether or not the instruction will need to writeback. */
270        bool noWB;
271    };
272
273    /** Writeback event, specifically for when stores forward data to loads. */
274    class WritebackEvent : public Event {
275      public:
276        /** Constructs a writeback event. */
277        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
278
279        /** Processes the writeback event. */
280        void process();
281
282        /** Returns the description of this event. */
283        const char *description();
284
285      private:
286        /** Instruction whose results are being written back. */
287        DynInstPtr inst;
288
289        /** The packet that would have been sent to memory. */
290        PacketPtr pkt;
291
292        /** The pointer to the LSQ unit that issued the store. */
293        LSQUnit<Impl> *lsqPtr;
294    };
295
296  public:
297    struct SQEntry {
298        /** Constructs an empty store queue entry. */
299        SQEntry()
300            : inst(NULL), req(NULL), size(0), data(0),
301              canWB(0), committed(0), completed(0)
302        { }
303
304        /** Constructs a store queue entry for a given instruction. */
305        SQEntry(DynInstPtr &_inst)
306            : inst(_inst), req(NULL), size(0), data(0),
307              canWB(0), committed(0), completed(0)
308        { }
309
310        /** The store instruction. */
311        DynInstPtr inst;
312        /** The request for the store. */
313        RequestPtr req;
314        /** The size of the store. */
315        int size;
316        /** The store data. */
317        IntReg data;
318        /** Whether or not the store can writeback. */
319        bool canWB;
320        /** Whether or not the store is committed. */
321        bool committed;
322        /** Whether or not the store is completed. */
323        bool completed;
324    };
325
326  private:
327    /** The LSQUnit thread id. */
328    unsigned lsqID;
329
330    /** The store queue. */
331    std::vector<SQEntry> storeQueue;
332
333    /** The load queue. */
334    std::vector<DynInstPtr> loadQueue;
335
336    /** The number of LQ entries, plus a sentinel entry (circular queue).
337     *  @todo: Consider having var that records the true number of LQ entries.
338     */
339    unsigned LQEntries;
340    /** The number of SQ entries, plus a sentinel entry (circular queue).
341     *  @todo: Consider having var that records the true number of SQ entries.
342     */
343    unsigned SQEntries;
344
345    /** The number of load instructions in the LQ. */
346    int loads;
347    /** The number of store instructions in the SQ. */
348    int stores;
349    /** The number of store instructions in the SQ waiting to writeback. */
350    int storesToWB;
351
352    /** The index of the head instruction in the LQ. */
353    int loadHead;
354    /** The index of the tail instruction in the LQ. */
355    int loadTail;
356
357    /** The index of the head instruction in the SQ. */
358    int storeHead;
359    /** The index of the first instruction that may be ready to be
360     * written back, and has not yet been written back.
361     */
362    int storeWBIdx;
363    /** The index of the tail instruction in the SQ. */
364    int storeTail;
365
366    /// @todo Consider moving to a more advanced model with write vs read ports
367    /** The number of cache ports available each cycle. */
368    int cachePorts;
369
370    /** The number of used cache ports in this cycle. */
371    int usedPorts;
372
373    /** Is the LSQ switched out. */
374    bool switchedOut;
375
376    //list<InstSeqNum> mshrSeqNums;
377
378    /** Wire to read information from the issue stage time queue. */
379    typename TimeBuffer<IssueStruct>::wire fromIssue;
380
381    /** Whether or not the LSQ is stalled. */
382    bool stalled;
383    /** The store that causes the stall due to partial store to load
384     * forwarding.
385     */
386    InstSeqNum stallingStoreIsn;
387    /** The index of the above store. */
388    int stallingLoadIdx;
389
390    /** The packet that needs to be retried. */
391    PacketPtr retryPkt;
392
393    /** Whehter or not a store is blocked due to the memory system. */
394    bool isStoreBlocked;
395
396    /** Whether or not a load is blocked due to the memory system. */
397    bool isLoadBlocked;
398
399    /** Has the blocked load been handled. */
400    bool loadBlockedHandled;
401
402    /** The sequence number of the blocked load. */
403    InstSeqNum blockedLoadSeqNum;
404
405    /** The oldest load that caused a memory ordering violation. */
406    DynInstPtr memDepViolator;
407
408    // Will also need how many read/write ports the Dcache has.  Or keep track
409    // of that in stage that is one level up, and only call executeLoad/Store
410    // the appropriate number of times.
411    /** Total number of loads forwaded from LSQ stores. */
412    Stats::Scalar<> lsqForwLoads;
413
414    /** Total number of loads ignored due to invalid addresses. */
415    Stats::Scalar<> invAddrLoads;
416
417    /** Total number of squashed loads. */
418    Stats::Scalar<> lsqSquashedLoads;
419
420    /** Total number of responses from the memory system that are
421     * ignored due to the instruction already being squashed. */
422    Stats::Scalar<> lsqIgnoredResponses;
423
424    /** Tota number of memory ordering violations. */
425    Stats::Scalar<> lsqMemOrderViolation;
426
427    /** Total number of squashed stores. */
428    Stats::Scalar<> lsqSquashedStores;
429
430    /** Total number of software prefetches ignored due to invalid addresses. */
431    Stats::Scalar<> invAddrSwpfs;
432
433    /** Ready loads blocked due to partial store-forwarding. */
434    Stats::Scalar<> lsqBlockedLoads;
435
436    /** Number of loads that were rescheduled. */
437    Stats::Scalar<> lsqRescheduledLoads;
438
439    /** Number of times the LSQ is blocked due to the cache. */
440    Stats::Scalar<> lsqCacheBlocked;
441
442  public:
443    /** Executes the load at the given index. */
444    template <class T>
445    Fault read(Request *req, T &data, int load_idx);
446
447    /** Executes the store at the given index. */
448    template <class T>
449    Fault write(Request *req, T &data, int store_idx);
450
451    /** Returns the index of the head load instruction. */
452    int getLoadHead() { return loadHead; }
453    /** Returns the sequence number of the head load instruction. */
454    InstSeqNum getLoadHeadSeqNum()
455    {
456        if (loadQueue[loadHead]) {
457            return loadQueue[loadHead]->seqNum;
458        } else {
459            return 0;
460        }
461
462    }
463
464    /** Returns the index of the head store instruction. */
465    int getStoreHead() { return storeHead; }
466    /** Returns the sequence number of the head store instruction. */
467    InstSeqNum getStoreHeadSeqNum()
468    {
469        if (storeQueue[storeHead].inst) {
470            return storeQueue[storeHead].inst->seqNum;
471        } else {
472            return 0;
473        }
474
475    }
476
477    /** Returns whether or not the LSQ unit is stalled. */
478    bool isStalled()  { return stalled; }
479};
480
481template <class Impl>
482template <class T>
483Fault
484LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
485{
486    DynInstPtr load_inst = loadQueue[load_idx];
487
488    assert(load_inst);
489
490    assert(!load_inst->isExecuted());
491
492    // Make sure this isn't an uncacheable access
493    // A bit of a hackish way to get uncached accesses to work only if they're
494    // at the head of the LSQ and are ready to commit (at the head of the ROB
495    // too).
496    if (req->isUncacheable() &&
497        (load_idx != loadHead || !load_inst->isAtCommit())) {
498        iewStage->rescheduleMemInst(load_inst);
499        ++lsqRescheduledLoads;
500        return TheISA::genMachineCheckFault();
501    }
502
503    // Check the SQ for any previous stores that might lead to forwarding
504    int store_idx = load_inst->sqIdx;
505
506    int store_size = 0;
507
508    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
509            "storeHead: %i addr: %#x\n",
510            load_idx, store_idx, storeHead, req->getPaddr());
511
512    if (req->isLocked()) {
513        // Disable recording the result temporarily.  Writing to misc
514        // regs normally updates the result, but this is not the
515        // desired behavior when handling store conditionals.
516        load_inst->recordResult = false;
517        TheISA::handleLockedRead(load_inst.get(), req);
518        load_inst->recordResult = true;
519    }
520
521    while (store_idx != -1) {
522        // End once we've reached the top of the LSQ
523        if (store_idx == storeWBIdx) {
524            break;
525        }
526
527        // Move the index to one younger
528        if (--store_idx < 0)
529            store_idx += SQEntries;
530
531        assert(storeQueue[store_idx].inst);
532
533        store_size = storeQueue[store_idx].size;
534
535        if (store_size == 0)
536            continue;
537
538        // Check if the store data is within the lower and upper bounds of
539        // addresses that the request needs.
540        bool store_has_lower_limit =
541            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
542        bool store_has_upper_limit =
543            (req->getVaddr() + req->getSize()) <=
544            (storeQueue[store_idx].inst->effAddr + store_size);
545        bool lower_load_has_store_part =
546            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
547                           store_size);
548        bool upper_load_has_store_part =
549            (req->getVaddr() + req->getSize()) >
550            storeQueue[store_idx].inst->effAddr;
551
552        // If the store's data has all of the data needed, we can forward.
553        if (store_has_lower_limit && store_has_upper_limit) {
554            // Get shift amount for offset into the store's data.
555            int shift_amt = req->getVaddr() & (store_size - 1);
556            // @todo: Magic number, assumes byte addressing
557            shift_amt = shift_amt << 3;
558
559            // Cast this to type T?
560            data = storeQueue[store_idx].data >> shift_amt;
561
562            // When the data comes from the store queue entry, it's in host
563            // order. When it gets sent to the load, it needs to be in guest
564            // order so when the load converts it again, it ends up back
565            // in host order like the inst expects.
566            data = TheISA::htog(data);
567
568            assert(!load_inst->memData);
569            load_inst->memData = new uint8_t[64];
570
571            memcpy(load_inst->memData, &data, req->getSize());
572
573            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
574                    "addr %#x, data %#x\n",
575                    store_idx, req->getVaddr(), data);
576
577            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
578                                            Packet::Broadcast);
579            data_pkt->dataStatic(load_inst->memData);
580
581            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
582
583            // We'll say this has a 1 cycle load-store forwarding latency
584            // for now.
585            // @todo: Need to make this a parameter.
586            wb->schedule(curTick);
587
588            ++lsqForwLoads;
589            return NoFault;
590        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
591                   (store_has_upper_limit && upper_load_has_store_part) ||
592                   (lower_load_has_store_part && upper_load_has_store_part)) {
593            // This is the partial store-load forwarding case where a store
594            // has only part of the load's data.
595
596            // If it's already been written back, then don't worry about
597            // stalling on it.
598            if (storeQueue[store_idx].completed) {
599                continue;
600            }
601
602            // Must stall load and force it to retry, so long as it's the oldest
603            // load that needs to do so.
604            if (!stalled ||
605                (stalled &&
606                 load_inst->seqNum <
607                 loadQueue[stallingLoadIdx]->seqNum)) {
608                stalled = true;
609                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
610                stallingLoadIdx = load_idx;
611            }
612
613            // Tell IQ/mem dep unit that this instruction will need to be
614            // rescheduled eventually
615            iewStage->rescheduleMemInst(load_inst);
616            iewStage->decrWb(load_inst->seqNum);
617            ++lsqRescheduledLoads;
618
619            // Do not generate a writeback event as this instruction is not
620            // complete.
621            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
622                    "Store idx %i to load addr %#x\n",
623                    store_idx, req->getVaddr());
624
625            ++lsqBlockedLoads;
626            return NoFault;
627        }
628    }
629
630    // If there's no forwarding case, then go access memory
631    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
632            load_inst->seqNum, load_inst->readPC());
633
634    assert(!load_inst->memData);
635    load_inst->memData = new uint8_t[64];
636
637    ++usedPorts;
638
639    // if we the cache is not blocked, do cache access
640    if (!lsq->cacheBlocked()) {
641        PacketPtr data_pkt =
642            new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
643        data_pkt->dataStatic(load_inst->memData);
644
645        LSQSenderState *state = new LSQSenderState;
646        state->isLoad = true;
647        state->idx = load_idx;
648        state->inst = load_inst;
649        data_pkt->senderState = state;
650
651        if (!dcachePort->sendTiming(data_pkt)) {
652            Packet::Result result = data_pkt->result;
653
654            // Delete state and data packet because a load retry
655            // initiates a pipeline restart; it does not retry.
656            delete state;
657            delete data_pkt;
658
659            if (result == Packet::BadAddress) {
660                return TheISA::genMachineCheckFault();
661            }
662
663            // If the access didn't succeed, tell the LSQ by setting
664            // the retry thread id.
665            lsq->setRetryTid(lsqID);
666        }
667    }
668
669    // If the cache was blocked, or has become blocked due to the access,
670    // handle it.
671    if (lsq->cacheBlocked()) {
672        ++lsqCacheBlocked;
673
674        iewStage->decrWb(load_inst->seqNum);
675        // There's an older load that's already going to squash.
676        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
677            return NoFault;
678
679        // Record that the load was blocked due to memory.  This
680        // load will squash all instructions after it, be
681        // refetched, and re-executed.
682        isLoadBlocked = true;
683        loadBlockedHandled = false;
684        blockedLoadSeqNum = load_inst->seqNum;
685        // No fault occurred, even though the interface is blocked.
686        return NoFault;
687    }
688
689    return NoFault;
690}
691
692template <class Impl>
693template <class T>
694Fault
695LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
696{
697    assert(storeQueue[store_idx].inst);
698
699    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
700            " | storeHead:%i [sn:%i]\n",
701            store_idx, req->getPaddr(), data, storeHead,
702            storeQueue[store_idx].inst->seqNum);
703
704    storeQueue[store_idx].req = req;
705    storeQueue[store_idx].size = sizeof(T);
706    storeQueue[store_idx].data = data;
707
708    // This function only writes the data to the store queue, so no fault
709    // can happen here.
710    return NoFault;
711}
712
713#endif // __CPU_O3_LSQ_UNIT_HH__
714