lsq_unit.hh revision 3221
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet_impl.hh"
44#include "mem/port.hh"
45
46/**
47 * Class that implements the actual LQ and SQ for each specific
48 * thread.  Both are circular queues; load entries are freed upon
49 * committing, while store entries are freed once they writeback. The
50 * LSQUnit tracks if there are memory ordering violations, and also
51 * detects partial load to store forwarding cases (a store only has
52 * part of a load's data) that requires the load to wait until the
53 * store writes back. In the former case it holds onto the instruction
54 * until the dependence unit looks at it, and in the latter it stalls
55 * the LSQ until the store writes back. At that point the load is
56 * replayed.
57 */
58template <class Impl>
59class LSQUnit {
60  protected:
61    typedef TheISA::IntReg IntReg;
62  public:
63    typedef typename Impl::Params Params;
64    typedef typename Impl::O3CPU O3CPU;
65    typedef typename Impl::DynInstPtr DynInstPtr;
66    typedef typename Impl::CPUPol::IEW IEW;
67    typedef typename Impl::CPUPol::LSQ LSQ;
68    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
69
70  public:
71    /** Constructs an LSQ unit. init() must be called prior to use. */
72    LSQUnit();
73
74    /** Initializes the LSQ unit with the specified number of entries. */
75    void init(Params *params, LSQ *lsq_ptr, unsigned maxLQEntries,
76              unsigned maxSQEntries, unsigned id);
77
78    /** Returns the name of the LSQ unit. */
79    std::string name() const;
80
81    /** Registers statistics. */
82    void regStats();
83
84    /** Sets the CPU pointer. */
85    void setCPU(O3CPU *cpu_ptr);
86
87    /** Sets the IEW stage pointer. */
88    void setIEW(IEW *iew_ptr)
89    { iewStage = iew_ptr; }
90
91    /** Sets the pointer to the dcache port. */
92    void setDcachePort(Port *dcache_port)
93    { dcachePort = dcache_port; }
94
95    /** Switches out LSQ unit. */
96    void switchOut();
97
98    /** Takes over from another CPU's thread. */
99    void takeOverFrom();
100
101    /** Returns if the LSQ is switched out. */
102    bool isSwitchedOut() { return switchedOut; }
103
104    /** Ticks the LSQ unit, which in this case only resets the number of
105     * used cache ports.
106     * @todo: Move the number of used ports up to the LSQ level so it can
107     * be shared by all LSQ units.
108     */
109    void tick() { usedPorts = 0; }
110
111    /** Inserts an instruction. */
112    void insert(DynInstPtr &inst);
113    /** Inserts a load instruction. */
114    void insertLoad(DynInstPtr &load_inst);
115    /** Inserts a store instruction. */
116    void insertStore(DynInstPtr &store_inst);
117
118    /** Executes a load instruction. */
119    Fault executeLoad(DynInstPtr &inst);
120
121    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
122    /** Executes a store instruction. */
123    Fault executeStore(DynInstPtr &inst);
124
125    /** Commits the head load. */
126    void commitLoad();
127    /** Commits loads older than a specific sequence number. */
128    void commitLoads(InstSeqNum &youngest_inst);
129
130    /** Commits stores older than a specific sequence number. */
131    void commitStores(InstSeqNum &youngest_inst);
132
133    /** Writes back stores. */
134    void writebackStores();
135
136    /** Completes the data access that has been returned from the
137     * memory system. */
138    void completeDataAccess(PacketPtr pkt);
139
140    /** Clears all the entries in the LQ. */
141    void clearLQ();
142
143    /** Clears all the entries in the SQ. */
144    void clearSQ();
145
146    /** Resizes the LQ to a given size. */
147    void resizeLQ(unsigned size);
148
149    /** Resizes the SQ to a given size. */
150    void resizeSQ(unsigned size);
151
152    /** Squashes all instructions younger than a specific sequence number. */
153    void squash(const InstSeqNum &squashed_num);
154
155    /** Returns if there is a memory ordering violation. Value is reset upon
156     * call to getMemDepViolator().
157     */
158    bool violation() { return memDepViolator; }
159
160    /** Returns the memory ordering violator. */
161    DynInstPtr getMemDepViolator();
162
163    /** Returns if a load became blocked due to the memory system. */
164    bool loadBlocked()
165    { return isLoadBlocked; }
166
167    /** Clears the signal that a load became blocked. */
168    void clearLoadBlocked()
169    { isLoadBlocked = false; }
170
171    /** Returns if the blocked load was handled. */
172    bool isLoadBlockedHandled()
173    { return loadBlockedHandled; }
174
175    /** Records the blocked load as being handled. */
176    void setLoadBlockedHandled()
177    { loadBlockedHandled = true; }
178
179    /** Returns the number of free entries (min of free LQ and SQ entries). */
180    unsigned numFreeEntries();
181
182    /** Returns the number of loads ready to execute. */
183    int numLoadsReady();
184
185    /** Returns the number of loads in the LQ. */
186    int numLoads() { return loads; }
187
188    /** Returns the number of stores in the SQ. */
189    int numStores() { return stores; }
190
191    /** Returns if either the LQ or SQ is full. */
192    bool isFull() { return lqFull() || sqFull(); }
193
194    /** Returns if the LQ is full. */
195    bool lqFull() { return loads >= (LQEntries - 1); }
196
197    /** Returns if the SQ is full. */
198    bool sqFull() { return stores >= (SQEntries - 1); }
199
200    /** Returns the number of instructions in the LSQ. */
201    unsigned getCount() { return loads + stores; }
202
203    /** Returns if there are any stores to writeback. */
204    bool hasStoresToWB() { return storesToWB; }
205
206    /** Returns the number of stores to writeback. */
207    int numStoresToWB() { return storesToWB; }
208
209    /** Returns if the LSQ unit will writeback on this cycle. */
210    bool willWB() { return storeQueue[storeWBIdx].canWB &&
211                        !storeQueue[storeWBIdx].completed &&
212                        !isStoreBlocked; }
213
214    /** Handles doing the retry. */
215    void recvRetry();
216
217  private:
218    /** Writes back the instruction, sending it to IEW. */
219    void writeback(DynInstPtr &inst, PacketPtr pkt);
220
221    /** Handles completing the send of a store to memory. */
222    void storePostSend(Packet *pkt);
223
224    /** Completes the store at the specified index. */
225    void completeStore(int store_idx);
226
227    /** Increments the given store index (circular queue). */
228    inline void incrStIdx(int &store_idx);
229    /** Decrements the given store index (circular queue). */
230    inline void decrStIdx(int &store_idx);
231    /** Increments the given load index (circular queue). */
232    inline void incrLdIdx(int &load_idx);
233    /** Decrements the given load index (circular queue). */
234    inline void decrLdIdx(int &load_idx);
235
236  public:
237    /** Debugging function to dump instructions in the LSQ. */
238    void dumpInsts();
239
240  private:
241    /** Pointer to the CPU. */
242    O3CPU *cpu;
243
244    /** Pointer to the IEW stage. */
245    IEW *iewStage;
246
247    /** Pointer to the LSQ. */
248    LSQ *lsq;
249
250    /** Pointer to the dcache port.  Used only for sending. */
251    Port *dcachePort;
252
253    /** Derived class to hold any sender state the LSQ needs. */
254    class LSQSenderState : public Packet::SenderState
255    {
256      public:
257        /** Default constructor. */
258        LSQSenderState()
259            : noWB(false)
260        { }
261
262        /** Instruction who initiated the access to memory. */
263        DynInstPtr inst;
264        /** Whether or not it is a load. */
265        bool isLoad;
266        /** The LQ/SQ index of the instruction. */
267        int idx;
268        /** Whether or not the instruction will need to writeback. */
269        bool noWB;
270    };
271
272    /** Writeback event, specifically for when stores forward data to loads. */
273    class WritebackEvent : public Event {
274      public:
275        /** Constructs a writeback event. */
276        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
277
278        /** Processes the writeback event. */
279        void process();
280
281        /** Returns the description of this event. */
282        const char *description();
283
284      private:
285        /** Instruction whose results are being written back. */
286        DynInstPtr inst;
287
288        /** The packet that would have been sent to memory. */
289        PacketPtr pkt;
290
291        /** The pointer to the LSQ unit that issued the store. */
292        LSQUnit<Impl> *lsqPtr;
293    };
294
295  public:
296    struct SQEntry {
297        /** Constructs an empty store queue entry. */
298        SQEntry()
299            : inst(NULL), req(NULL), size(0), data(0),
300              canWB(0), committed(0), completed(0)
301        { }
302
303        /** Constructs a store queue entry for a given instruction. */
304        SQEntry(DynInstPtr &_inst)
305            : inst(_inst), req(NULL), size(0), data(0),
306              canWB(0), committed(0), completed(0)
307        { }
308
309        /** The store instruction. */
310        DynInstPtr inst;
311        /** The request for the store. */
312        RequestPtr req;
313        /** The size of the store. */
314        int size;
315        /** The store data. */
316        IntReg data;
317        /** Whether or not the store can writeback. */
318        bool canWB;
319        /** Whether or not the store is committed. */
320        bool committed;
321        /** Whether or not the store is completed. */
322        bool completed;
323    };
324
325  private:
326    /** The LSQUnit thread id. */
327    unsigned lsqID;
328
329    /** The store queue. */
330    std::vector<SQEntry> storeQueue;
331
332    /** The load queue. */
333    std::vector<DynInstPtr> loadQueue;
334
335    /** The number of LQ entries, plus a sentinel entry (circular queue).
336     *  @todo: Consider having var that records the true number of LQ entries.
337     */
338    unsigned LQEntries;
339    /** The number of SQ entries, plus a sentinel entry (circular queue).
340     *  @todo: Consider having var that records the true number of SQ entries.
341     */
342    unsigned SQEntries;
343
344    /** The number of load instructions in the LQ. */
345    int loads;
346    /** The number of store instructions in the SQ. */
347    int stores;
348    /** The number of store instructions in the SQ waiting to writeback. */
349    int storesToWB;
350
351    /** The index of the head instruction in the LQ. */
352    int loadHead;
353    /** The index of the tail instruction in the LQ. */
354    int loadTail;
355
356    /** The index of the head instruction in the SQ. */
357    int storeHead;
358    /** The index of the first instruction that may be ready to be
359     * written back, and has not yet been written back.
360     */
361    int storeWBIdx;
362    /** The index of the tail instruction in the SQ. */
363    int storeTail;
364
365    /// @todo Consider moving to a more advanced model with write vs read ports
366    /** The number of cache ports available each cycle. */
367    int cachePorts;
368
369    /** The number of used cache ports in this cycle. */
370    int usedPorts;
371
372    /** Is the LSQ switched out. */
373    bool switchedOut;
374
375    //list<InstSeqNum> mshrSeqNums;
376
377    /** Wire to read information from the issue stage time queue. */
378    typename TimeBuffer<IssueStruct>::wire fromIssue;
379
380    /** Whether or not the LSQ is stalled. */
381    bool stalled;
382    /** The store that causes the stall due to partial store to load
383     * forwarding.
384     */
385    InstSeqNum stallingStoreIsn;
386    /** The index of the above store. */
387    int stallingLoadIdx;
388
389    /** The packet that needs to be retried. */
390    PacketPtr retryPkt;
391
392    /** Whehter or not a store is blocked due to the memory system. */
393    bool isStoreBlocked;
394
395    /** Whether or not a load is blocked due to the memory system. */
396    bool isLoadBlocked;
397
398    /** Has the blocked load been handled. */
399    bool loadBlockedHandled;
400
401    /** The sequence number of the blocked load. */
402    InstSeqNum blockedLoadSeqNum;
403
404    /** The oldest load that caused a memory ordering violation. */
405    DynInstPtr memDepViolator;
406
407    // Will also need how many read/write ports the Dcache has.  Or keep track
408    // of that in stage that is one level up, and only call executeLoad/Store
409    // the appropriate number of times.
410    /** Total number of loads forwaded from LSQ stores. */
411    Stats::Scalar<> lsqForwLoads;
412
413    /** Total number of loads ignored due to invalid addresses. */
414    Stats::Scalar<> invAddrLoads;
415
416    /** Total number of squashed loads. */
417    Stats::Scalar<> lsqSquashedLoads;
418
419    /** Total number of responses from the memory system that are
420     * ignored due to the instruction already being squashed. */
421    Stats::Scalar<> lsqIgnoredResponses;
422
423    /** Tota number of memory ordering violations. */
424    Stats::Scalar<> lsqMemOrderViolation;
425
426    /** Total number of squashed stores. */
427    Stats::Scalar<> lsqSquashedStores;
428
429    /** Total number of software prefetches ignored due to invalid addresses. */
430    Stats::Scalar<> invAddrSwpfs;
431
432    /** Ready loads blocked due to partial store-forwarding. */
433    Stats::Scalar<> lsqBlockedLoads;
434
435    /** Number of loads that were rescheduled. */
436    Stats::Scalar<> lsqRescheduledLoads;
437
438    /** Number of times the LSQ is blocked due to the cache. */
439    Stats::Scalar<> lsqCacheBlocked;
440
441  public:
442    /** Executes the load at the given index. */
443    template <class T>
444    Fault read(Request *req, T &data, int load_idx);
445
446    /** Executes the store at the given index. */
447    template <class T>
448    Fault write(Request *req, T &data, int store_idx);
449
450    /** Returns the index of the head load instruction. */
451    int getLoadHead() { return loadHead; }
452    /** Returns the sequence number of the head load instruction. */
453    InstSeqNum getLoadHeadSeqNum()
454    {
455        if (loadQueue[loadHead]) {
456            return loadQueue[loadHead]->seqNum;
457        } else {
458            return 0;
459        }
460
461    }
462
463    /** Returns the index of the head store instruction. */
464    int getStoreHead() { return storeHead; }
465    /** Returns the sequence number of the head store instruction. */
466    InstSeqNum getStoreHeadSeqNum()
467    {
468        if (storeQueue[storeHead].inst) {
469            return storeQueue[storeHead].inst->seqNum;
470        } else {
471            return 0;
472        }
473
474    }
475
476    /** Returns whether or not the LSQ unit is stalled. */
477    bool isStalled()  { return stalled; }
478};
479
480template <class Impl>
481template <class T>
482Fault
483LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
484{
485    DynInstPtr load_inst = loadQueue[load_idx];
486
487    assert(load_inst);
488
489    assert(!load_inst->isExecuted());
490
491    // Make sure this isn't an uncacheable access
492    // A bit of a hackish way to get uncached accesses to work only if they're
493    // at the head of the LSQ and are ready to commit (at the head of the ROB
494    // too).
495    if (req->getFlags() & UNCACHEABLE &&
496        (load_idx != loadHead || !load_inst->isAtCommit())) {
497        iewStage->rescheduleMemInst(load_inst);
498        ++lsqRescheduledLoads;
499        return TheISA::genMachineCheckFault();
500    }
501
502    // Check the SQ for any previous stores that might lead to forwarding
503    int store_idx = load_inst->sqIdx;
504
505    int store_size = 0;
506
507    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
508            "storeHead: %i addr: %#x\n",
509            load_idx, store_idx, storeHead, req->getPaddr());
510
511#if FULL_SYSTEM
512    if (req->getFlags() & LOCKED) {
513        cpu->lockAddr = req->getPaddr();
514        cpu->lockFlag = true;
515    }
516#endif
517
518    while (store_idx != -1) {
519        // End once we've reached the top of the LSQ
520        if (store_idx == storeWBIdx) {
521            break;
522        }
523
524        // Move the index to one younger
525        if (--store_idx < 0)
526            store_idx += SQEntries;
527
528        assert(storeQueue[store_idx].inst);
529
530        store_size = storeQueue[store_idx].size;
531
532        if (store_size == 0)
533            continue;
534
535        // Check if the store data is within the lower and upper bounds of
536        // addresses that the request needs.
537        bool store_has_lower_limit =
538            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
539        bool store_has_upper_limit =
540            (req->getVaddr() + req->getSize()) <=
541            (storeQueue[store_idx].inst->effAddr + store_size);
542        bool lower_load_has_store_part =
543            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
544                           store_size);
545        bool upper_load_has_store_part =
546            (req->getVaddr() + req->getSize()) >
547            storeQueue[store_idx].inst->effAddr;
548
549        // If the store's data has all of the data needed, we can forward.
550        if (store_has_lower_limit && store_has_upper_limit) {
551            // Get shift amount for offset into the store's data.
552            int shift_amt = req->getVaddr() & (store_size - 1);
553            // @todo: Magic number, assumes byte addressing
554            shift_amt = shift_amt << 3;
555
556            // Cast this to type T?
557            data = storeQueue[store_idx].data >> shift_amt;
558
559            assert(!load_inst->memData);
560            load_inst->memData = new uint8_t[64];
561
562            memcpy(load_inst->memData, &data, req->getSize());
563
564            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
565                    "addr %#x, data %#x\n",
566                    store_idx, req->getVaddr(), data);
567
568            PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
569            data_pkt->dataStatic(load_inst->memData);
570
571            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
572
573            // We'll say this has a 1 cycle load-store forwarding latency
574            // for now.
575            // @todo: Need to make this a parameter.
576            wb->schedule(curTick);
577
578            ++lsqForwLoads;
579            return NoFault;
580        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
581                   (store_has_upper_limit && upper_load_has_store_part) ||
582                   (lower_load_has_store_part && upper_load_has_store_part)) {
583            // This is the partial store-load forwarding case where a store
584            // has only part of the load's data.
585
586            // If it's already been written back, then don't worry about
587            // stalling on it.
588            if (storeQueue[store_idx].completed) {
589                continue;
590            }
591
592            // Must stall load and force it to retry, so long as it's the oldest
593            // load that needs to do so.
594            if (!stalled ||
595                (stalled &&
596                 load_inst->seqNum <
597                 loadQueue[stallingLoadIdx]->seqNum)) {
598                stalled = true;
599                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
600                stallingLoadIdx = load_idx;
601            }
602
603            // Tell IQ/mem dep unit that this instruction will need to be
604            // rescheduled eventually
605            iewStage->rescheduleMemInst(load_inst);
606            iewStage->decrWb(load_inst->seqNum);
607            ++lsqRescheduledLoads;
608
609            // Do not generate a writeback event as this instruction is not
610            // complete.
611            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
612                    "Store idx %i to load addr %#x\n",
613                    store_idx, req->getVaddr());
614
615            ++lsqBlockedLoads;
616            return NoFault;
617        }
618    }
619
620    // If there's no forwarding case, then go access memory
621    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
622            load_inst->seqNum, load_inst->readPC());
623
624    assert(!load_inst->memData);
625    load_inst->memData = new uint8_t[64];
626
627    ++usedPorts;
628
629    PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
630    data_pkt->dataStatic(load_inst->memData);
631
632    LSQSenderState *state = new LSQSenderState;
633    state->isLoad = true;
634    state->idx = load_idx;
635    state->inst = load_inst;
636    data_pkt->senderState = state;
637
638    // if we the cache is not blocked, do cache access
639    if (!lsq->cacheBlocked()) {
640        if (!dcachePort->sendTiming(data_pkt)) {
641            if (data_pkt->result == Packet::BadAddress) {
642                delete data_pkt;
643                return TheISA::genMachineCheckFault();
644            }
645
646            // If the access didn't succeed, tell the LSQ by setting
647            // the retry thread id.
648            lsq->setRetryTid(lsqID);
649        }
650    }
651
652    // If the cache was blocked, or has become blocked due to the access,
653    // handle it.
654    if (lsq->cacheBlocked()) {
655        ++lsqCacheBlocked;
656
657        iewStage->decrWb(load_inst->seqNum);
658        // There's an older load that's already going to squash.
659        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
660            return NoFault;
661
662        // Record that the load was blocked due to memory.  This
663        // load will squash all instructions after it, be
664        // refetched, and re-executed.
665        isLoadBlocked = true;
666        loadBlockedHandled = false;
667        blockedLoadSeqNum = load_inst->seqNum;
668        // No fault occurred, even though the interface is blocked.
669        return NoFault;
670    }
671
672    if (data_pkt->result != Packet::Success) {
673        DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
674        DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
675                load_inst->seqNum);
676    } else {
677        DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
678        DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
679                load_inst->seqNum);
680    }
681
682    return NoFault;
683}
684
685template <class Impl>
686template <class T>
687Fault
688LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
689{
690    assert(storeQueue[store_idx].inst);
691
692    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
693            " | storeHead:%i [sn:%i]\n",
694            store_idx, req->getPaddr(), data, storeHead,
695            storeQueue[store_idx].inst->seqNum);
696
697    storeQueue[store_idx].req = req;
698    storeQueue[store_idx].size = sizeof(T);
699    storeQueue[store_idx].data = data;
700
701    // This function only writes the data to the store queue, so no fault
702    // can happen here.
703    return NoFault;
704}
705
706#endif // __CPU_O3_LSQ_UNIT_HH__
707