lsq_unit.hh revision 2808
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <map> 37#include <queue> 38 39#include "arch/faults.hh" 40#include "config/full_system.hh" 41#include "base/hashmap.hh" 42#include "cpu/inst_seq.hh" 43#include "mem/packet_impl.hh" 44#include "mem/port.hh" 45 46/** 47 * Class that implements the actual LQ and SQ for each specific 48 * thread. Both are circular queues; load entries are freed upon 49 * committing, while store entries are freed once they writeback. The 50 * LSQUnit tracks if there are memory ordering violations, and also 51 * detects partial load to store forwarding cases (a store only has 52 * part of a load's data) that requires the load to wait until the 53 * store writes back. In the former case it holds onto the instruction 54 * until the dependence unit looks at it, and in the latter it stalls 55 * the LSQ until the store writes back. At that point the load is 56 * replayed. 57 */ 58template <class Impl> 59class LSQUnit { 60 protected: 61 typedef TheISA::IntReg IntReg; 62 public: 63 typedef typename Impl::Params Params; 64 typedef typename Impl::O3CPU O3CPU; 65 typedef typename Impl::DynInstPtr DynInstPtr; 66 typedef typename Impl::CPUPol::IEW IEW; 67 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 68 69 public: 70 /** Constructs an LSQ unit. init() must be called prior to use. */ 71 LSQUnit(); 72 73 /** Initializes the LSQ unit with the specified number of entries. */ 74 void init(Params *params, unsigned maxLQEntries, 75 unsigned maxSQEntries, unsigned id); 76 77 /** Returns the name of the LSQ unit. */ 78 std::string name() const; 79 80 /** Registers statistics. */ 81 void regStats(); 82 83 /** Sets the CPU pointer. */ 84 void setCPU(O3CPU *cpu_ptr); 85 86 /** Sets the IEW stage pointer. */ 87 void setIEW(IEW *iew_ptr) 88 { iewStage = iew_ptr; } 89 90 /** Switches out LSQ unit. */ 91 void switchOut(); 92 93 /** Takes over from another CPU's thread. */ 94 void takeOverFrom(); 95 96 /** Returns if the LSQ is switched out. */ 97 bool isSwitchedOut() { return switchedOut; } 98 99 /** Ticks the LSQ unit, which in this case only resets the number of 100 * used cache ports. 101 * @todo: Move the number of used ports up to the LSQ level so it can 102 * be shared by all LSQ units. 103 */ 104 void tick() { usedPorts = 0; } 105 106 /** Inserts an instruction. */ 107 void insert(DynInstPtr &inst); 108 /** Inserts a load instruction. */ 109 void insertLoad(DynInstPtr &load_inst); 110 /** Inserts a store instruction. */ 111 void insertStore(DynInstPtr &store_inst); 112 113 /** Executes a load instruction. */ 114 Fault executeLoad(DynInstPtr &inst); 115 116 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 117 /** Executes a store instruction. */ 118 Fault executeStore(DynInstPtr &inst); 119 120 /** Commits the head load. */ 121 void commitLoad(); 122 /** Commits loads older than a specific sequence number. */ 123 void commitLoads(InstSeqNum &youngest_inst); 124 125 /** Commits stores older than a specific sequence number. */ 126 void commitStores(InstSeqNum &youngest_inst); 127 128 /** Writes back stores. */ 129 void writebackStores(); 130 131 /** Completes the data access that has been returned from the 132 * memory system. */ 133 void completeDataAccess(PacketPtr pkt); 134 135 /** Clears all the entries in the LQ. */ 136 void clearLQ(); 137 138 /** Clears all the entries in the SQ. */ 139 void clearSQ(); 140 141 /** Resizes the LQ to a given size. */ 142 void resizeLQ(unsigned size); 143 144 /** Resizes the SQ to a given size. */ 145 void resizeSQ(unsigned size); 146 147 /** Squashes all instructions younger than a specific sequence number. */ 148 void squash(const InstSeqNum &squashed_num); 149 150 /** Returns if there is a memory ordering violation. Value is reset upon 151 * call to getMemDepViolator(). 152 */ 153 bool violation() { return memDepViolator; } 154 155 /** Returns the memory ordering violator. */ 156 DynInstPtr getMemDepViolator(); 157 158 /** Returns if a load became blocked due to the memory system. */ 159 bool loadBlocked() 160 { return isLoadBlocked; } 161 162 /** Clears the signal that a load became blocked. */ 163 void clearLoadBlocked() 164 { isLoadBlocked = false; } 165 166 /** Returns if the blocked load was handled. */ 167 bool isLoadBlockedHandled() 168 { return loadBlockedHandled; } 169 170 /** Records the blocked load as being handled. */ 171 void setLoadBlockedHandled() 172 { loadBlockedHandled = true; } 173 174 /** Returns the number of free entries (min of free LQ and SQ entries). */ 175 unsigned numFreeEntries(); 176 177 /** Returns the number of loads ready to execute. */ 178 int numLoadsReady(); 179 180 /** Returns the number of loads in the LQ. */ 181 int numLoads() { return loads; } 182 183 /** Returns the number of stores in the SQ. */ 184 int numStores() { return stores; } 185 186 /** Returns if either the LQ or SQ is full. */ 187 bool isFull() { return lqFull() || sqFull(); } 188 189 /** Returns if the LQ is full. */ 190 bool lqFull() { return loads >= (LQEntries - 1); } 191 192 /** Returns if the SQ is full. */ 193 bool sqFull() { return stores >= (SQEntries - 1); } 194 195 /** Returns the number of instructions in the LSQ. */ 196 unsigned getCount() { return loads + stores; } 197 198 /** Returns if there are any stores to writeback. */ 199 bool hasStoresToWB() { return storesToWB; } 200 201 /** Returns the number of stores to writeback. */ 202 int numStoresToWB() { return storesToWB; } 203 204 /** Returns if the LSQ unit will writeback on this cycle. */ 205 bool willWB() { return storeQueue[storeWBIdx].canWB && 206 !storeQueue[storeWBIdx].completed && 207 !isStoreBlocked; } 208 209 private: 210 /** Writes back the instruction, sending it to IEW. */ 211 void writeback(DynInstPtr &inst, PacketPtr pkt); 212 213 /** Handles completing the send of a store to memory. */ 214 void storePostSend(Packet *pkt); 215 216 /** Completes the store at the specified index. */ 217 void completeStore(int store_idx); 218 219 /** Handles doing the retry. */ 220 void recvRetry(); 221 222 /** Increments the given store index (circular queue). */ 223 inline void incrStIdx(int &store_idx); 224 /** Decrements the given store index (circular queue). */ 225 inline void decrStIdx(int &store_idx); 226 /** Increments the given load index (circular queue). */ 227 inline void incrLdIdx(int &load_idx); 228 /** Decrements the given load index (circular queue). */ 229 inline void decrLdIdx(int &load_idx); 230 231 public: 232 /** Debugging function to dump instructions in the LSQ. */ 233 void dumpInsts(); 234 235 private: 236 /** Pointer to the CPU. */ 237 O3CPU *cpu; 238 239 /** Pointer to the IEW stage. */ 240 IEW *iewStage; 241 242 /** Pointer to memory object. */ 243 MemObject *mem; 244 245 /** DcachePort class for this LSQ Unit. Handles doing the 246 * communication with the cache/memory. 247 * @todo: Needs to be moved to the LSQ level and have some sort 248 * of arbitration. 249 */ 250 class DcachePort : public Port 251 { 252 protected: 253 /** Pointer to CPU. */ 254 O3CPU *cpu; 255 /** Pointer to LSQ. */ 256 LSQUnit *lsq; 257 258 public: 259 /** Default constructor. */ 260 DcachePort(O3CPU *_cpu, LSQUnit *_lsq) 261 : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq) 262 { } 263 264 protected: 265 /** Atomic version of receive. Panics. */ 266 virtual Tick recvAtomic(PacketPtr pkt); 267 268 /** Functional version of receive. Panics. */ 269 virtual void recvFunctional(PacketPtr pkt); 270 271 /** Receives status change. Other than range changing, panics. */ 272 virtual void recvStatusChange(Status status); 273 274 /** Returns the address ranges of this device. */ 275 virtual void getDeviceAddressRanges(AddrRangeList &resp, 276 AddrRangeList &snoop) 277 { resp.clear(); snoop.clear(); } 278 279 /** Timing version of receive. Handles writing back and 280 * completing the load or store that has returned from 281 * memory. */ 282 virtual bool recvTiming(PacketPtr pkt); 283 284 /** Handles doing a retry of the previous send. */ 285 virtual void recvRetry(); 286 }; 287 288 /** Pointer to the D-cache. */ 289 DcachePort *dcachePort; 290 291 /** Derived class to hold any sender state the LSQ needs. */ 292 class LSQSenderState : public Packet::SenderState 293 { 294 public: 295 /** Default constructor. */ 296 LSQSenderState() 297 : noWB(false) 298 { } 299 300 /** Instruction who initiated the access to memory. */ 301 DynInstPtr inst; 302 /** Whether or not it is a load. */ 303 bool isLoad; 304 /** The LQ/SQ index of the instruction. */ 305 int idx; 306 /** Whether or not the instruction will need to writeback. */ 307 bool noWB; 308 }; 309 310 /** Writeback event, specifically for when stores forward data to loads. */ 311 class WritebackEvent : public Event { 312 public: 313 /** Constructs a writeback event. */ 314 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 315 316 /** Processes the writeback event. */ 317 void process(); 318 319 /** Returns the description of this event. */ 320 const char *description(); 321 322 private: 323 /** Instruction whose results are being written back. */ 324 DynInstPtr inst; 325 326 /** The packet that would have been sent to memory. */ 327 PacketPtr pkt; 328 329 /** The pointer to the LSQ unit that issued the store. */ 330 LSQUnit<Impl> *lsqPtr; 331 }; 332 333 public: 334 struct SQEntry { 335 /** Constructs an empty store queue entry. */ 336 SQEntry() 337 : inst(NULL), req(NULL), size(0), data(0), 338 canWB(0), committed(0), completed(0) 339 { } 340 341 /** Constructs a store queue entry for a given instruction. */ 342 SQEntry(DynInstPtr &_inst) 343 : inst(_inst), req(NULL), size(0), data(0), 344 canWB(0), committed(0), completed(0) 345 { } 346 347 /** The store instruction. */ 348 DynInstPtr inst; 349 /** The request for the store. */ 350 RequestPtr req; 351 /** The size of the store. */ 352 int size; 353 /** The store data. */ 354 IntReg data; 355 /** Whether or not the store can writeback. */ 356 bool canWB; 357 /** Whether or not the store is committed. */ 358 bool committed; 359 /** Whether or not the store is completed. */ 360 bool completed; 361 }; 362 363 private: 364 /** The LSQUnit thread id. */ 365 unsigned lsqID; 366 367 /** The store queue. */ 368 std::vector<SQEntry> storeQueue; 369 370 /** The load queue. */ 371 std::vector<DynInstPtr> loadQueue; 372 373 /** The number of LQ entries, plus a sentinel entry (circular queue). 374 * @todo: Consider having var that records the true number of LQ entries. 375 */ 376 unsigned LQEntries; 377 /** The number of SQ entries, plus a sentinel entry (circular queue). 378 * @todo: Consider having var that records the true number of SQ entries. 379 */ 380 unsigned SQEntries; 381 382 /** The number of load instructions in the LQ. */ 383 int loads; 384 /** The number of store instructions in the SQ. */ 385 int stores; 386 /** The number of store instructions in the SQ waiting to writeback. */ 387 int storesToWB; 388 389 /** The index of the head instruction in the LQ. */ 390 int loadHead; 391 /** The index of the tail instruction in the LQ. */ 392 int loadTail; 393 394 /** The index of the head instruction in the SQ. */ 395 int storeHead; 396 /** The index of the first instruction that may be ready to be 397 * written back, and has not yet been written back. 398 */ 399 int storeWBIdx; 400 /** The index of the tail instruction in the SQ. */ 401 int storeTail; 402 403 /// @todo Consider moving to a more advanced model with write vs read ports 404 /** The number of cache ports available each cycle. */ 405 int cachePorts; 406 407 /** The number of used cache ports in this cycle. */ 408 int usedPorts; 409 410 /** Is the LSQ switched out. */ 411 bool switchedOut; 412 413 //list<InstSeqNum> mshrSeqNums; 414 415 /** Wire to read information from the issue stage time queue. */ 416 typename TimeBuffer<IssueStruct>::wire fromIssue; 417 418 /** Whether or not the LSQ is stalled. */ 419 bool stalled; 420 /** The store that causes the stall due to partial store to load 421 * forwarding. 422 */ 423 InstSeqNum stallingStoreIsn; 424 /** The index of the above store. */ 425 int stallingLoadIdx; 426 427 /** The packet that needs to be retried. */ 428 PacketPtr retryPkt; 429 430 /** Whehter or not a store is blocked due to the memory system. */ 431 bool isStoreBlocked; 432 433 /** Whether or not a load is blocked due to the memory system. */ 434 bool isLoadBlocked; 435 436 /** Has the blocked load been handled. */ 437 bool loadBlockedHandled; 438 439 /** The sequence number of the blocked load. */ 440 InstSeqNum blockedLoadSeqNum; 441 442 /** The oldest load that caused a memory ordering violation. */ 443 DynInstPtr memDepViolator; 444 445 // Will also need how many read/write ports the Dcache has. Or keep track 446 // of that in stage that is one level up, and only call executeLoad/Store 447 // the appropriate number of times. 448 449 /** Total number of loads forwaded from LSQ stores. */ 450 Stats::Scalar<> lsqForwLoads; 451 452 /** Total number of loads ignored due to invalid addresses. */ 453 Stats::Scalar<> invAddrLoads; 454 455 /** Total number of squashed loads. */ 456 Stats::Scalar<> lsqSquashedLoads; 457 458 /** Total number of responses from the memory system that are 459 * ignored due to the instruction already being squashed. */ 460 Stats::Scalar<> lsqIgnoredResponses; 461 462 /** Total number of squashed stores. */ 463 Stats::Scalar<> lsqSquashedStores; 464 465 /** Total number of software prefetches ignored due to invalid addresses. */ 466 Stats::Scalar<> invAddrSwpfs; 467 468 /** Ready loads blocked due to partial store-forwarding. */ 469 Stats::Scalar<> lsqBlockedLoads; 470 471 /** Number of loads that were rescheduled. */ 472 Stats::Scalar<> lsqRescheduledLoads; 473 474 /** Number of times the LSQ is blocked due to the cache. */ 475 Stats::Scalar<> lsqCacheBlocked; 476 477 public: 478 /** Executes the load at the given index. */ 479 template <class T> 480 Fault read(Request *req, T &data, int load_idx); 481 482 /** Executes the store at the given index. */ 483 template <class T> 484 Fault write(Request *req, T &data, int store_idx); 485 486 /** Returns the index of the head load instruction. */ 487 int getLoadHead() { return loadHead; } 488 /** Returns the sequence number of the head load instruction. */ 489 InstSeqNum getLoadHeadSeqNum() 490 { 491 if (loadQueue[loadHead]) { 492 return loadQueue[loadHead]->seqNum; 493 } else { 494 return 0; 495 } 496 497 } 498 499 /** Returns the index of the head store instruction. */ 500 int getStoreHead() { return storeHead; } 501 /** Returns the sequence number of the head store instruction. */ 502 InstSeqNum getStoreHeadSeqNum() 503 { 504 if (storeQueue[storeHead].inst) { 505 return storeQueue[storeHead].inst->seqNum; 506 } else { 507 return 0; 508 } 509 510 } 511 512 /** Returns whether or not the LSQ unit is stalled. */ 513 bool isStalled() { return stalled; } 514}; 515 516template <class Impl> 517template <class T> 518Fault 519LSQUnit<Impl>::read(Request *req, T &data, int load_idx) 520{ 521 DynInstPtr load_inst = loadQueue[load_idx]; 522 523 assert(load_inst); 524 525 assert(!load_inst->isExecuted()); 526 527 // Make sure this isn't an uncacheable access 528 // A bit of a hackish way to get uncached accesses to work only if they're 529 // at the head of the LSQ and are ready to commit (at the head of the ROB 530 // too). 531 if (req->getFlags() & UNCACHEABLE && 532 (load_idx != loadHead || !load_inst->isAtCommit())) { 533 iewStage->rescheduleMemInst(load_inst); 534 ++lsqRescheduledLoads; 535 return TheISA::genMachineCheckFault(); 536 } 537 538 // Check the SQ for any previous stores that might lead to forwarding 539 int store_idx = load_inst->sqIdx; 540 541 int store_size = 0; 542 543 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 544 "storeHead: %i addr: %#x\n", 545 load_idx, store_idx, storeHead, req->getPaddr()); 546 547#if FULL_SYSTEM 548 if (req->getFlags() & LOCKED) { 549 cpu->lockAddr = req->getPaddr(); 550 cpu->lockFlag = true; 551 } 552#endif 553 554 while (store_idx != -1) { 555 // End once we've reached the top of the LSQ 556 if (store_idx == storeWBIdx) { 557 break; 558 } 559 560 // Move the index to one younger 561 if (--store_idx < 0) 562 store_idx += SQEntries; 563 564 assert(storeQueue[store_idx].inst); 565 566 store_size = storeQueue[store_idx].size; 567 568 if (store_size == 0) 569 continue; 570 571 // Check if the store data is within the lower and upper bounds of 572 // addresses that the request needs. 573 bool store_has_lower_limit = 574 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 575 bool store_has_upper_limit = 576 (req->getVaddr() + req->getSize()) <= 577 (storeQueue[store_idx].inst->effAddr + store_size); 578 bool lower_load_has_store_part = 579 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 580 store_size); 581 bool upper_load_has_store_part = 582 (req->getVaddr() + req->getSize()) > 583 storeQueue[store_idx].inst->effAddr; 584 585 // If the store's data has all of the data needed, we can forward. 586 if (store_has_lower_limit && store_has_upper_limit) { 587 // Get shift amount for offset into the store's data. 588 int shift_amt = req->getVaddr() & (store_size - 1); 589 // @todo: Magic number, assumes byte addressing 590 shift_amt = shift_amt << 3; 591 592 // Cast this to type T? 593 data = storeQueue[store_idx].data >> shift_amt; 594 595 assert(!load_inst->memData); 596 load_inst->memData = new uint8_t[64]; 597 598 memcpy(load_inst->memData, &data, req->getSize()); 599 600 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 601 "addr %#x, data %#x\n", 602 store_idx, req->getVaddr(), data); 603 604 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast); 605 data_pkt->dataStatic(load_inst->memData); 606 607 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 608 609 // We'll say this has a 1 cycle load-store forwarding latency 610 // for now. 611 // @todo: Need to make this a parameter. 612 wb->schedule(curTick); 613 614 ++lsqForwLoads; 615 return NoFault; 616 } else if ((store_has_lower_limit && lower_load_has_store_part) || 617 (store_has_upper_limit && upper_load_has_store_part) || 618 (lower_load_has_store_part && upper_load_has_store_part)) { 619 // This is the partial store-load forwarding case where a store 620 // has only part of the load's data. 621 622 // If it's already been written back, then don't worry about 623 // stalling on it. 624 if (storeQueue[store_idx].completed) { 625 continue; 626 } 627 628 // Must stall load and force it to retry, so long as it's the oldest 629 // load that needs to do so. 630 if (!stalled || 631 (stalled && 632 load_inst->seqNum < 633 loadQueue[stallingLoadIdx]->seqNum)) { 634 stalled = true; 635 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 636 stallingLoadIdx = load_idx; 637 } 638 639 // Tell IQ/mem dep unit that this instruction will need to be 640 // rescheduled eventually 641 iewStage->rescheduleMemInst(load_inst); 642 ++lsqRescheduledLoads; 643 644 // Do not generate a writeback event as this instruction is not 645 // complete. 646 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 647 "Store idx %i to load addr %#x\n", 648 store_idx, req->getVaddr()); 649 650 ++lsqBlockedLoads; 651 return NoFault; 652 } 653 } 654 655 // If there's no forwarding case, then go access memory 656 DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n", 657 load_inst->seqNum, load_inst->readPC()); 658 659 assert(!load_inst->memData); 660 load_inst->memData = new uint8_t[64]; 661 662 ++usedPorts; 663 664 DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n", 665 load_inst->readPC()); 666 667 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast); 668 data_pkt->dataStatic(load_inst->memData); 669 670 LSQSenderState *state = new LSQSenderState; 671 state->isLoad = true; 672 state->idx = load_idx; 673 state->inst = load_inst; 674 data_pkt->senderState = state; 675 676 // if we have a cache, do cache access too 677 if (!dcachePort->sendTiming(data_pkt)) { 678 ++lsqCacheBlocked; 679 // There's an older load that's already going to squash. 680 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 681 return NoFault; 682 683 // Record that the load was blocked due to memory. This 684 // load will squash all instructions after it, be 685 // refetched, and re-executed. 686 isLoadBlocked = true; 687 loadBlockedHandled = false; 688 blockedLoadSeqNum = load_inst->seqNum; 689 // No fault occurred, even though the interface is blocked. 690 return NoFault; 691 } 692 693 if (data_pkt->result != Packet::Success) { 694 DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n"); 695 DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n", 696 load_inst->seqNum); 697 } else { 698 DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n"); 699 DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n", 700 load_inst->seqNum); 701 } 702 703 return NoFault; 704} 705 706template <class Impl> 707template <class T> 708Fault 709LSQUnit<Impl>::write(Request *req, T &data, int store_idx) 710{ 711 assert(storeQueue[store_idx].inst); 712 713 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 714 " | storeHead:%i [sn:%i]\n", 715 store_idx, req->getPaddr(), data, storeHead, 716 storeQueue[store_idx].inst->seqNum); 717 718 storeQueue[store_idx].req = req; 719 storeQueue[store_idx].size = sizeof(T); 720 storeQueue[store_idx].data = data; 721 722 // This function only writes the data to the store queue, so no fault 723 // can happen here. 724 return NoFault; 725} 726 727#endif // __CPU_O3_LSQ_UNIT_HH__ 728