lsq_unit.hh revision 2727
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <map> 37#include <queue> 38 39#include "arch/faults.hh" 40#include "config/full_system.hh" 41#include "base/hashmap.hh" 42#include "cpu/inst_seq.hh" 43#include "mem/packet.hh" 44#include "mem/port.hh" 45 46/** 47 * Class that implements the actual LQ and SQ for each specific 48 * thread. Both are circular queues; load entries are freed upon 49 * committing, while store entries are freed once they writeback. The 50 * LSQUnit tracks if there are memory ordering violations, and also 51 * detects partial load to store forwarding cases (a store only has 52 * part of a load's data) that requires the load to wait until the 53 * store writes back. In the former case it holds onto the instruction 54 * until the dependence unit looks at it, and in the latter it stalls 55 * the LSQ until the store writes back. At that point the load is 56 * replayed. 57 */ 58template <class Impl> 59class LSQUnit { 60 protected: 61 typedef TheISA::IntReg IntReg; 62 public: 63 typedef typename Impl::Params Params; 64 typedef typename Impl::FullCPU FullCPU; 65 typedef typename Impl::DynInstPtr DynInstPtr; 66 typedef typename Impl::CPUPol::IEW IEW; 67 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 68 69 public: 70 /** Constructs an LSQ unit. init() must be called prior to use. */ 71 LSQUnit(); 72 73 /** Initializes the LSQ unit with the specified number of entries. */ 74 void init(Params *params, unsigned maxLQEntries, 75 unsigned maxSQEntries, unsigned id); 76 77 /** Returns the name of the LSQ unit. */ 78 std::string name() const; 79 80 /** Registers statistics. */ 81 void regStats(); 82 83 /** Sets the CPU pointer. */ 84 void setCPU(FullCPU *cpu_ptr); 85 86 /** Sets the IEW stage pointer. */ 87 void setIEW(IEW *iew_ptr) 88 { iewStage = iew_ptr; } 89 90 /** Switches out LSQ unit. */ 91 void switchOut(); 92 93 /** Takes over from another CPU's thread. */ 94 void takeOverFrom(); 95 96 /** Returns if the LSQ is switched out. */ 97 bool isSwitchedOut() { return switchedOut; } 98 99 /** Ticks the LSQ unit, which in this case only resets the number of 100 * used cache ports. 101 * @todo: Move the number of used ports up to the LSQ level so it can 102 * be shared by all LSQ units. 103 */ 104 void tick() { usedPorts = 0; } 105 106 /** Inserts an instruction. */ 107 void insert(DynInstPtr &inst); 108 /** Inserts a load instruction. */ 109 void insertLoad(DynInstPtr &load_inst); 110 /** Inserts a store instruction. */ 111 void insertStore(DynInstPtr &store_inst); 112 113 /** Executes a load instruction. */ 114 Fault executeLoad(DynInstPtr &inst); 115 116 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 117 /** Executes a store instruction. */ 118 Fault executeStore(DynInstPtr &inst); 119 120 /** Commits the head load. */ 121 void commitLoad(); 122 /** Commits loads older than a specific sequence number. */ 123 void commitLoads(InstSeqNum &youngest_inst); 124 125 /** Commits stores older than a specific sequence number. */ 126 void commitStores(InstSeqNum &youngest_inst); 127 128 /** Writes back stores. */ 129 void writebackStores(); 130 131 void completeDataAccess(PacketPtr pkt); 132 133 /** Clears all the entries in the LQ. */ 134 void clearLQ(); 135 136 /** Clears all the entries in the SQ. */ 137 void clearSQ(); 138 139 /** Resizes the LQ to a given size. */ 140 void resizeLQ(unsigned size); 141 142 /** Resizes the SQ to a given size. */ 143 void resizeSQ(unsigned size); 144 145 /** Squashes all instructions younger than a specific sequence number. */ 146 void squash(const InstSeqNum &squashed_num); 147 148 /** Returns if there is a memory ordering violation. Value is reset upon 149 * call to getMemDepViolator(). 150 */ 151 bool violation() { return memDepViolator; } 152 153 /** Returns the memory ordering violator. */ 154 DynInstPtr getMemDepViolator(); 155 156 /** Returns if a load became blocked due to the memory system. */ 157 bool loadBlocked() 158 { return isLoadBlocked; } 159 160 /** Clears the signal that a load became blocked. */ 161 void clearLoadBlocked() 162 { isLoadBlocked = false; } 163 164 /** Returns if the blocked load was handled. */ 165 bool isLoadBlockedHandled() 166 { return loadBlockedHandled; } 167 168 /** Records the blocked load as being handled. */ 169 void setLoadBlockedHandled() 170 { loadBlockedHandled = true; } 171 172 /** Returns the number of free entries (min of free LQ and SQ entries). */ 173 unsigned numFreeEntries(); 174 175 /** Returns the number of loads ready to execute. */ 176 int numLoadsReady(); 177 178 /** Returns the number of loads in the LQ. */ 179 int numLoads() { return loads; } 180 181 /** Returns the number of stores in the SQ. */ 182 int numStores() { return stores; } 183 184 /** Returns if either the LQ or SQ is full. */ 185 bool isFull() { return lqFull() || sqFull(); } 186 187 /** Returns if the LQ is full. */ 188 bool lqFull() { return loads >= (LQEntries - 1); } 189 190 /** Returns if the SQ is full. */ 191 bool sqFull() { return stores >= (SQEntries - 1); } 192 193 /** Returns the number of instructions in the LSQ. */ 194 unsigned getCount() { return loads + stores; } 195 196 /** Returns if there are any stores to writeback. */ 197 bool hasStoresToWB() { return storesToWB; } 198 199 /** Returns the number of stores to writeback. */ 200 int numStoresToWB() { return storesToWB; } 201 202 /** Returns if the LSQ unit will writeback on this cycle. */ 203 bool willWB() { return storeQueue[storeWBIdx].canWB && 204 !storeQueue[storeWBIdx].completed && 205 !isStoreBlocked; } 206 207 private: 208 /** Writes back the instruction, sending it to IEW. */ 209 void writeback(DynInstPtr &inst, PacketPtr pkt); 210 211 /** Handles completing the send of a store to memory. */ 212 void storePostSend(Packet *pkt); 213 214 /** Completes the store at the specified index. */ 215 void completeStore(int store_idx); 216 217 /** Handles doing the retry. */ 218 void recvRetry(); 219 220 /** Increments the given store index (circular queue). */ 221 inline void incrStIdx(int &store_idx); 222 /** Decrements the given store index (circular queue). */ 223 inline void decrStIdx(int &store_idx); 224 /** Increments the given load index (circular queue). */ 225 inline void incrLdIdx(int &load_idx); 226 /** Decrements the given load index (circular queue). */ 227 inline void decrLdIdx(int &load_idx); 228 229 public: 230 /** Debugging function to dump instructions in the LSQ. */ 231 void dumpInsts(); 232 233 private: 234 /** Pointer to the CPU. */ 235 FullCPU *cpu; 236 237 /** Pointer to the IEW stage. */ 238 IEW *iewStage; 239 240 /** Pointer to memory object. */ 241 MemObject *mem; 242 243 /** DcachePort class for this LSQ Unit. Handles doing the 244 * communication with the cache/memory. 245 * @todo: Needs to be moved to the LSQ level and have some sort 246 * of arbitration. 247 */ 248 class DcachePort : public Port 249 { 250 protected: 251 /** Pointer to CPU. */ 252 FullCPU *cpu; 253 /** Pointer to LSQ. */ 254 LSQUnit *lsq; 255 256 public: 257 /** Default constructor. */ 258 DcachePort(FullCPU *_cpu, LSQUnit *_lsq) 259 : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq) 260 { } 261 262 protected: 263 /** Atomic version of receive. Panics. */ 264 virtual Tick recvAtomic(PacketPtr pkt); 265 266 /** Functional version of receive. Panics. */ 267 virtual void recvFunctional(PacketPtr pkt); 268 269 /** Receives status change. Other than range changing, panics. */ 270 virtual void recvStatusChange(Status status); 271 272 /** Returns the address ranges of this device. */ 273 virtual void getDeviceAddressRanges(AddrRangeList &resp, 274 AddrRangeList &snoop) 275 { resp.clear(); snoop.clear(); } 276 277 /** Timing version of receive. Handles writing back and 278 * completing the load or store that has returned from 279 * memory. */ 280 virtual bool recvTiming(PacketPtr pkt); 281 282 /** Handles doing a retry of the previous send. */ 283 virtual void recvRetry(); 284 }; 285 286 /** Pointer to the D-cache. */ 287 DcachePort *dcachePort; 288 289 /** Derived class to hold any sender state the LSQ needs. */ 290 class LSQSenderState : public Packet::SenderState 291 { 292 public: 293 /** Default constructor. */ 294 LSQSenderState() 295 : noWB(false) 296 { } 297 298 /** Instruction who initiated the access to memory. */ 299 DynInstPtr inst; 300 /** Whether or not it is a load. */ 301 bool isLoad; 302 /** The LQ/SQ index of the instruction. */ 303 int idx; 304 /** Whether or not the instruction will need to writeback. */ 305 bool noWB; 306 }; 307 308 /** Writeback event, specifically for when stores forward data to loads. */ 309 class WritebackEvent : public Event { 310 public: 311 /** Constructs a writeback event. */ 312 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 313 314 /** Processes the writeback event. */ 315 void process(); 316 317 /** Returns the description of this event. */ 318 const char *description(); 319 320 private: 321 /** Instruction whose results are being written back. */ 322 DynInstPtr inst; 323 324 /** The packet that would have been sent to memory. */ 325 PacketPtr pkt; 326 327 /** The pointer to the LSQ unit that issued the store. */ 328 LSQUnit<Impl> *lsqPtr; 329 }; 330 331 public: 332 struct SQEntry { 333 /** Constructs an empty store queue entry. */ 334 SQEntry() 335 : inst(NULL), req(NULL), size(0), data(0), 336 canWB(0), committed(0), completed(0) 337 { } 338 339 /** Constructs a store queue entry for a given instruction. */ 340 SQEntry(DynInstPtr &_inst) 341 : inst(_inst), req(NULL), size(0), data(0), 342 canWB(0), committed(0), completed(0) 343 { } 344 345 /** The store instruction. */ 346 DynInstPtr inst; 347 /** The request for the store. */ 348 RequestPtr req; 349 /** The size of the store. */ 350 int size; 351 /** The store data. */ 352 IntReg data; 353 /** Whether or not the store can writeback. */ 354 bool canWB; 355 /** Whether or not the store is committed. */ 356 bool committed; 357 /** Whether or not the store is completed. */ 358 bool completed; 359 }; 360 361 private: 362 /** The LSQUnit thread id. */ 363 unsigned lsqID; 364 365 /** The store queue. */ 366 std::vector<SQEntry> storeQueue; 367 368 /** The load queue. */ 369 std::vector<DynInstPtr> loadQueue; 370 371 /** The number of LQ entries, plus a sentinel entry (circular queue). 372 * @todo: Consider having var that records the true number of LQ entries. 373 */ 374 unsigned LQEntries; 375 /** The number of SQ entries, plus a sentinel entry (circular queue). 376 * @todo: Consider having var that records the true number of SQ entries. 377 */ 378 unsigned SQEntries; 379 380 /** The number of load instructions in the LQ. */ 381 int loads; 382 /** The number of store instructions in the SQ. */ 383 int stores; 384 /** The number of store instructions in the SQ waiting to writeback. */ 385 int storesToWB; 386 387 /** The index of the head instruction in the LQ. */ 388 int loadHead; 389 /** The index of the tail instruction in the LQ. */ 390 int loadTail; 391 392 /** The index of the head instruction in the SQ. */ 393 int storeHead; 394 /** The index of the first instruction that may be ready to be 395 * written back, and has not yet been written back. 396 */ 397 int storeWBIdx; 398 /** The index of the tail instruction in the SQ. */ 399 int storeTail; 400 401 /// @todo Consider moving to a more advanced model with write vs read ports 402 /** The number of cache ports available each cycle. */ 403 int cachePorts; 404 405 /** The number of used cache ports in this cycle. */ 406 int usedPorts; 407 408 /** Is the LSQ switched out. */ 409 bool switchedOut; 410 411 //list<InstSeqNum> mshrSeqNums; 412 413 /** Wire to read information from the issue stage time queue. */ 414 typename TimeBuffer<IssueStruct>::wire fromIssue; 415 416 /** Whether or not the LSQ is stalled. */ 417 bool stalled; 418 /** The store that causes the stall due to partial store to load 419 * forwarding. 420 */ 421 InstSeqNum stallingStoreIsn; 422 /** The index of the above store. */ 423 int stallingLoadIdx; 424 425 /** The packet that needs to be retried. */ 426 PacketPtr retryPkt; 427 428 /** Whehter or not a store is blocked due to the memory system. */ 429 bool isStoreBlocked; 430 431 /** Whether or not a load is blocked due to the memory system. */ 432 bool isLoadBlocked; 433 434 /** Has the blocked load been handled. */ 435 bool loadBlockedHandled; 436 437 /** The sequence number of the blocked load. */ 438 InstSeqNum blockedLoadSeqNum; 439 440 /** The oldest load that caused a memory ordering violation. */ 441 DynInstPtr memDepViolator; 442 443 // Will also need how many read/write ports the Dcache has. Or keep track 444 // of that in stage that is one level up, and only call executeLoad/Store 445 // the appropriate number of times. 446 447 /** Total number of loads forwaded from LSQ stores. */ 448 Stats::Scalar<> lsqForwLoads; 449 450 /** Total number of loads ignored due to invalid addresses. */ 451 Stats::Scalar<> invAddrLoads; 452 453 /** Total number of squashed loads. */ 454 Stats::Scalar<> lsqSquashedLoads; 455 456 /** Total number of responses from the memory system that are 457 * ignored due to the instruction already being squashed. */ 458 Stats::Scalar<> lsqIgnoredResponses; 459 460 /** Total number of squashed stores. */ 461 Stats::Scalar<> lsqSquashedStores; 462 463 /** Total number of software prefetches ignored due to invalid addresses. */ 464 Stats::Scalar<> invAddrSwpfs; 465 466 /** Ready loads blocked due to partial store-forwarding. */ 467 Stats::Scalar<> lsqBlockedLoads; 468 469 /** Number of loads that were rescheduled. */ 470 Stats::Scalar<> lsqRescheduledLoads; 471 472 /** Number of times the LSQ is blocked due to the cache. */ 473 Stats::Scalar<> lsqCacheBlocked; 474 475 public: 476 /** Executes the load at the given index. */ 477 template <class T> 478 Fault read(Request *req, T &data, int load_idx); 479 480 /** Executes the store at the given index. */ 481 template <class T> 482 Fault write(Request *req, T &data, int store_idx); 483 484 /** Returns the index of the head load instruction. */ 485 int getLoadHead() { return loadHead; } 486 /** Returns the sequence number of the head load instruction. */ 487 InstSeqNum getLoadHeadSeqNum() 488 { 489 if (loadQueue[loadHead]) { 490 return loadQueue[loadHead]->seqNum; 491 } else { 492 return 0; 493 } 494 495 } 496 497 /** Returns the index of the head store instruction. */ 498 int getStoreHead() { return storeHead; } 499 /** Returns the sequence number of the head store instruction. */ 500 InstSeqNum getStoreHeadSeqNum() 501 { 502 if (storeQueue[storeHead].inst) { 503 return storeQueue[storeHead].inst->seqNum; 504 } else { 505 return 0; 506 } 507 508 } 509 510 /** Returns whether or not the LSQ unit is stalled. */ 511 bool isStalled() { return stalled; } 512}; 513 514template <class Impl> 515template <class T> 516Fault 517LSQUnit<Impl>::read(Request *req, T &data, int load_idx) 518{ 519 DynInstPtr load_inst = loadQueue[load_idx]; 520 521 assert(load_inst); 522 523 assert(!load_inst->isExecuted()); 524 525 // Make sure this isn't an uncacheable access 526 // A bit of a hackish way to get uncached accesses to work only if they're 527 // at the head of the LSQ and are ready to commit (at the head of the ROB 528 // too). 529 if (req->getFlags() & UNCACHEABLE && 530 (load_idx != loadHead || !load_inst->reachedCommit)) { 531 iewStage->rescheduleMemInst(load_inst); 532 ++lsqRescheduledLoads; 533 return TheISA::genMachineCheckFault(); 534 } 535 536 // Check the SQ for any previous stores that might lead to forwarding 537 int store_idx = load_inst->sqIdx; 538 539 int store_size = 0; 540 541 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 542 "storeHead: %i addr: %#x\n", 543 load_idx, store_idx, storeHead, req->getPaddr()); 544 545#if FULL_SYSTEM 546 if (req->getFlags() & LOCKED) { 547 cpu->lockAddr = req->getPaddr(); 548 cpu->lockFlag = true; 549 } 550#endif 551 552 while (store_idx != -1) { 553 // End once we've reached the top of the LSQ 554 if (store_idx == storeWBIdx) { 555 break; 556 } 557 558 // Move the index to one younger 559 if (--store_idx < 0) 560 store_idx += SQEntries; 561 562 assert(storeQueue[store_idx].inst); 563 564 store_size = storeQueue[store_idx].size; 565 566 if (store_size == 0) 567 continue; 568 569 // Check if the store data is within the lower and upper bounds of 570 // addresses that the request needs. 571 bool store_has_lower_limit = 572 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 573 bool store_has_upper_limit = 574 (req->getVaddr() + req->getSize()) <= 575 (storeQueue[store_idx].inst->effAddr + store_size); 576 bool lower_load_has_store_part = 577 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 578 store_size); 579 bool upper_load_has_store_part = 580 (req->getVaddr() + req->getSize()) > 581 storeQueue[store_idx].inst->effAddr; 582 583 // If the store's data has all of the data needed, we can forward. 584 if (store_has_lower_limit && store_has_upper_limit) { 585 // Get shift amount for offset into the store's data. 586 int shift_amt = req->getVaddr() & (store_size - 1); 587 // @todo: Magic number, assumes byte addressing 588 shift_amt = shift_amt << 3; 589 590 // Cast this to type T? 591 data = storeQueue[store_idx].data >> shift_amt; 592 593 assert(!load_inst->memData); 594 load_inst->memData = new uint8_t[64]; 595 596 memcpy(load_inst->memData, &data, req->getSize()); 597 598 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 599 "addr %#x, data %#x\n", 600 store_idx, req->getVaddr(), data); 601 602 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast); 603 data_pkt->dataStatic(load_inst->memData); 604 605 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 606 607 // We'll say this has a 1 cycle load-store forwarding latency 608 // for now. 609 // @todo: Need to make this a parameter. 610 wb->schedule(curTick); 611 612 ++lsqForwLoads; 613 return NoFault; 614 } else if ((store_has_lower_limit && lower_load_has_store_part) || 615 (store_has_upper_limit && upper_load_has_store_part) || 616 (lower_load_has_store_part && upper_load_has_store_part)) { 617 // This is the partial store-load forwarding case where a store 618 // has only part of the load's data. 619 620 // If it's already been written back, then don't worry about 621 // stalling on it. 622 if (storeQueue[store_idx].completed) { 623 continue; 624 } 625 626 // Must stall load and force it to retry, so long as it's the oldest 627 // load that needs to do so. 628 if (!stalled || 629 (stalled && 630 load_inst->seqNum < 631 loadQueue[stallingLoadIdx]->seqNum)) { 632 stalled = true; 633 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 634 stallingLoadIdx = load_idx; 635 } 636 637 // Tell IQ/mem dep unit that this instruction will need to be 638 // rescheduled eventually 639 iewStage->rescheduleMemInst(load_inst); 640 ++lsqRescheduledLoads; 641 642 // Do not generate a writeback event as this instruction is not 643 // complete. 644 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 645 "Store idx %i to load addr %#x\n", 646 store_idx, req->getVaddr()); 647 648 ++lsqBlockedLoads; 649 return NoFault; 650 } 651 } 652 653 // If there's no forwarding case, then go access memory 654 DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n", 655 load_inst->seqNum, load_inst->readPC()); 656 657 assert(!load_inst->memData); 658 load_inst->memData = new uint8_t[64]; 659 660 ++usedPorts; 661 662 DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n", 663 load_inst->readPC()); 664 665 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast); 666 data_pkt->dataStatic(load_inst->memData); 667 668 LSQSenderState *state = new LSQSenderState; 669 state->isLoad = true; 670 state->idx = load_idx; 671 state->inst = load_inst; 672 data_pkt->senderState = state; 673 674 // if we have a cache, do cache access too 675 if (!dcachePort->sendTiming(data_pkt)) { 676 ++lsqCacheBlocked; 677 // There's an older load that's already going to squash. 678 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 679 return NoFault; 680 681 // Record that the load was blocked due to memory. This 682 // load will squash all instructions after it, be 683 // refetched, and re-executed. 684 isLoadBlocked = true; 685 loadBlockedHandled = false; 686 blockedLoadSeqNum = load_inst->seqNum; 687 // No fault occurred, even though the interface is blocked. 688 return NoFault; 689 } 690 691 if (data_pkt->result != Packet::Success) { 692 DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n"); 693 DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n", 694 load_inst->seqNum); 695 } else { 696 DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n"); 697 DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n", 698 load_inst->seqNum); 699 } 700 701 return NoFault; 702} 703 704template <class Impl> 705template <class T> 706Fault 707LSQUnit<Impl>::write(Request *req, T &data, int store_idx) 708{ 709 assert(storeQueue[store_idx].inst); 710 711 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 712 " | storeHead:%i [sn:%i]\n", 713 store_idx, req->getPaddr(), data, storeHead, 714 storeQueue[store_idx].inst->seqNum); 715 716 storeQueue[store_idx].req = req; 717 storeQueue[store_idx].size = sizeof(T); 718 storeQueue[store_idx].data = data; 719 720 // This function only writes the data to the store queue, so no fault 721 // can happen here. 722 return NoFault; 723} 724 725#endif // __CPU_O3_LSQ_UNIT_HH__ 726