lsq_unit.hh revision 2292
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_O3_LSQ_UNIT_HH__
30#define __CPU_O3_LSQ_UNIT_HH__
31
32#include <map>
33#include <queue>
34#include <algorithm>
35
36#include "config/full_system.hh"
37#include "base/hashmap.hh"
38#include "cpu/inst_seq.hh"
39#include "mem/mem_interface.hh"
40//#include "mem/page_table.hh"
41#include "sim/sim_object.hh"
42#include "arch/faults.hh"
43
44/**
45 * Class that implements the actual LQ and SQ for each specific thread.
46 * Both are circular queues; load entries are freed upon committing, while
47 * store entries are freed once they writeback. The LSQUnit tracks if there
48 * are memory ordering violations, and also detects partial load to store
49 * forwarding cases (a store only has part of a load's data) that requires
50 * the load to wait until the store writes back. In the former case it
51 * holds onto the instruction until the dependence unit looks at it, and
52 * in the latter it stalls the LSQ until the store writes back. At that
53 * point the load is replayed.
54 */
55template <class Impl>
56class LSQUnit {
57  protected:
58    typedef TheISA::IntReg IntReg;
59  public:
60    typedef typename Impl::Params Params;
61    typedef typename Impl::FullCPU FullCPU;
62    typedef typename Impl::DynInstPtr DynInstPtr;
63    typedef typename Impl::CPUPol::IEW IEW;
64    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
65
66  private:
67    class StoreCompletionEvent : public Event {
68      public:
69        /** Constructs a store completion event. */
70        StoreCompletionEvent(int store_idx, Event *wb_event, LSQUnit *lsq_ptr);
71
72        /** Processes the store completion event. */
73        void process();
74
75        /** Returns the description of this event. */
76        const char *description();
77
78      private:
79        /** The store index of the store being written back. */
80        int storeIdx;
81        /** The writeback event for the store.  Needed for store
82         * conditionals.
83         */
84        Event *wbEvent;
85        /** The pointer to the LSQ unit that issued the store. */
86        LSQUnit<Impl> *lsqPtr;
87    };
88
89    friend class StoreCompletionEvent;
90
91  public:
92    /** Constructs an LSQ unit. init() must be called prior to use. */
93    LSQUnit();
94
95    /** Initializes the LSQ unit with the specified number of entries. */
96    void init(Params *params, unsigned maxLQEntries,
97              unsigned maxSQEntries, unsigned id);
98
99    /** Returns the name of the LSQ unit. */
100    std::string name() const;
101
102    /** Sets the CPU pointer. */
103    void setCPU(FullCPU *cpu_ptr)
104    { cpu = cpu_ptr; }
105
106    /** Sets the IEW stage pointer. */
107    void setIEW(IEW *iew_ptr)
108    { iewStage = iew_ptr; }
109
110    /** Sets the page table pointer. */
111//    void setPageTable(PageTable *pt_ptr);
112
113    /** Ticks the LSQ unit, which in this case only resets the number of
114     * used cache ports.
115     * @todo: Move the number of used ports up to the LSQ level so it can
116     * be shared by all LSQ units.
117     */
118    void tick() { usedPorts = 0; }
119
120    /** Inserts an instruction. */
121    void insert(DynInstPtr &inst);
122    /** Inserts a load instruction. */
123    void insertLoad(DynInstPtr &load_inst);
124    /** Inserts a store instruction. */
125    void insertStore(DynInstPtr &store_inst);
126
127    /** Executes a load instruction. */
128    Fault executeLoad(DynInstPtr &inst);
129
130    Fault executeLoad(int lq_idx);
131    /** Executes a store instruction. */
132    Fault executeStore(DynInstPtr &inst);
133
134    /** Commits the head load. */
135    void commitLoad();
136    /** Commits a specific load, given by the sequence number. */
137    void commitLoad(InstSeqNum &inst);
138    /** Commits loads older than a specific sequence number. */
139    void commitLoads(InstSeqNum &youngest_inst);
140
141    /** Commits stores older than a specific sequence number. */
142    void commitStores(InstSeqNum &youngest_inst);
143
144    /** Writes back stores. */
145    void writebackStores();
146
147    // @todo: Include stats in the LSQ unit.
148    //void regStats();
149
150    /** Clears all the entries in the LQ. */
151    void clearLQ();
152
153    /** Clears all the entries in the SQ. */
154    void clearSQ();
155
156    /** Resizes the LQ to a given size. */
157    void resizeLQ(unsigned size);
158
159    /** Resizes the SQ to a given size. */
160    void resizeSQ(unsigned size);
161
162    /** Squashes all instructions younger than a specific sequence number. */
163    void squash(const InstSeqNum &squashed_num);
164
165    /** Returns if there is a memory ordering violation. Value is reset upon
166     * call to getMemDepViolator().
167     */
168    bool violation() { return memDepViolator; }
169
170    /** Returns the memory ordering violator. */
171    DynInstPtr getMemDepViolator();
172
173    /** Returns if a load became blocked due to the memory system.  It clears
174     *  the bool's value upon this being called.
175     */
176    bool loadBlocked()
177    { return isLoadBlocked; }
178
179    void clearLoadBlocked()
180    { isLoadBlocked = false; }
181
182    bool isLoadBlockedHandled()
183    { return loadBlockedHandled; }
184
185    void setLoadBlockedHandled()
186    { loadBlockedHandled = true; }
187
188    /** Returns the number of free entries (min of free LQ and SQ entries). */
189    unsigned numFreeEntries();
190
191    /** Returns the number of loads ready to execute. */
192    int numLoadsReady();
193
194    /** Returns the number of loads in the LQ. */
195    int numLoads() { return loads; }
196
197    /** Returns the number of stores in the SQ. */
198    int numStores() { return stores; }
199
200    /** Returns if either the LQ or SQ is full. */
201    bool isFull() { return lqFull() || sqFull(); }
202
203    /** Returns if the LQ is full. */
204    bool lqFull() { return loads >= (LQEntries - 1); }
205
206    /** Returns if the SQ is full. */
207    bool sqFull() { return stores >= (SQEntries - 1); }
208
209    /** Debugging function to dump instructions in the LSQ. */
210    void dumpInsts();
211
212    /** Returns the number of instructions in the LSQ. */
213    unsigned getCount() { return loads + stores; }
214
215    /** Returns if there are any stores to writeback. */
216    bool hasStoresToWB() { return storesToWB; }
217
218    /** Returns the number of stores to writeback. */
219    int numStoresToWB() { return storesToWB; }
220
221    /** Returns if the LSQ unit will writeback on this cycle. */
222    bool willWB() { return storeQueue[storeWBIdx].canWB &&
223                        !storeQueue[storeWBIdx].completed &&
224                        !dcacheInterface->isBlocked(); }
225
226  private:
227    /** Completes the store at the specified index. */
228    void completeStore(int store_idx);
229
230    /** Increments the given store index (circular queue). */
231    inline void incrStIdx(int &store_idx);
232    /** Decrements the given store index (circular queue). */
233    inline void decrStIdx(int &store_idx);
234    /** Increments the given load index (circular queue). */
235    inline void incrLdIdx(int &load_idx);
236    /** Decrements the given load index (circular queue). */
237    inline void decrLdIdx(int &load_idx);
238
239  private:
240    /** Pointer to the CPU. */
241    FullCPU *cpu;
242
243    /** Pointer to the IEW stage. */
244    IEW *iewStage;
245
246    /** Pointer to the D-cache. */
247    MemInterface *dcacheInterface;
248
249    /** Pointer to the page table. */
250//    PageTable *pTable;
251
252  public:
253    struct SQEntry {
254        /** Constructs an empty store queue entry. */
255        SQEntry()
256            : inst(NULL), req(NULL), size(0), data(0),
257              canWB(0), committed(0), completed(0)
258        { }
259
260        /** Constructs a store queue entry for a given instruction. */
261        SQEntry(DynInstPtr &_inst)
262            : inst(_inst), req(NULL), size(0), data(0),
263              canWB(0), committed(0), completed(0)
264        { }
265
266        /** The store instruction. */
267        DynInstPtr inst;
268        /** The memory request for the store. */
269        MemReqPtr req;
270        /** The size of the store. */
271        int size;
272        /** The store data. */
273        IntReg data;
274        /** Whether or not the store can writeback. */
275        bool canWB;
276        /** Whether or not the store is committed. */
277        bool committed;
278        /** Whether or not the store is completed. */
279        bool completed;
280    };
281
282    enum Status {
283        Running,
284        Idle,
285        DcacheMissStall,
286        DcacheMissSwitch
287    };
288
289  private:
290    /** The LSQUnit thread id. */
291    unsigned lsqID;
292
293    /** The status of the LSQ unit. */
294    Status _status;
295
296    /** The store queue. */
297    std::vector<SQEntry> storeQueue;
298
299    /** The load queue. */
300    std::vector<DynInstPtr> loadQueue;
301
302    // Consider making these 16 bits
303    /** The number of LQ entries. */
304    unsigned LQEntries;
305    /** The number of SQ entries. */
306    unsigned SQEntries;
307
308    /** The number of load instructions in the LQ. */
309    int loads;
310    /** The number of store instructions in the SQ (excludes those waiting to
311     * writeback).
312     */
313    int stores;
314    /** The number of store instructions in the SQ waiting to writeback. */
315    int storesToWB;
316
317    /** The index of the head instruction in the LQ. */
318    int loadHead;
319    /** The index of the tail instruction in the LQ. */
320    int loadTail;
321
322    /** The index of the head instruction in the SQ. */
323    int storeHead;
324    /** The index of the first instruction that is ready to be written back,
325     * and has not yet been written back.
326     */
327    int storeWBIdx;
328    /** The index of the tail instruction in the SQ. */
329    int storeTail;
330
331    /// @todo Consider moving to a more advanced model with write vs read ports
332    /** The number of cache ports available each cycle. */
333    int cachePorts;
334
335    /** The number of used cache ports in this cycle. */
336    int usedPorts;
337
338    //list<InstSeqNum> mshrSeqNums;
339
340     //Stats::Scalar<> dcacheStallCycles;
341    Counter lastDcacheStall;
342
343    /** Wire to read information from the issue stage time queue. */
344    typename TimeBuffer<IssueStruct>::wire fromIssue;
345
346    // Make these per thread?
347    /** Whether or not the LSQ is stalled. */
348    bool stalled;
349    /** The store that causes the stall due to partial store to load
350     * forwarding.
351     */
352    InstSeqNum stallingStoreIsn;
353    /** The index of the above store. */
354    int stallingLoadIdx;
355
356    /** Whether or not a load is blocked due to the memory system.  It is
357     *  cleared when this value is checked via loadBlocked().
358     */
359    bool isLoadBlocked;
360
361    bool loadBlockedHandled;
362
363    InstSeqNum blockedLoadSeqNum;
364
365    /** The oldest faulting load instruction. */
366    DynInstPtr loadFaultInst;
367    /** The oldest faulting store instruction. */
368    DynInstPtr storeFaultInst;
369
370    /** The oldest load that caused a memory ordering violation. */
371    DynInstPtr memDepViolator;
372
373    // Will also need how many read/write ports the Dcache has.  Or keep track
374    // of that in stage that is one level up, and only call executeLoad/Store
375    // the appropriate number of times.
376
377  public:
378    /** Executes the load at the given index. */
379    template <class T>
380    Fault read(MemReqPtr &req, T &data, int load_idx);
381
382    /** Executes the store at the given index. */
383    template <class T>
384    Fault write(MemReqPtr &req, T &data, int store_idx);
385
386    /** Returns the index of the head load instruction. */
387    int getLoadHead() { return loadHead; }
388    /** Returns the sequence number of the head load instruction. */
389    InstSeqNum getLoadHeadSeqNum()
390    {
391        if (loadQueue[loadHead]) {
392            return loadQueue[loadHead]->seqNum;
393        } else {
394            return 0;
395        }
396
397    }
398
399    /** Returns the index of the head store instruction. */
400    int getStoreHead() { return storeHead; }
401    /** Returns the sequence number of the head store instruction. */
402    InstSeqNum getStoreHeadSeqNum()
403    {
404        if (storeQueue[storeHead].inst) {
405            return storeQueue[storeHead].inst->seqNum;
406        } else {
407            return 0;
408        }
409
410    }
411
412    /** Returns whether or not the LSQ unit is stalled. */
413    bool isStalled()  { return stalled; }
414};
415
416template <class Impl>
417template <class T>
418Fault
419LSQUnit<Impl>::read(MemReqPtr &req, T &data, int load_idx)
420{
421    //Depending on issue2execute delay a squashed load could
422    //execute if it is found to be squashed in the same
423    //cycle it is scheduled to execute
424    assert(loadQueue[load_idx]);
425
426    if (loadQueue[load_idx]->isExecuted()) {
427        panic("Should not reach this point with split ops!");
428        memcpy(&data,req->data,req->size);
429
430        return NoFault;
431    }
432
433    // Make sure this isn't an uncacheable access
434    // A bit of a hackish way to get uncached accesses to work only if they're
435    // at the head of the LSQ and are ready to commit (at the head of the ROB
436    // too).
437    // @todo: Fix uncached accesses.
438    if (req->flags & UNCACHEABLE &&
439        (load_idx != loadHead || !loadQueue[load_idx]->reachedCommit)) {
440        iewStage->rescheduleMemInst(loadQueue[load_idx]);
441        return TheISA::genMachineCheckFault();
442    }
443
444    // Check the SQ for any previous stores that might lead to forwarding
445    int store_idx = loadQueue[load_idx]->sqIdx;
446
447    int store_size = 0;
448
449    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
450            "storeHead: %i addr: %#x\n",
451            load_idx, store_idx, storeHead, req->paddr);
452
453#ifdef FULL_SYSTEM
454    if (req->flags & LOCKED) {
455        cpu->lockAddr = req->paddr;
456        cpu->lockFlag = true;
457    }
458#endif
459
460    while (store_idx != -1) {
461        // End once we've reached the top of the LSQ
462        if (store_idx == storeWBIdx) {
463            break;
464        }
465
466        // Move the index to one younger
467        if (--store_idx < 0)
468            store_idx += SQEntries;
469
470        assert(storeQueue[store_idx].inst);
471
472        store_size = storeQueue[store_idx].size;
473
474        if (store_size == 0)
475            continue;
476
477        // Check if the store data is within the lower and upper bounds of
478        // addresses that the request needs.
479        bool store_has_lower_limit =
480            req->vaddr >= storeQueue[store_idx].inst->effAddr;
481        bool store_has_upper_limit =
482            (req->vaddr + req->size) <= (storeQueue[store_idx].inst->effAddr +
483                                         store_size);
484        bool lower_load_has_store_part =
485            req->vaddr < (storeQueue[store_idx].inst->effAddr +
486                           store_size);
487        bool upper_load_has_store_part =
488            (req->vaddr + req->size) > storeQueue[store_idx].inst->effAddr;
489
490        // If the store's data has all of the data needed, we can forward.
491        if (store_has_lower_limit && store_has_upper_limit) {
492
493            int shift_amt = req->vaddr & (store_size - 1);
494            // Assumes byte addressing
495            shift_amt = shift_amt << 3;
496
497            // Cast this to type T?
498            data = storeQueue[store_idx].data >> shift_amt;
499
500            req->cmd = Read;
501            assert(!req->completionEvent);
502            req->completionEvent = NULL;
503            req->time = curTick;
504            assert(!req->data);
505            req->data = new uint8_t[64];
506
507            memcpy(req->data, &data, req->size);
508
509            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
510                    "addr %#x, data %#x\n",
511                    store_idx, req->vaddr, *(req->data));
512
513            typename IEW::LdWritebackEvent *wb =
514                new typename IEW::LdWritebackEvent(loadQueue[load_idx],
515                                                   iewStage);
516
517            // We'll say this has a 1 cycle load-store forwarding latency
518            // for now.
519            // @todo: Need to make this a parameter.
520            wb->schedule(curTick);
521
522            // Should keep track of stat for forwarded data
523            return NoFault;
524        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
525                   (store_has_upper_limit && upper_load_has_store_part) ||
526                   (lower_load_has_store_part && upper_load_has_store_part)) {
527            // This is the partial store-load forwarding case where a store
528            // has only part of the load's data.
529
530            // If it's already been written back, then don't worry about
531            // stalling on it.
532            if (storeQueue[store_idx].completed) {
533                continue;
534            }
535
536            // Must stall load and force it to retry, so long as it's the oldest
537            // load that needs to do so.
538            if (!stalled ||
539                (stalled &&
540                 loadQueue[load_idx]->seqNum <
541                 loadQueue[stallingLoadIdx]->seqNum)) {
542                stalled = true;
543                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
544                stallingLoadIdx = load_idx;
545            }
546
547            // Tell IQ/mem dep unit that this instruction will need to be
548            // rescheduled eventually
549            iewStage->rescheduleMemInst(loadQueue[load_idx]);
550
551            // Do not generate a writeback event as this instruction is not
552            // complete.
553
554            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
555                    "Store idx %i to load addr %#x\n",
556                    store_idx, req->vaddr);
557
558            return NoFault;
559        }
560    }
561
562
563    // If there's no forwarding case, then go access memory
564    DynInstPtr inst = loadQueue[load_idx];
565
566    DPRINTF(LSQUnit, "Doing functional access for inst PC %#x\n",
567            loadQueue[load_idx]->readPC());
568    assert(!req->data);
569    req->data = new uint8_t[64];
570    Fault fault = cpu->read(req, data);
571    memcpy(req->data, &data, sizeof(T));
572
573    ++usedPorts;
574
575    // if we have a cache, do cache access too
576    if (fault == NoFault && dcacheInterface) {
577        if (dcacheInterface->isBlocked()) {
578            // There's an older load that's already going to squash.
579            if (isLoadBlocked && blockedLoadSeqNum < inst->seqNum)
580                return NoFault;
581
582            isLoadBlocked = true;
583            loadBlockedHandled = false;
584            blockedLoadSeqNum = inst->seqNum;
585            // No fault occurred, even though the interface is blocked.
586            return NoFault;
587        }
588        DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
589                loadQueue[load_idx]->readPC());
590        req->cmd = Read;
591        req->completionEvent = NULL;
592        req->time = curTick;
593
594        assert(!req->completionEvent);
595        req->completionEvent =
596            new typename IEW::LdWritebackEvent(loadQueue[load_idx], iewStage);
597        MemAccessResult result = dcacheInterface->access(req);
598
599        assert(dcacheInterface->doEvents());
600
601        // Ugly hack to get an event scheduled *only* if the access is
602        // a miss.  We really should add first-class support for this
603        // at some point.
604        if (result != MA_HIT) {
605            DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
606            DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
607                    inst->seqNum);
608
609            lastDcacheStall = curTick;
610
611            _status = DcacheMissStall;
612
613        } else {
614            DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
615                    inst->seqNum);
616
617            DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
618        }
619    }
620#if 0
621    // if we have a cache, do cache access too
622    if (dcacheInterface) {
623        if (dcacheInterface->isBlocked()) {
624            isLoadBlocked = true;
625            // No fault occurred, even though the interface is blocked.
626            return NoFault;
627        }
628
629        DPRINTF(LSQUnit, "LSQUnit: D-cache: PC:%#x reading from paddr:%#x "
630                "vaddr:%#x flags:%i\n",
631                inst->readPC(), req->paddr, req->vaddr, req->flags);
632
633        // Setup MemReq pointer
634        req->cmd = Read;
635        req->completionEvent = NULL;
636        req->time = curTick;
637        assert(!req->data);
638        req->data = new uint8_t[64];
639
640        assert(!req->completionEvent);
641        req->completionEvent =
642            new typename IEW::LdWritebackEvent(loadQueue[load_idx], iewStage);
643
644        // Do Cache Access
645        MemAccessResult result = dcacheInterface->access(req);
646
647        // Ugly hack to get an event scheduled *only* if the access is
648        // a miss.  We really should add first-class support for this
649        // at some point.
650        // @todo: Probably should support having no events
651        if (result != MA_HIT) {
652            DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
653            DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
654                    inst->seqNum);
655
656            lastDcacheStall = curTick;
657
658            _status = DcacheMissStall;
659
660        } else {
661            DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
662                    inst->seqNum);
663
664            DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
665        }
666    } else {
667        fatal("Must use D-cache with new memory system");
668    }
669#endif
670
671    return fault;
672}
673
674template <class Impl>
675template <class T>
676Fault
677LSQUnit<Impl>::write(MemReqPtr &req, T &data, int store_idx)
678{
679    assert(storeQueue[store_idx].inst);
680
681    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
682            " | storeHead:%i [sn:%i]\n",
683            store_idx, req->paddr, data, storeHead,
684            storeQueue[store_idx].inst->seqNum);
685/*
686    if (req->flags & LOCKED) {
687        if (req->flags & UNCACHEABLE) {
688            req->result = 2;
689        } else {
690            req->result = 1;
691        }
692    }
693*/
694    storeQueue[store_idx].req = req;
695    storeQueue[store_idx].size = sizeof(T);
696    storeQueue[store_idx].data = data;
697
698    // This function only writes the data to the store queue, so no fault
699    // can happen here.
700    return NoFault;
701}
702
703#endif // __CPU_O3_LSQ_UNIT_HH__
704