lsq_unit.hh revision 13472
1/* 2 * Copyright (c) 2012-2014,2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2013 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_LSQ_UNIT_HH__ 46#define __CPU_O3_LSQ_UNIT_HH__ 47 48#include <algorithm> 49#include <cstring> 50#include <map> 51#include <queue> 52 53#include "arch/generic/debugfaults.hh" 54#include "arch/isa_traits.hh" 55#include "arch/locked_mem.hh" 56#include "arch/mmapped_ipr.hh" 57#include "config/the_isa.hh" 58#include "cpu/inst_seq.hh" 59#include "cpu/timebuf.hh" 60#include "debug/LSQUnit.hh" 61#include "mem/packet.hh" 62#include "mem/port.hh" 63 64struct DerivO3CPUParams; 65 66/** 67 * Class that implements the actual LQ and SQ for each specific 68 * thread. Both are circular queues; load entries are freed upon 69 * committing, while store entries are freed once they writeback. The 70 * LSQUnit tracks if there are memory ordering violations, and also 71 * detects partial load to store forwarding cases (a store only has 72 * part of a load's data) that requires the load to wait until the 73 * store writes back. In the former case it holds onto the instruction 74 * until the dependence unit looks at it, and in the latter it stalls 75 * the LSQ until the store writes back. At that point the load is 76 * replayed. 77 */ 78template <class Impl> 79class LSQUnit { 80 public: 81 typedef typename Impl::O3CPU O3CPU; 82 typedef typename Impl::DynInstPtr DynInstPtr; 83 typedef typename Impl::CPUPol::IEW IEW; 84 typedef typename Impl::CPUPol::LSQ LSQ; 85 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 86 87 public: 88 /** Constructs an LSQ unit. init() must be called prior to use. */ 89 LSQUnit(uint32_t lqEntries, uint32_t sqEntries); 90 91 /** We cannot copy LSQUnit because it has stats for which copy 92 * contructor is deleted explicitly. However, STL vector requires 93 * a valid copy constructor for the base type at compile time. 94 */ 95 LSQUnit(const LSQUnit &l) { panic("LSQUnit is not copy-able"); } 96 97 /** Initializes the LSQ unit with the specified number of entries. */ 98 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 99 LSQ *lsq_ptr, unsigned id); 100 101 /** Returns the name of the LSQ unit. */ 102 std::string name() const; 103 104 /** Registers statistics. */ 105 void regStats(); 106 107 /** Sets the pointer to the dcache port. */ 108 void setDcachePort(MasterPort *dcache_port); 109 110 /** Perform sanity checks after a drain. */ 111 void drainSanityCheck() const; 112 113 /** Takes over from another CPU's thread. */ 114 void takeOverFrom(); 115 116 /** Ticks the LSQ unit, which in this case only resets the number of 117 * used cache ports. 118 * @todo: Move the number of used ports up to the LSQ level so it can 119 * be shared by all LSQ units. 120 */ 121 void tick() { usedStorePorts = 0; } 122 123 /** Inserts an instruction. */ 124 void insert(const DynInstPtr &inst); 125 /** Inserts a load instruction. */ 126 void insertLoad(const DynInstPtr &load_inst); 127 /** Inserts a store instruction. */ 128 void insertStore(const DynInstPtr &store_inst); 129 130 /** Check for ordering violations in the LSQ. For a store squash if we 131 * ever find a conflicting load. For a load, only squash if we 132 * an external snoop invalidate has been seen for that load address 133 * @param load_idx index to start checking at 134 * @param inst the instruction to check 135 */ 136 Fault checkViolations(int load_idx, const DynInstPtr &inst); 137 138 /** Check if an incoming invalidate hits in the lsq on a load 139 * that might have issued out of order wrt another load beacuse 140 * of the intermediate invalidate. 141 */ 142 void checkSnoop(PacketPtr pkt); 143 144 /** Executes a load instruction. */ 145 Fault executeLoad(const DynInstPtr &inst); 146 147 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 148 /** Executes a store instruction. */ 149 Fault executeStore(const DynInstPtr &inst); 150 151 /** Commits the head load. */ 152 void commitLoad(); 153 /** Commits loads older than a specific sequence number. */ 154 void commitLoads(InstSeqNum &youngest_inst); 155 156 /** Commits stores older than a specific sequence number. */ 157 void commitStores(InstSeqNum &youngest_inst); 158 159 /** Writes back stores. */ 160 void writebackStores(); 161 162 /** Completes the data access that has been returned from the 163 * memory system. */ 164 void completeDataAccess(PacketPtr pkt); 165 166 /** Clears all the entries in the LQ. */ 167 void clearLQ(); 168 169 /** Clears all the entries in the SQ. */ 170 void clearSQ(); 171 172 /** Resizes the LQ to a given size. */ 173 void resizeLQ(unsigned size); 174 175 /** Resizes the SQ to a given size. */ 176 void resizeSQ(unsigned size); 177 178 /** Squashes all instructions younger than a specific sequence number. */ 179 void squash(const InstSeqNum &squashed_num); 180 181 /** Returns if there is a memory ordering violation. Value is reset upon 182 * call to getMemDepViolator(). 183 */ 184 bool violation() { return memDepViolator; } 185 186 /** Returns the memory ordering violator. */ 187 DynInstPtr getMemDepViolator(); 188 189 /** Returns the number of free LQ entries. */ 190 unsigned numFreeLoadEntries(); 191 192 /** Returns the number of free SQ entries. */ 193 unsigned numFreeStoreEntries(); 194 195 /** Returns the number of loads in the LQ. */ 196 int numLoads() { return loads; } 197 198 /** Returns the number of stores in the SQ. */ 199 int numStores() { return stores; } 200 201 /** Returns if either the LQ or SQ is full. */ 202 bool isFull() { return lqFull() || sqFull(); } 203 204 /** Returns if both the LQ and SQ are empty. */ 205 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 206 207 /** Returns if the LQ is full. */ 208 bool lqFull() { return loads >= (LQEntries - 1); } 209 210 /** Returns if the SQ is full. */ 211 bool sqFull() { return stores >= (SQEntries - 1); } 212 213 /** Returns if the LQ is empty. */ 214 bool lqEmpty() const { return loads == 0; } 215 216 /** Returns if the SQ is empty. */ 217 bool sqEmpty() const { return stores == 0; } 218 219 /** Returns the number of instructions in the LSQ. */ 220 unsigned getCount() { return loads + stores; } 221 222 /** Returns if there are any stores to writeback. */ 223 bool hasStoresToWB() { return storesToWB; } 224 225 /** Returns the number of stores to writeback. */ 226 int numStoresToWB() { return storesToWB; } 227 228 /** Returns if the LSQ unit will writeback on this cycle. */ 229 bool willWB() { return storeQueue[storeWBIdx].canWB && 230 !storeQueue[storeWBIdx].completed && 231 !isStoreBlocked; } 232 233 /** Handles doing the retry. */ 234 void recvRetry(); 235 236 private: 237 /** Reset the LSQ state */ 238 void resetState(); 239 240 /** Writes back the instruction, sending it to IEW. */ 241 void writeback(const DynInstPtr &inst, PacketPtr pkt); 242 243 /** Writes back a store that couldn't be completed the previous cycle. */ 244 void writebackPendingStore(); 245 246 /** Handles completing the send of a store to memory. */ 247 void storePostSend(PacketPtr pkt); 248 249 /** Completes the store at the specified index. */ 250 void completeStore(int store_idx); 251 252 /** Attempts to send a store to the cache. */ 253 bool sendStore(PacketPtr data_pkt); 254 255 /** Increments the given store index (circular queue). */ 256 inline void incrStIdx(int &store_idx) const; 257 /** Decrements the given store index (circular queue). */ 258 inline void decrStIdx(int &store_idx) const; 259 /** Increments the given load index (circular queue). */ 260 inline void incrLdIdx(int &load_idx) const; 261 /** Decrements the given load index (circular queue). */ 262 inline void decrLdIdx(int &load_idx) const; 263 264 public: 265 /** Debugging function to dump instructions in the LSQ. */ 266 void dumpInsts() const; 267 268 private: 269 /** Pointer to the CPU. */ 270 O3CPU *cpu; 271 272 /** Pointer to the IEW stage. */ 273 IEW *iewStage; 274 275 /** Pointer to the LSQ. */ 276 LSQ *lsq; 277 278 /** Pointer to the dcache port. Used only for sending. */ 279 MasterPort *dcachePort; 280 281 /** Derived class to hold any sender state the LSQ needs. */ 282 class LSQSenderState : public Packet::SenderState 283 { 284 public: 285 /** Default constructor. */ 286 LSQSenderState() 287 : mainPkt(NULL), pendingPacket(NULL), idx(0), outstanding(1), 288 isLoad(false), noWB(false), isSplit(false), 289 pktToSend(false), cacheBlocked(false) 290 { } 291 292 /** Instruction who initiated the access to memory. */ 293 DynInstPtr inst; 294 /** The main packet from a split load, used during writeback. */ 295 PacketPtr mainPkt; 296 /** A second packet from a split store that needs sending. */ 297 PacketPtr pendingPacket; 298 /** The LQ/SQ index of the instruction. */ 299 uint8_t idx; 300 /** Number of outstanding packets to complete. */ 301 uint8_t outstanding; 302 /** Whether or not it is a load. */ 303 bool isLoad; 304 /** Whether or not the instruction will need to writeback. */ 305 bool noWB; 306 /** Whether or not this access is split in two. */ 307 bool isSplit; 308 /** Whether or not there is a packet that needs sending. */ 309 bool pktToSend; 310 /** Whether or not the second packet of this split load was blocked */ 311 bool cacheBlocked; 312 313 /** Completes a packet and returns whether the access is finished. */ 314 inline bool complete() { return --outstanding == 0; } 315 }; 316 317 /** Writeback event, specifically for when stores forward data to loads. */ 318 class WritebackEvent : public Event { 319 public: 320 /** Constructs a writeback event. */ 321 WritebackEvent(const DynInstPtr &_inst, PacketPtr pkt, 322 LSQUnit *lsq_ptr); 323 324 /** Processes the writeback event. */ 325 void process(); 326 327 /** Returns the description of this event. */ 328 const char *description() const; 329 330 private: 331 /** Instruction whose results are being written back. */ 332 DynInstPtr inst; 333 334 /** The packet that would have been sent to memory. */ 335 PacketPtr pkt; 336 337 /** The pointer to the LSQ unit that issued the store. */ 338 LSQUnit<Impl> *lsqPtr; 339 }; 340 341 public: 342 struct SQEntry { 343 /** Constructs an empty store queue entry. */ 344 SQEntry() 345 : inst(NULL), req(NULL), size(0), 346 canWB(0), committed(0), completed(0) 347 { 348 std::memset(data, 0, sizeof(data)); 349 } 350 351 ~SQEntry() 352 { 353 inst = NULL; 354 } 355 356 /** Constructs a store queue entry for a given instruction. */ 357 SQEntry(const DynInstPtr &_inst) 358 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 359 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 360 { 361 std::memset(data, 0, sizeof(data)); 362 } 363 /** The store data. */ 364 char data[16]; 365 /** The store instruction. */ 366 DynInstPtr inst; 367 /** The request for the store. */ 368 RequestPtr req; 369 /** The split requests for the store. */ 370 RequestPtr sreqLow; 371 RequestPtr sreqHigh; 372 /** The size of the store. */ 373 uint8_t size; 374 /** Whether or not the store is split into two requests. */ 375 bool isSplit; 376 /** Whether or not the store can writeback. */ 377 bool canWB; 378 /** Whether or not the store is committed. */ 379 bool committed; 380 /** Whether or not the store is completed. */ 381 bool completed; 382 /** Does this request write all zeros and thus doesn't 383 * have any data attached to it. Used for cache block zero 384 * style instructs (ARM DC ZVA; ALPHA WH64) 385 */ 386 bool isAllZeros; 387 }; 388 389 private: 390 /** The LSQUnit thread id. */ 391 ThreadID lsqID; 392 393 /** The store queue. */ 394 std::vector<SQEntry> storeQueue; 395 396 /** The load queue. */ 397 std::vector<DynInstPtr> loadQueue; 398 399 /** The number of LQ entries, plus a sentinel entry (circular queue). 400 * @todo: Consider having var that records the true number of LQ entries. 401 */ 402 unsigned LQEntries; 403 /** The number of SQ entries, plus a sentinel entry (circular queue). 404 * @todo: Consider having var that records the true number of SQ entries. 405 */ 406 unsigned SQEntries; 407 408 /** The number of places to shift addresses in the LSQ before checking 409 * for dependency violations 410 */ 411 unsigned depCheckShift; 412 413 /** Should loads be checked for dependency issues */ 414 bool checkLoads; 415 416 /** The number of load instructions in the LQ. */ 417 int loads; 418 /** The number of store instructions in the SQ. */ 419 int stores; 420 /** The number of store instructions in the SQ waiting to writeback. */ 421 int storesToWB; 422 423 /** The index of the head instruction in the LQ. */ 424 int loadHead; 425 /** The index of the tail instruction in the LQ. */ 426 int loadTail; 427 428 /** The index of the head instruction in the SQ. */ 429 int storeHead; 430 /** The index of the first instruction that may be ready to be 431 * written back, and has not yet been written back. 432 */ 433 int storeWBIdx; 434 /** The index of the tail instruction in the SQ. */ 435 int storeTail; 436 437 /// @todo Consider moving to a more advanced model with write vs read ports 438 /** The number of cache ports available each cycle (stores only). */ 439 int cacheStorePorts; 440 441 /** The number of used cache ports in this cycle by stores. */ 442 int usedStorePorts; 443 444 //list<InstSeqNum> mshrSeqNums; 445 446 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 447 Addr cacheBlockMask; 448 449 /** Wire to read information from the issue stage time queue. */ 450 typename TimeBuffer<IssueStruct>::wire fromIssue; 451 452 /** Whether or not the LSQ is stalled. */ 453 bool stalled; 454 /** The store that causes the stall due to partial store to load 455 * forwarding. 456 */ 457 InstSeqNum stallingStoreIsn; 458 /** The index of the above store. */ 459 int stallingLoadIdx; 460 461 /** The packet that needs to be retried. */ 462 PacketPtr retryPkt; 463 464 /** Whehter or not a store is blocked due to the memory system. */ 465 bool isStoreBlocked; 466 467 /** Whether or not a store is in flight. */ 468 bool storeInFlight; 469 470 /** The oldest load that caused a memory ordering violation. */ 471 DynInstPtr memDepViolator; 472 473 /** Whether or not there is a packet that couldn't be sent because of 474 * a lack of cache ports. */ 475 bool hasPendingPkt; 476 477 /** The packet that is pending free cache ports. */ 478 PacketPtr pendingPkt; 479 480 /** Flag for memory model. */ 481 bool needsTSO; 482 483 // Will also need how many read/write ports the Dcache has. Or keep track 484 // of that in stage that is one level up, and only call executeLoad/Store 485 // the appropriate number of times. 486 /** Total number of loads forwaded from LSQ stores. */ 487 Stats::Scalar lsqForwLoads; 488 489 /** Total number of loads ignored due to invalid addresses. */ 490 Stats::Scalar invAddrLoads; 491 492 /** Total number of squashed loads. */ 493 Stats::Scalar lsqSquashedLoads; 494 495 /** Total number of responses from the memory system that are 496 * ignored due to the instruction already being squashed. */ 497 Stats::Scalar lsqIgnoredResponses; 498 499 /** Tota number of memory ordering violations. */ 500 Stats::Scalar lsqMemOrderViolation; 501 502 /** Total number of squashed stores. */ 503 Stats::Scalar lsqSquashedStores; 504 505 /** Total number of software prefetches ignored due to invalid addresses. */ 506 Stats::Scalar invAddrSwpfs; 507 508 /** Ready loads blocked due to partial store-forwarding. */ 509 Stats::Scalar lsqBlockedLoads; 510 511 /** Number of loads that were rescheduled. */ 512 Stats::Scalar lsqRescheduledLoads; 513 514 /** Number of times the LSQ is blocked due to the cache. */ 515 Stats::Scalar lsqCacheBlocked; 516 517 public: 518 /** Executes the load at the given index. */ 519 Fault read(const RequestPtr &req, 520 RequestPtr &sreqLow, RequestPtr &sreqHigh, 521 int load_idx); 522 523 /** Executes the store at the given index. */ 524 Fault write(const RequestPtr &req, 525 const RequestPtr &sreqLow, const RequestPtr &sreqHigh, 526 uint8_t *data, int store_idx); 527 528 /** Returns the index of the head load instruction. */ 529 int getLoadHead() { return loadHead; } 530 /** Returns the sequence number of the head load instruction. */ 531 InstSeqNum getLoadHeadSeqNum() 532 { 533 if (loadQueue[loadHead]) { 534 return loadQueue[loadHead]->seqNum; 535 } else { 536 return 0; 537 } 538 539 } 540 541 /** Returns the index of the head store instruction. */ 542 int getStoreHead() { return storeHead; } 543 /** Returns the sequence number of the head store instruction. */ 544 InstSeqNum getStoreHeadSeqNum() 545 { 546 if (storeQueue[storeHead].inst) { 547 return storeQueue[storeHead].inst->seqNum; 548 } else { 549 return 0; 550 } 551 552 } 553 554 /** Returns whether or not the LSQ unit is stalled. */ 555 bool isStalled() { return stalled; } 556}; 557 558template <class Impl> 559Fault 560LSQUnit<Impl>::read(const RequestPtr &req, 561 RequestPtr &sreqLow, RequestPtr &sreqHigh, 562 int load_idx) 563{ 564 DynInstPtr load_inst = loadQueue[load_idx]; 565 566 assert(load_inst); 567 568 assert(!load_inst->isExecuted()); 569 570 // Make sure this isn't a strictly ordered load 571 // A bit of a hackish way to get strictly ordered accesses to work 572 // only if they're at the head of the LSQ and are ready to commit 573 // (at the head of the ROB too). 574 if (req->isStrictlyOrdered() && 575 (load_idx != loadHead || !load_inst->isAtCommit())) { 576 iewStage->rescheduleMemInst(load_inst); 577 ++lsqRescheduledLoads; 578 DPRINTF(LSQUnit, "Strictly ordered load [sn:%lli] PC %s\n", 579 load_inst->seqNum, load_inst->pcState()); 580 581 return std::make_shared<GenericISA::M5PanicFault>( 582 "Strictly ordered load [sn:%llx] PC %s\n", 583 load_inst->seqNum, load_inst->pcState()); 584 } 585 586 // Check the SQ for any previous stores that might lead to forwarding 587 int store_idx = load_inst->sqIdx; 588 589 int store_size = 0; 590 591 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 592 "storeHead: %i addr: %#x%s\n", 593 load_idx, store_idx, storeHead, req->getPaddr(), 594 sreqLow ? " split" : ""); 595 596 if (req->isLLSC()) { 597 assert(!sreqLow); 598 // Disable recording the result temporarily. Writing to misc 599 // regs normally updates the result, but this is not the 600 // desired behavior when handling store conditionals. 601 load_inst->recordResult(false); 602 TheISA::handleLockedRead(load_inst.get(), req); 603 load_inst->recordResult(true); 604 } 605 606 if (req->isMmappedIpr()) { 607 assert(!load_inst->memData); 608 load_inst->memData = new uint8_t[64]; 609 610 ThreadContext *thread = cpu->tcBase(lsqID); 611 Cycles delay(0); 612 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 613 614 data_pkt->dataStatic(load_inst->memData); 615 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 616 delay = TheISA::handleIprRead(thread, data_pkt); 617 } else { 618 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 619 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 620 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 621 622 fst_data_pkt->dataStatic(load_inst->memData); 623 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 624 625 delay = TheISA::handleIprRead(thread, fst_data_pkt); 626 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 627 if (delay2 > delay) 628 delay = delay2; 629 630 delete fst_data_pkt; 631 delete snd_data_pkt; 632 } 633 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 634 cpu->schedule(wb, cpu->clockEdge(delay)); 635 return NoFault; 636 } 637 638 while (store_idx != -1) { 639 // End once we've reached the top of the LSQ 640 if (store_idx == storeWBIdx) { 641 break; 642 } 643 644 // Move the index to one younger 645 if (--store_idx < 0) 646 store_idx += SQEntries; 647 648 assert(storeQueue[store_idx].inst); 649 650 store_size = storeQueue[store_idx].size; 651 652 if (!store_size || storeQueue[store_idx].inst->strictlyOrdered() || 653 (storeQueue[store_idx].req && 654 storeQueue[store_idx].req->isCacheMaintenance())) { 655 // Cache maintenance instructions go down via the store 656 // path but they carry no data and they shouldn't be 657 // considered for forwarding 658 continue; 659 } 660 661 assert(storeQueue[store_idx].inst->effAddrValid()); 662 663 // Check if the store data is within the lower and upper bounds of 664 // addresses that the request needs. 665 bool store_has_lower_limit = 666 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 667 bool store_has_upper_limit = 668 (req->getVaddr() + req->getSize()) <= 669 (storeQueue[store_idx].inst->effAddr + store_size); 670 bool lower_load_has_store_part = 671 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 672 store_size); 673 bool upper_load_has_store_part = 674 (req->getVaddr() + req->getSize()) > 675 storeQueue[store_idx].inst->effAddr; 676 677 // If the store's data has all of the data needed and the load isn't 678 // LLSC, we can forward. 679 if (store_has_lower_limit && store_has_upper_limit && !req->isLLSC()) { 680 // Get shift amount for offset into the store's data. 681 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 682 683 // Allocate memory if this is the first time a load is issued. 684 if (!load_inst->memData) { 685 load_inst->memData = new uint8_t[req->getSize()]; 686 } 687 if (storeQueue[store_idx].isAllZeros) 688 memset(load_inst->memData, 0, req->getSize()); 689 else 690 memcpy(load_inst->memData, 691 storeQueue[store_idx].data + shift_amt, req->getSize()); 692 693 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 694 "addr %#x\n", store_idx, req->getVaddr()); 695 696 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 697 data_pkt->dataStatic(load_inst->memData); 698 699 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 700 701 // We'll say this has a 1 cycle load-store forwarding latency 702 // for now. 703 // @todo: Need to make this a parameter. 704 cpu->schedule(wb, curTick()); 705 706 ++lsqForwLoads; 707 return NoFault; 708 } else if ( 709 (!req->isLLSC() && 710 ((store_has_lower_limit && lower_load_has_store_part) || 711 (store_has_upper_limit && upper_load_has_store_part) || 712 (lower_load_has_store_part && upper_load_has_store_part))) || 713 (req->isLLSC() && 714 ((store_has_lower_limit || upper_load_has_store_part) && 715 (store_has_upper_limit || lower_load_has_store_part)))) { 716 // This is the partial store-load forwarding case where a store 717 // has only part of the load's data and the load isn't LLSC or 718 // the load is LLSC and the store has all or part of the load's 719 // data 720 721 // If it's already been written back, then don't worry about 722 // stalling on it. 723 if (storeQueue[store_idx].completed) { 724 panic("Should not check one of these"); 725 continue; 726 } 727 728 // Must stall load and force it to retry, so long as it's the oldest 729 // load that needs to do so. 730 if (!stalled || 731 (stalled && 732 load_inst->seqNum < 733 loadQueue[stallingLoadIdx]->seqNum)) { 734 stalled = true; 735 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 736 stallingLoadIdx = load_idx; 737 } 738 739 // Tell IQ/mem dep unit that this instruction will need to be 740 // rescheduled eventually 741 iewStage->rescheduleMemInst(load_inst); 742 load_inst->clearIssued(); 743 ++lsqRescheduledLoads; 744 745 // Do not generate a writeback event as this instruction is not 746 // complete. 747 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 748 "Store idx %i to load addr %#x\n", 749 store_idx, req->getVaddr()); 750 751 return NoFault; 752 } 753 } 754 755 // If there's no forwarding case, then go access memory 756 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 757 load_inst->seqNum, load_inst->pcState()); 758 759 // Allocate memory if this is the first time a load is issued. 760 if (!load_inst->memData) { 761 load_inst->memData = new uint8_t[req->getSize()]; 762 } 763 764 // if we the cache is not blocked, do cache access 765 bool completedFirst = false; 766 PacketPtr data_pkt = Packet::createRead(req); 767 PacketPtr fst_data_pkt = NULL; 768 PacketPtr snd_data_pkt = NULL; 769 770 data_pkt->dataStatic(load_inst->memData); 771 772 LSQSenderState *state = new LSQSenderState; 773 state->isLoad = true; 774 state->idx = load_idx; 775 state->inst = load_inst; 776 data_pkt->senderState = state; 777 778 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 779 // Point the first packet at the main data packet. 780 fst_data_pkt = data_pkt; 781 } else { 782 // Create the split packets. 783 fst_data_pkt = Packet::createRead(sreqLow); 784 snd_data_pkt = Packet::createRead(sreqHigh); 785 786 fst_data_pkt->dataStatic(load_inst->memData); 787 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 788 789 fst_data_pkt->senderState = state; 790 snd_data_pkt->senderState = state; 791 792 state->isSplit = true; 793 state->outstanding = 2; 794 state->mainPkt = data_pkt; 795 } 796 797 // For now, load throughput is constrained by the number of 798 // load FUs only, and loads do not consume a cache port (only 799 // stores do). 800 // @todo We should account for cache port contention 801 // and arbitrate between loads and stores. 802 bool successful_load = true; 803 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 804 successful_load = false; 805 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 806 completedFirst = true; 807 808 // The first packet was sent without problems, so send this one 809 // too. If there is a problem with this packet then the whole 810 // load will be squashed, so indicate this to the state object. 811 // The first packet will return in completeDataAccess and be 812 // handled there. 813 // @todo We should also account for cache port contention 814 // here. 815 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 816 // The main packet will be deleted in completeDataAccess. 817 state->complete(); 818 // Signify to 1st half that the 2nd half was blocked via state 819 state->cacheBlocked = true; 820 successful_load = false; 821 } 822 } 823 824 // If the cache was blocked, or has become blocked due to the access, 825 // handle it. 826 if (!successful_load) { 827 if (!sreqLow) { 828 // Packet wasn't split, just delete main packet info 829 delete state; 830 delete data_pkt; 831 } 832 833 if (TheISA::HasUnalignedMemAcc && sreqLow) { 834 if (!completedFirst) { 835 // Split packet, but first failed. Delete all state. 836 delete state; 837 delete data_pkt; 838 delete fst_data_pkt; 839 delete snd_data_pkt; 840 sreqLow.reset(); 841 sreqHigh.reset(); 842 } else { 843 // Can't delete main packet data or state because first packet 844 // was sent to the memory system 845 delete data_pkt; 846 delete snd_data_pkt; 847 sreqHigh.reset(); 848 } 849 } 850 851 ++lsqCacheBlocked; 852 853 iewStage->blockMemInst(load_inst); 854 855 // No fault occurred, even though the interface is blocked. 856 return NoFault; 857 } 858 859 return NoFault; 860} 861 862template <class Impl> 863Fault 864LSQUnit<Impl>::write(const RequestPtr &req, 865 const RequestPtr &sreqLow, const RequestPtr &sreqHigh, 866 uint8_t *data, int store_idx) 867{ 868 assert(storeQueue[store_idx].inst); 869 870 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" 871 " | storeHead:%i [sn:%i]\n", 872 store_idx, req->getPaddr(), storeHead, 873 storeQueue[store_idx].inst->seqNum); 874 875 storeQueue[store_idx].req = req; 876 storeQueue[store_idx].sreqLow = sreqLow; 877 storeQueue[store_idx].sreqHigh = sreqHigh; 878 unsigned size = req->getSize(); 879 storeQueue[store_idx].size = size; 880 bool store_no_data = req->getFlags() & Request::STORE_NO_DATA; 881 storeQueue[store_idx].isAllZeros = store_no_data; 882 assert(size <= sizeof(storeQueue[store_idx].data) || store_no_data); 883 884 // Split stores can only occur in ISAs with unaligned memory accesses. If 885 // a store request has been split, sreqLow and sreqHigh will be non-null. 886 if (TheISA::HasUnalignedMemAcc && sreqLow) { 887 storeQueue[store_idx].isSplit = true; 888 } 889 890 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO) && \ 891 !req->isCacheMaintenance()) 892 memcpy(storeQueue[store_idx].data, data, size); 893 894 // This function only writes the data to the store queue, so no fault 895 // can happen here. 896 return NoFault; 897} 898 899#endif // __CPU_O3_LSQ_UNIT_HH__ 900