lsq_unit.hh revision 11780
1/* 2 * Copyright (c) 2012-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2013 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_LSQ_UNIT_HH__ 46#define __CPU_O3_LSQ_UNIT_HH__ 47 48#include <algorithm> 49#include <cstring> 50#include <map> 51#include <queue> 52 53#include "arch/generic/debugfaults.hh" 54#include "arch/isa_traits.hh" 55#include "arch/locked_mem.hh" 56#include "arch/mmapped_ipr.hh" 57#include "config/the_isa.hh" 58#include "cpu/inst_seq.hh" 59#include "cpu/timebuf.hh" 60#include "debug/LSQUnit.hh" 61#include "mem/packet.hh" 62#include "mem/port.hh" 63 64struct DerivO3CPUParams; 65 66/** 67 * Class that implements the actual LQ and SQ for each specific 68 * thread. Both are circular queues; load entries are freed upon 69 * committing, while store entries are freed once they writeback. The 70 * LSQUnit tracks if there are memory ordering violations, and also 71 * detects partial load to store forwarding cases (a store only has 72 * part of a load's data) that requires the load to wait until the 73 * store writes back. In the former case it holds onto the instruction 74 * until the dependence unit looks at it, and in the latter it stalls 75 * the LSQ until the store writes back. At that point the load is 76 * replayed. 77 */ 78template <class Impl> 79class LSQUnit { 80 public: 81 typedef typename Impl::O3CPU O3CPU; 82 typedef typename Impl::DynInstPtr DynInstPtr; 83 typedef typename Impl::CPUPol::IEW IEW; 84 typedef typename Impl::CPUPol::LSQ LSQ; 85 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 86 87 public: 88 /** Constructs an LSQ unit. init() must be called prior to use. */ 89 LSQUnit(); 90 91 /** Initializes the LSQ unit with the specified number of entries. */ 92 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 93 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 94 unsigned id); 95 96 /** Returns the name of the LSQ unit. */ 97 std::string name() const; 98 99 /** Registers statistics. */ 100 void regStats(); 101 102 /** Sets the pointer to the dcache port. */ 103 void setDcachePort(MasterPort *dcache_port); 104 105 /** Perform sanity checks after a drain. */ 106 void drainSanityCheck() const; 107 108 /** Takes over from another CPU's thread. */ 109 void takeOverFrom(); 110 111 /** Ticks the LSQ unit, which in this case only resets the number of 112 * used cache ports. 113 * @todo: Move the number of used ports up to the LSQ level so it can 114 * be shared by all LSQ units. 115 */ 116 void tick() { usedStorePorts = 0; } 117 118 /** Inserts an instruction. */ 119 void insert(DynInstPtr &inst); 120 /** Inserts a load instruction. */ 121 void insertLoad(DynInstPtr &load_inst); 122 /** Inserts a store instruction. */ 123 void insertStore(DynInstPtr &store_inst); 124 125 /** Check for ordering violations in the LSQ. For a store squash if we 126 * ever find a conflicting load. For a load, only squash if we 127 * an external snoop invalidate has been seen for that load address 128 * @param load_idx index to start checking at 129 * @param inst the instruction to check 130 */ 131 Fault checkViolations(int load_idx, DynInstPtr &inst); 132 133 /** Check if an incoming invalidate hits in the lsq on a load 134 * that might have issued out of order wrt another load beacuse 135 * of the intermediate invalidate. 136 */ 137 void checkSnoop(PacketPtr pkt); 138 139 /** Executes a load instruction. */ 140 Fault executeLoad(DynInstPtr &inst); 141 142 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 143 /** Executes a store instruction. */ 144 Fault executeStore(DynInstPtr &inst); 145 146 /** Commits the head load. */ 147 void commitLoad(); 148 /** Commits loads older than a specific sequence number. */ 149 void commitLoads(InstSeqNum &youngest_inst); 150 151 /** Commits stores older than a specific sequence number. */ 152 void commitStores(InstSeqNum &youngest_inst); 153 154 /** Writes back stores. */ 155 void writebackStores(); 156 157 /** Completes the data access that has been returned from the 158 * memory system. */ 159 void completeDataAccess(PacketPtr pkt); 160 161 /** Clears all the entries in the LQ. */ 162 void clearLQ(); 163 164 /** Clears all the entries in the SQ. */ 165 void clearSQ(); 166 167 /** Resizes the LQ to a given size. */ 168 void resizeLQ(unsigned size); 169 170 /** Resizes the SQ to a given size. */ 171 void resizeSQ(unsigned size); 172 173 /** Squashes all instructions younger than a specific sequence number. */ 174 void squash(const InstSeqNum &squashed_num); 175 176 /** Returns if there is a memory ordering violation. Value is reset upon 177 * call to getMemDepViolator(). 178 */ 179 bool violation() { return memDepViolator; } 180 181 /** Returns the memory ordering violator. */ 182 DynInstPtr getMemDepViolator(); 183 184 /** Returns the number of free LQ entries. */ 185 unsigned numFreeLoadEntries(); 186 187 /** Returns the number of free SQ entries. */ 188 unsigned numFreeStoreEntries(); 189 190 /** Returns the number of loads in the LQ. */ 191 int numLoads() { return loads; } 192 193 /** Returns the number of stores in the SQ. */ 194 int numStores() { return stores; } 195 196 /** Returns if either the LQ or SQ is full. */ 197 bool isFull() { return lqFull() || sqFull(); } 198 199 /** Returns if both the LQ and SQ are empty. */ 200 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 201 202 /** Returns if the LQ is full. */ 203 bool lqFull() { return loads >= (LQEntries - 1); } 204 205 /** Returns if the SQ is full. */ 206 bool sqFull() { return stores >= (SQEntries - 1); } 207 208 /** Returns if the LQ is empty. */ 209 bool lqEmpty() const { return loads == 0; } 210 211 /** Returns if the SQ is empty. */ 212 bool sqEmpty() const { return stores == 0; } 213 214 /** Returns the number of instructions in the LSQ. */ 215 unsigned getCount() { return loads + stores; } 216 217 /** Returns if there are any stores to writeback. */ 218 bool hasStoresToWB() { return storesToWB; } 219 220 /** Returns the number of stores to writeback. */ 221 int numStoresToWB() { return storesToWB; } 222 223 /** Returns if the LSQ unit will writeback on this cycle. */ 224 bool willWB() { return storeQueue[storeWBIdx].canWB && 225 !storeQueue[storeWBIdx].completed && 226 !isStoreBlocked; } 227 228 /** Handles doing the retry. */ 229 void recvRetry(); 230 231 private: 232 /** Reset the LSQ state */ 233 void resetState(); 234 235 /** Writes back the instruction, sending it to IEW. */ 236 void writeback(DynInstPtr &inst, PacketPtr pkt); 237 238 /** Writes back a store that couldn't be completed the previous cycle. */ 239 void writebackPendingStore(); 240 241 /** Handles completing the send of a store to memory. */ 242 void storePostSend(PacketPtr pkt); 243 244 /** Completes the store at the specified index. */ 245 void completeStore(int store_idx); 246 247 /** Attempts to send a store to the cache. */ 248 bool sendStore(PacketPtr data_pkt); 249 250 /** Increments the given store index (circular queue). */ 251 inline void incrStIdx(int &store_idx) const; 252 /** Decrements the given store index (circular queue). */ 253 inline void decrStIdx(int &store_idx) const; 254 /** Increments the given load index (circular queue). */ 255 inline void incrLdIdx(int &load_idx) const; 256 /** Decrements the given load index (circular queue). */ 257 inline void decrLdIdx(int &load_idx) const; 258 259 public: 260 /** Debugging function to dump instructions in the LSQ. */ 261 void dumpInsts() const; 262 263 private: 264 /** Pointer to the CPU. */ 265 O3CPU *cpu; 266 267 /** Pointer to the IEW stage. */ 268 IEW *iewStage; 269 270 /** Pointer to the LSQ. */ 271 LSQ *lsq; 272 273 /** Pointer to the dcache port. Used only for sending. */ 274 MasterPort *dcachePort; 275 276 /** Derived class to hold any sender state the LSQ needs. */ 277 class LSQSenderState : public Packet::SenderState 278 { 279 public: 280 /** Default constructor. */ 281 LSQSenderState() 282 : mainPkt(NULL), pendingPacket(NULL), idx(0), outstanding(1), 283 isLoad(false), noWB(false), isSplit(false), 284 pktToSend(false), cacheBlocked(false) 285 { } 286 287 /** Instruction who initiated the access to memory. */ 288 DynInstPtr inst; 289 /** The main packet from a split load, used during writeback. */ 290 PacketPtr mainPkt; 291 /** A second packet from a split store that needs sending. */ 292 PacketPtr pendingPacket; 293 /** The LQ/SQ index of the instruction. */ 294 uint8_t idx; 295 /** Number of outstanding packets to complete. */ 296 uint8_t outstanding; 297 /** Whether or not it is a load. */ 298 bool isLoad; 299 /** Whether or not the instruction will need to writeback. */ 300 bool noWB; 301 /** Whether or not this access is split in two. */ 302 bool isSplit; 303 /** Whether or not there is a packet that needs sending. */ 304 bool pktToSend; 305 /** Whether or not the second packet of this split load was blocked */ 306 bool cacheBlocked; 307 308 /** Completes a packet and returns whether the access is finished. */ 309 inline bool complete() { return --outstanding == 0; } 310 }; 311 312 /** Writeback event, specifically for when stores forward data to loads. */ 313 class WritebackEvent : public Event { 314 public: 315 /** Constructs a writeback event. */ 316 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 317 318 /** Processes the writeback event. */ 319 void process(); 320 321 /** Returns the description of this event. */ 322 const char *description() const; 323 324 private: 325 /** Instruction whose results are being written back. */ 326 DynInstPtr inst; 327 328 /** The packet that would have been sent to memory. */ 329 PacketPtr pkt; 330 331 /** The pointer to the LSQ unit that issued the store. */ 332 LSQUnit<Impl> *lsqPtr; 333 }; 334 335 public: 336 struct SQEntry { 337 /** Constructs an empty store queue entry. */ 338 SQEntry() 339 : inst(NULL), req(NULL), size(0), 340 canWB(0), committed(0), completed(0) 341 { 342 std::memset(data, 0, sizeof(data)); 343 } 344 345 ~SQEntry() 346 { 347 inst = NULL; 348 } 349 350 /** Constructs a store queue entry for a given instruction. */ 351 SQEntry(DynInstPtr &_inst) 352 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 353 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 354 { 355 std::memset(data, 0, sizeof(data)); 356 } 357 /** The store data. */ 358 char data[16]; 359 /** The store instruction. */ 360 DynInstPtr inst; 361 /** The request for the store. */ 362 RequestPtr req; 363 /** The split requests for the store. */ 364 RequestPtr sreqLow; 365 RequestPtr sreqHigh; 366 /** The size of the store. */ 367 uint8_t size; 368 /** Whether or not the store is split into two requests. */ 369 bool isSplit; 370 /** Whether or not the store can writeback. */ 371 bool canWB; 372 /** Whether or not the store is committed. */ 373 bool committed; 374 /** Whether or not the store is completed. */ 375 bool completed; 376 /** Does this request write all zeros and thus doesn't 377 * have any data attached to it. Used for cache block zero 378 * style instructs (ARM DC ZVA; ALPHA WH64) 379 */ 380 bool isAllZeros; 381 }; 382 383 private: 384 /** The LSQUnit thread id. */ 385 ThreadID lsqID; 386 387 /** The store queue. */ 388 std::vector<SQEntry> storeQueue; 389 390 /** The load queue. */ 391 std::vector<DynInstPtr> loadQueue; 392 393 /** The number of LQ entries, plus a sentinel entry (circular queue). 394 * @todo: Consider having var that records the true number of LQ entries. 395 */ 396 unsigned LQEntries; 397 /** The number of SQ entries, plus a sentinel entry (circular queue). 398 * @todo: Consider having var that records the true number of SQ entries. 399 */ 400 unsigned SQEntries; 401 402 /** The number of places to shift addresses in the LSQ before checking 403 * for dependency violations 404 */ 405 unsigned depCheckShift; 406 407 /** Should loads be checked for dependency issues */ 408 bool checkLoads; 409 410 /** The number of load instructions in the LQ. */ 411 int loads; 412 /** The number of store instructions in the SQ. */ 413 int stores; 414 /** The number of store instructions in the SQ waiting to writeback. */ 415 int storesToWB; 416 417 /** The index of the head instruction in the LQ. */ 418 int loadHead; 419 /** The index of the tail instruction in the LQ. */ 420 int loadTail; 421 422 /** The index of the head instruction in the SQ. */ 423 int storeHead; 424 /** The index of the first instruction that may be ready to be 425 * written back, and has not yet been written back. 426 */ 427 int storeWBIdx; 428 /** The index of the tail instruction in the SQ. */ 429 int storeTail; 430 431 /// @todo Consider moving to a more advanced model with write vs read ports 432 /** The number of cache ports available each cycle (stores only). */ 433 int cacheStorePorts; 434 435 /** The number of used cache ports in this cycle by stores. */ 436 int usedStorePorts; 437 438 //list<InstSeqNum> mshrSeqNums; 439 440 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 441 Addr cacheBlockMask; 442 443 /** Wire to read information from the issue stage time queue. */ 444 typename TimeBuffer<IssueStruct>::wire fromIssue; 445 446 /** Whether or not the LSQ is stalled. */ 447 bool stalled; 448 /** The store that causes the stall due to partial store to load 449 * forwarding. 450 */ 451 InstSeqNum stallingStoreIsn; 452 /** The index of the above store. */ 453 int stallingLoadIdx; 454 455 /** The packet that needs to be retried. */ 456 PacketPtr retryPkt; 457 458 /** Whehter or not a store is blocked due to the memory system. */ 459 bool isStoreBlocked; 460 461 /** Whether or not a store is in flight. */ 462 bool storeInFlight; 463 464 /** The oldest load that caused a memory ordering violation. */ 465 DynInstPtr memDepViolator; 466 467 /** Whether or not there is a packet that couldn't be sent because of 468 * a lack of cache ports. */ 469 bool hasPendingPkt; 470 471 /** The packet that is pending free cache ports. */ 472 PacketPtr pendingPkt; 473 474 /** Flag for memory model. */ 475 bool needsTSO; 476 477 // Will also need how many read/write ports the Dcache has. Or keep track 478 // of that in stage that is one level up, and only call executeLoad/Store 479 // the appropriate number of times. 480 /** Total number of loads forwaded from LSQ stores. */ 481 Stats::Scalar lsqForwLoads; 482 483 /** Total number of loads ignored due to invalid addresses. */ 484 Stats::Scalar invAddrLoads; 485 486 /** Total number of squashed loads. */ 487 Stats::Scalar lsqSquashedLoads; 488 489 /** Total number of responses from the memory system that are 490 * ignored due to the instruction already being squashed. */ 491 Stats::Scalar lsqIgnoredResponses; 492 493 /** Tota number of memory ordering violations. */ 494 Stats::Scalar lsqMemOrderViolation; 495 496 /** Total number of squashed stores. */ 497 Stats::Scalar lsqSquashedStores; 498 499 /** Total number of software prefetches ignored due to invalid addresses. */ 500 Stats::Scalar invAddrSwpfs; 501 502 /** Ready loads blocked due to partial store-forwarding. */ 503 Stats::Scalar lsqBlockedLoads; 504 505 /** Number of loads that were rescheduled. */ 506 Stats::Scalar lsqRescheduledLoads; 507 508 /** Number of times the LSQ is blocked due to the cache. */ 509 Stats::Scalar lsqCacheBlocked; 510 511 public: 512 /** Executes the load at the given index. */ 513 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 514 int load_idx); 515 516 /** Executes the store at the given index. */ 517 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 518 uint8_t *data, int store_idx); 519 520 /** Returns the index of the head load instruction. */ 521 int getLoadHead() { return loadHead; } 522 /** Returns the sequence number of the head load instruction. */ 523 InstSeqNum getLoadHeadSeqNum() 524 { 525 if (loadQueue[loadHead]) { 526 return loadQueue[loadHead]->seqNum; 527 } else { 528 return 0; 529 } 530 531 } 532 533 /** Returns the index of the head store instruction. */ 534 int getStoreHead() { return storeHead; } 535 /** Returns the sequence number of the head store instruction. */ 536 InstSeqNum getStoreHeadSeqNum() 537 { 538 if (storeQueue[storeHead].inst) { 539 return storeQueue[storeHead].inst->seqNum; 540 } else { 541 return 0; 542 } 543 544 } 545 546 /** Returns whether or not the LSQ unit is stalled. */ 547 bool isStalled() { return stalled; } 548}; 549 550template <class Impl> 551Fault 552LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 553 int load_idx) 554{ 555 DynInstPtr load_inst = loadQueue[load_idx]; 556 557 assert(load_inst); 558 559 assert(!load_inst->isExecuted()); 560 561 // Make sure this isn't a strictly ordered load 562 // A bit of a hackish way to get strictly ordered accesses to work 563 // only if they're at the head of the LSQ and are ready to commit 564 // (at the head of the ROB too). 565 if (req->isStrictlyOrdered() && 566 (load_idx != loadHead || !load_inst->isAtCommit())) { 567 iewStage->rescheduleMemInst(load_inst); 568 ++lsqRescheduledLoads; 569 DPRINTF(LSQUnit, "Strictly ordered load [sn:%lli] PC %s\n", 570 load_inst->seqNum, load_inst->pcState()); 571 572 // Must delete request now that it wasn't handed off to 573 // memory. This is quite ugly. @todo: Figure out the proper 574 // place to really handle request deletes. 575 delete req; 576 if (TheISA::HasUnalignedMemAcc && sreqLow) { 577 delete sreqLow; 578 delete sreqHigh; 579 } 580 return std::make_shared<GenericISA::M5PanicFault>( 581 "Strictly ordered load [sn:%llx] PC %s\n", 582 load_inst->seqNum, load_inst->pcState()); 583 } 584 585 // Check the SQ for any previous stores that might lead to forwarding 586 int store_idx = load_inst->sqIdx; 587 588 int store_size = 0; 589 590 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 591 "storeHead: %i addr: %#x%s\n", 592 load_idx, store_idx, storeHead, req->getPaddr(), 593 sreqLow ? " split" : ""); 594 595 if (req->isLLSC()) { 596 assert(!sreqLow); 597 // Disable recording the result temporarily. Writing to misc 598 // regs normally updates the result, but this is not the 599 // desired behavior when handling store conditionals. 600 load_inst->recordResult(false); 601 TheISA::handleLockedRead(load_inst.get(), req); 602 load_inst->recordResult(true); 603 } 604 605 if (req->isMmappedIpr()) { 606 assert(!load_inst->memData); 607 load_inst->memData = new uint8_t[64]; 608 609 ThreadContext *thread = cpu->tcBase(lsqID); 610 Cycles delay(0); 611 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 612 613 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 614 data_pkt->dataStatic(load_inst->memData); 615 delay = TheISA::handleIprRead(thread, data_pkt); 616 } else { 617 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 618 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 619 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 620 621 fst_data_pkt->dataStatic(load_inst->memData); 622 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 623 624 delay = TheISA::handleIprRead(thread, fst_data_pkt); 625 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 626 if (delay2 > delay) 627 delay = delay2; 628 629 delete sreqLow; 630 delete sreqHigh; 631 delete fst_data_pkt; 632 delete snd_data_pkt; 633 } 634 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 635 cpu->schedule(wb, cpu->clockEdge(delay)); 636 return NoFault; 637 } 638 639 while (store_idx != -1) { 640 // End once we've reached the top of the LSQ 641 if (store_idx == storeWBIdx) { 642 break; 643 } 644 645 // Move the index to one younger 646 if (--store_idx < 0) 647 store_idx += SQEntries; 648 649 assert(storeQueue[store_idx].inst); 650 651 store_size = storeQueue[store_idx].size; 652 653 if (store_size == 0) 654 continue; 655 else if (storeQueue[store_idx].inst->strictlyOrdered()) 656 continue; 657 658 assert(storeQueue[store_idx].inst->effAddrValid()); 659 660 // Check if the store data is within the lower and upper bounds of 661 // addresses that the request needs. 662 bool store_has_lower_limit = 663 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 664 bool store_has_upper_limit = 665 (req->getVaddr() + req->getSize()) <= 666 (storeQueue[store_idx].inst->effAddr + store_size); 667 bool lower_load_has_store_part = 668 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 669 store_size); 670 bool upper_load_has_store_part = 671 (req->getVaddr() + req->getSize()) > 672 storeQueue[store_idx].inst->effAddr; 673 674 // If the store's data has all of the data needed, we can forward. 675 if ((store_has_lower_limit && store_has_upper_limit)) { 676 // Get shift amount for offset into the store's data. 677 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 678 679 // Allocate memory if this is the first time a load is issued. 680 if (!load_inst->memData) { 681 load_inst->memData = new uint8_t[req->getSize()]; 682 } 683 if (storeQueue[store_idx].isAllZeros) 684 memset(load_inst->memData, 0, req->getSize()); 685 else 686 memcpy(load_inst->memData, 687 storeQueue[store_idx].data + shift_amt, req->getSize()); 688 689 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 690 "addr %#x\n", store_idx, req->getVaddr()); 691 692 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 693 data_pkt->dataStatic(load_inst->memData); 694 695 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 696 697 // We'll say this has a 1 cycle load-store forwarding latency 698 // for now. 699 // @todo: Need to make this a parameter. 700 cpu->schedule(wb, curTick()); 701 702 // Don't need to do anything special for split loads. 703 if (TheISA::HasUnalignedMemAcc && sreqLow) { 704 delete sreqLow; 705 delete sreqHigh; 706 } 707 708 ++lsqForwLoads; 709 return NoFault; 710 } else if ((store_has_lower_limit && lower_load_has_store_part) || 711 (store_has_upper_limit && upper_load_has_store_part) || 712 (lower_load_has_store_part && upper_load_has_store_part)) { 713 // This is the partial store-load forwarding case where a store 714 // has only part of the load's data. 715 716 // If it's already been written back, then don't worry about 717 // stalling on it. 718 if (storeQueue[store_idx].completed) { 719 panic("Should not check one of these"); 720 continue; 721 } 722 723 // Must stall load and force it to retry, so long as it's the oldest 724 // load that needs to do so. 725 if (!stalled || 726 (stalled && 727 load_inst->seqNum < 728 loadQueue[stallingLoadIdx]->seqNum)) { 729 stalled = true; 730 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 731 stallingLoadIdx = load_idx; 732 } 733 734 // Tell IQ/mem dep unit that this instruction will need to be 735 // rescheduled eventually 736 iewStage->rescheduleMemInst(load_inst); 737 load_inst->clearIssued(); 738 ++lsqRescheduledLoads; 739 740 // Do not generate a writeback event as this instruction is not 741 // complete. 742 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 743 "Store idx %i to load addr %#x\n", 744 store_idx, req->getVaddr()); 745 746 // Must delete request now that it wasn't handed off to 747 // memory. This is quite ugly. @todo: Figure out the 748 // proper place to really handle request deletes. 749 delete req; 750 if (TheISA::HasUnalignedMemAcc && sreqLow) { 751 delete sreqLow; 752 delete sreqHigh; 753 } 754 755 return NoFault; 756 } 757 } 758 759 // If there's no forwarding case, then go access memory 760 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 761 load_inst->seqNum, load_inst->pcState()); 762 763 // Allocate memory if this is the first time a load is issued. 764 if (!load_inst->memData) { 765 load_inst->memData = new uint8_t[req->getSize()]; 766 } 767 768 // if we the cache is not blocked, do cache access 769 bool completedFirst = false; 770 PacketPtr data_pkt = Packet::createRead(req); 771 PacketPtr fst_data_pkt = NULL; 772 PacketPtr snd_data_pkt = NULL; 773 774 data_pkt->dataStatic(load_inst->memData); 775 776 LSQSenderState *state = new LSQSenderState; 777 state->isLoad = true; 778 state->idx = load_idx; 779 state->inst = load_inst; 780 data_pkt->senderState = state; 781 782 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 783 // Point the first packet at the main data packet. 784 fst_data_pkt = data_pkt; 785 } else { 786 // Create the split packets. 787 fst_data_pkt = Packet::createRead(sreqLow); 788 snd_data_pkt = Packet::createRead(sreqHigh); 789 790 fst_data_pkt->dataStatic(load_inst->memData); 791 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 792 793 fst_data_pkt->senderState = state; 794 snd_data_pkt->senderState = state; 795 796 state->isSplit = true; 797 state->outstanding = 2; 798 state->mainPkt = data_pkt; 799 } 800 801 // For now, load throughput is constrained by the number of 802 // load FUs only, and loads do not consume a cache port (only 803 // stores do). 804 // @todo We should account for cache port contention 805 // and arbitrate between loads and stores. 806 bool successful_load = true; 807 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 808 successful_load = false; 809 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 810 completedFirst = true; 811 812 // The first packet was sent without problems, so send this one 813 // too. If there is a problem with this packet then the whole 814 // load will be squashed, so indicate this to the state object. 815 // The first packet will return in completeDataAccess and be 816 // handled there. 817 // @todo We should also account for cache port contention 818 // here. 819 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 820 // The main packet will be deleted in completeDataAccess. 821 state->complete(); 822 // Signify to 1st half that the 2nd half was blocked via state 823 state->cacheBlocked = true; 824 successful_load = false; 825 } 826 } 827 828 // If the cache was blocked, or has become blocked due to the access, 829 // handle it. 830 if (!successful_load) { 831 if (!sreqLow) { 832 // Packet wasn't split, just delete main packet info 833 delete state; 834 delete req; 835 delete data_pkt; 836 } 837 838 if (TheISA::HasUnalignedMemAcc && sreqLow) { 839 if (!completedFirst) { 840 // Split packet, but first failed. Delete all state. 841 delete state; 842 delete req; 843 delete data_pkt; 844 delete fst_data_pkt; 845 delete snd_data_pkt; 846 delete sreqLow; 847 delete sreqHigh; 848 sreqLow = NULL; 849 sreqHigh = NULL; 850 } else { 851 // Can't delete main packet data or state because first packet 852 // was sent to the memory system 853 delete data_pkt; 854 delete req; 855 delete sreqHigh; 856 delete snd_data_pkt; 857 sreqHigh = NULL; 858 } 859 } 860 861 ++lsqCacheBlocked; 862 863 iewStage->blockMemInst(load_inst); 864 865 // No fault occurred, even though the interface is blocked. 866 return NoFault; 867 } 868 869 return NoFault; 870} 871 872template <class Impl> 873Fault 874LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 875 uint8_t *data, int store_idx) 876{ 877 assert(storeQueue[store_idx].inst); 878 879 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" 880 " | storeHead:%i [sn:%i]\n", 881 store_idx, req->getPaddr(), storeHead, 882 storeQueue[store_idx].inst->seqNum); 883 884 storeQueue[store_idx].req = req; 885 storeQueue[store_idx].sreqLow = sreqLow; 886 storeQueue[store_idx].sreqHigh = sreqHigh; 887 unsigned size = req->getSize(); 888 storeQueue[store_idx].size = size; 889 storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO; 890 assert(size <= sizeof(storeQueue[store_idx].data) || 891 (req->getFlags() & Request::CACHE_BLOCK_ZERO)); 892 893 // Split stores can only occur in ISAs with unaligned memory accesses. If 894 // a store request has been split, sreqLow and sreqHigh will be non-null. 895 if (TheISA::HasUnalignedMemAcc && sreqLow) { 896 storeQueue[store_idx].isSplit = true; 897 } 898 899 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO)) 900 memcpy(storeQueue[store_idx].data, data, size); 901 902 // This function only writes the data to the store queue, so no fault 903 // can happen here. 904 return NoFault; 905} 906 907#endif // __CPU_O3_LSQ_UNIT_HH__ 908