lsq_unit.hh revision 10474
1/* 2 * Copyright (c) 2012-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2013 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_LSQ_UNIT_HH__ 46#define __CPU_O3_LSQ_UNIT_HH__ 47 48#include <algorithm> 49#include <cstring> 50#include <map> 51#include <queue> 52 53#include "arch/generic/debugfaults.hh" 54#include "arch/isa_traits.hh" 55#include "arch/locked_mem.hh" 56#include "arch/mmapped_ipr.hh" 57#include "base/hashmap.hh" 58#include "config/the_isa.hh" 59#include "cpu/inst_seq.hh" 60#include "cpu/timebuf.hh" 61#include "debug/LSQUnit.hh" 62#include "mem/packet.hh" 63#include "mem/port.hh" 64 65struct DerivO3CPUParams; 66 67/** 68 * Class that implements the actual LQ and SQ for each specific 69 * thread. Both are circular queues; load entries are freed upon 70 * committing, while store entries are freed once they writeback. The 71 * LSQUnit tracks if there are memory ordering violations, and also 72 * detects partial load to store forwarding cases (a store only has 73 * part of a load's data) that requires the load to wait until the 74 * store writes back. In the former case it holds onto the instruction 75 * until the dependence unit looks at it, and in the latter it stalls 76 * the LSQ until the store writes back. At that point the load is 77 * replayed. 78 */ 79template <class Impl> 80class LSQUnit { 81 public: 82 typedef typename Impl::O3CPU O3CPU; 83 typedef typename Impl::DynInstPtr DynInstPtr; 84 typedef typename Impl::CPUPol::IEW IEW; 85 typedef typename Impl::CPUPol::LSQ LSQ; 86 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 87 88 public: 89 /** Constructs an LSQ unit. init() must be called prior to use. */ 90 LSQUnit(); 91 92 /** Initializes the LSQ unit with the specified number of entries. */ 93 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 94 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 95 unsigned id); 96 97 /** Returns the name of the LSQ unit. */ 98 std::string name() const; 99 100 /** Registers statistics. */ 101 void regStats(); 102 103 /** Sets the pointer to the dcache port. */ 104 void setDcachePort(MasterPort *dcache_port); 105 106 /** Perform sanity checks after a drain. */ 107 void drainSanityCheck() const; 108 109 /** Takes over from another CPU's thread. */ 110 void takeOverFrom(); 111 112 /** Ticks the LSQ unit, which in this case only resets the number of 113 * used cache ports. 114 * @todo: Move the number of used ports up to the LSQ level so it can 115 * be shared by all LSQ units. 116 */ 117 void tick() { usedPorts = 0; } 118 119 /** Inserts an instruction. */ 120 void insert(DynInstPtr &inst); 121 /** Inserts a load instruction. */ 122 void insertLoad(DynInstPtr &load_inst); 123 /** Inserts a store instruction. */ 124 void insertStore(DynInstPtr &store_inst); 125 126 /** Check for ordering violations in the LSQ. For a store squash if we 127 * ever find a conflicting load. For a load, only squash if we 128 * an external snoop invalidate has been seen for that load address 129 * @param load_idx index to start checking at 130 * @param inst the instruction to check 131 */ 132 Fault checkViolations(int load_idx, DynInstPtr &inst); 133 134 /** Check if an incoming invalidate hits in the lsq on a load 135 * that might have issued out of order wrt another load beacuse 136 * of the intermediate invalidate. 137 */ 138 void checkSnoop(PacketPtr pkt); 139 140 /** Executes a load instruction. */ 141 Fault executeLoad(DynInstPtr &inst); 142 143 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 144 /** Executes a store instruction. */ 145 Fault executeStore(DynInstPtr &inst); 146 147 /** Commits the head load. */ 148 void commitLoad(); 149 /** Commits loads older than a specific sequence number. */ 150 void commitLoads(InstSeqNum &youngest_inst); 151 152 /** Commits stores older than a specific sequence number. */ 153 void commitStores(InstSeqNum &youngest_inst); 154 155 /** Writes back stores. */ 156 void writebackStores(); 157 158 /** Completes the data access that has been returned from the 159 * memory system. */ 160 void completeDataAccess(PacketPtr pkt); 161 162 /** Clears all the entries in the LQ. */ 163 void clearLQ(); 164 165 /** Clears all the entries in the SQ. */ 166 void clearSQ(); 167 168 /** Resizes the LQ to a given size. */ 169 void resizeLQ(unsigned size); 170 171 /** Resizes the SQ to a given size. */ 172 void resizeSQ(unsigned size); 173 174 /** Squashes all instructions younger than a specific sequence number. */ 175 void squash(const InstSeqNum &squashed_num); 176 177 /** Returns if there is a memory ordering violation. Value is reset upon 178 * call to getMemDepViolator(). 179 */ 180 bool violation() { return memDepViolator; } 181 182 /** Returns the memory ordering violator. */ 183 DynInstPtr getMemDepViolator(); 184 185 /** Returns the number of free LQ entries. */ 186 unsigned numFreeLoadEntries(); 187 188 /** Returns the number of free SQ entries. */ 189 unsigned numFreeStoreEntries(); 190 191 /** Returns the number of loads in the LQ. */ 192 int numLoads() { return loads; } 193 194 /** Returns the number of stores in the SQ. */ 195 int numStores() { return stores; } 196 197 /** Returns if either the LQ or SQ is full. */ 198 bool isFull() { return lqFull() || sqFull(); } 199 200 /** Returns if both the LQ and SQ are empty. */ 201 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 202 203 /** Returns if the LQ is full. */ 204 bool lqFull() { return loads >= (LQEntries - 1); } 205 206 /** Returns if the SQ is full. */ 207 bool sqFull() { return stores >= (SQEntries - 1); } 208 209 /** Returns if the LQ is empty. */ 210 bool lqEmpty() const { return loads == 0; } 211 212 /** Returns if the SQ is empty. */ 213 bool sqEmpty() const { return stores == 0; } 214 215 /** Returns the number of instructions in the LSQ. */ 216 unsigned getCount() { return loads + stores; } 217 218 /** Returns if there are any stores to writeback. */ 219 bool hasStoresToWB() { return storesToWB; } 220 221 /** Returns the number of stores to writeback. */ 222 int numStoresToWB() { return storesToWB; } 223 224 /** Returns if the LSQ unit will writeback on this cycle. */ 225 bool willWB() { return storeQueue[storeWBIdx].canWB && 226 !storeQueue[storeWBIdx].completed && 227 !isStoreBlocked; } 228 229 /** Handles doing the retry. */ 230 void recvRetry(); 231 232 private: 233 /** Reset the LSQ state */ 234 void resetState(); 235 236 /** Writes back the instruction, sending it to IEW. */ 237 void writeback(DynInstPtr &inst, PacketPtr pkt); 238 239 /** Writes back a store that couldn't be completed the previous cycle. */ 240 void writebackPendingStore(); 241 242 /** Handles completing the send of a store to memory. */ 243 void storePostSend(PacketPtr pkt); 244 245 /** Completes the store at the specified index. */ 246 void completeStore(int store_idx); 247 248 /** Attempts to send a store to the cache. */ 249 bool sendStore(PacketPtr data_pkt); 250 251 /** Increments the given store index (circular queue). */ 252 inline void incrStIdx(int &store_idx) const; 253 /** Decrements the given store index (circular queue). */ 254 inline void decrStIdx(int &store_idx) const; 255 /** Increments the given load index (circular queue). */ 256 inline void incrLdIdx(int &load_idx) const; 257 /** Decrements the given load index (circular queue). */ 258 inline void decrLdIdx(int &load_idx) const; 259 260 public: 261 /** Debugging function to dump instructions in the LSQ. */ 262 void dumpInsts() const; 263 264 private: 265 /** Pointer to the CPU. */ 266 O3CPU *cpu; 267 268 /** Pointer to the IEW stage. */ 269 IEW *iewStage; 270 271 /** Pointer to the LSQ. */ 272 LSQ *lsq; 273 274 /** Pointer to the dcache port. Used only for sending. */ 275 MasterPort *dcachePort; 276 277 /** Derived class to hold any sender state the LSQ needs. */ 278 class LSQSenderState : public Packet::SenderState 279 { 280 public: 281 /** Default constructor. */ 282 LSQSenderState() 283 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 284 noWB(false), isSplit(false), pktToSend(false), cacheBlocked(false) 285 { } 286 287 /** Instruction who initiated the access to memory. */ 288 DynInstPtr inst; 289 /** The main packet from a split load, used during writeback. */ 290 PacketPtr mainPkt; 291 /** A second packet from a split store that needs sending. */ 292 PacketPtr pendingPacket; 293 /** The LQ/SQ index of the instruction. */ 294 uint8_t idx; 295 /** Number of outstanding packets to complete. */ 296 uint8_t outstanding; 297 /** Whether or not it is a load. */ 298 bool isLoad; 299 /** Whether or not the instruction will need to writeback. */ 300 bool noWB; 301 /** Whether or not this access is split in two. */ 302 bool isSplit; 303 /** Whether or not there is a packet that needs sending. */ 304 bool pktToSend; 305 /** Whether or not the second packet of this split load was blocked */ 306 bool cacheBlocked; 307 308 /** Completes a packet and returns whether the access is finished. */ 309 inline bool complete() { return --outstanding == 0; } 310 }; 311 312 /** Writeback event, specifically for when stores forward data to loads. */ 313 class WritebackEvent : public Event { 314 public: 315 /** Constructs a writeback event. */ 316 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 317 318 /** Processes the writeback event. */ 319 void process(); 320 321 /** Returns the description of this event. */ 322 const char *description() const; 323 324 private: 325 /** Instruction whose results are being written back. */ 326 DynInstPtr inst; 327 328 /** The packet that would have been sent to memory. */ 329 PacketPtr pkt; 330 331 /** The pointer to the LSQ unit that issued the store. */ 332 LSQUnit<Impl> *lsqPtr; 333 }; 334 335 public: 336 struct SQEntry { 337 /** Constructs an empty store queue entry. */ 338 SQEntry() 339 : inst(NULL), req(NULL), size(0), 340 canWB(0), committed(0), completed(0) 341 { 342 std::memset(data, 0, sizeof(data)); 343 } 344 345 ~SQEntry() 346 { 347 inst = NULL; 348 } 349 350 /** Constructs a store queue entry for a given instruction. */ 351 SQEntry(DynInstPtr &_inst) 352 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 353 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 354 { 355 std::memset(data, 0, sizeof(data)); 356 } 357 /** The store data. */ 358 char data[16]; 359 /** The store instruction. */ 360 DynInstPtr inst; 361 /** The request for the store. */ 362 RequestPtr req; 363 /** The split requests for the store. */ 364 RequestPtr sreqLow; 365 RequestPtr sreqHigh; 366 /** The size of the store. */ 367 uint8_t size; 368 /** Whether or not the store is split into two requests. */ 369 bool isSplit; 370 /** Whether or not the store can writeback. */ 371 bool canWB; 372 /** Whether or not the store is committed. */ 373 bool committed; 374 /** Whether or not the store is completed. */ 375 bool completed; 376 /** Does this request write all zeros and thus doesn't 377 * have any data attached to it. Used for cache block zero 378 * style instructs (ARM DC ZVA; ALPHA WH64) 379 */ 380 bool isAllZeros; 381 }; 382 383 private: 384 /** The LSQUnit thread id. */ 385 ThreadID lsqID; 386 387 /** The store queue. */ 388 std::vector<SQEntry> storeQueue; 389 390 /** The load queue. */ 391 std::vector<DynInstPtr> loadQueue; 392 393 /** The number of LQ entries, plus a sentinel entry (circular queue). 394 * @todo: Consider having var that records the true number of LQ entries. 395 */ 396 unsigned LQEntries; 397 /** The number of SQ entries, plus a sentinel entry (circular queue). 398 * @todo: Consider having var that records the true number of SQ entries. 399 */ 400 unsigned SQEntries; 401 402 /** The number of places to shift addresses in the LSQ before checking 403 * for dependency violations 404 */ 405 unsigned depCheckShift; 406 407 /** Should loads be checked for dependency issues */ 408 bool checkLoads; 409 410 /** The number of load instructions in the LQ. */ 411 int loads; 412 /** The number of store instructions in the SQ. */ 413 int stores; 414 /** The number of store instructions in the SQ waiting to writeback. */ 415 int storesToWB; 416 417 /** The index of the head instruction in the LQ. */ 418 int loadHead; 419 /** The index of the tail instruction in the LQ. */ 420 int loadTail; 421 422 /** The index of the head instruction in the SQ. */ 423 int storeHead; 424 /** The index of the first instruction that may be ready to be 425 * written back, and has not yet been written back. 426 */ 427 int storeWBIdx; 428 /** The index of the tail instruction in the SQ. */ 429 int storeTail; 430 431 /// @todo Consider moving to a more advanced model with write vs read ports 432 /** The number of cache ports available each cycle. */ 433 int cachePorts; 434 435 /** The number of used cache ports in this cycle. */ 436 int usedPorts; 437 438 //list<InstSeqNum> mshrSeqNums; 439 440 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 441 Addr cacheBlockMask; 442 443 /** Wire to read information from the issue stage time queue. */ 444 typename TimeBuffer<IssueStruct>::wire fromIssue; 445 446 /** Whether or not the LSQ is stalled. */ 447 bool stalled; 448 /** The store that causes the stall due to partial store to load 449 * forwarding. 450 */ 451 InstSeqNum stallingStoreIsn; 452 /** The index of the above store. */ 453 int stallingLoadIdx; 454 455 /** The packet that needs to be retried. */ 456 PacketPtr retryPkt; 457 458 /** Whehter or not a store is blocked due to the memory system. */ 459 bool isStoreBlocked; 460 461 /** Whether or not a store is in flight. */ 462 bool storeInFlight; 463 464 /** The oldest load that caused a memory ordering violation. */ 465 DynInstPtr memDepViolator; 466 467 /** Whether or not there is a packet that couldn't be sent because of 468 * a lack of cache ports. */ 469 bool hasPendingPkt; 470 471 /** The packet that is pending free cache ports. */ 472 PacketPtr pendingPkt; 473 474 /** Flag for memory model. */ 475 bool needsTSO; 476 477 // Will also need how many read/write ports the Dcache has. Or keep track 478 // of that in stage that is one level up, and only call executeLoad/Store 479 // the appropriate number of times. 480 /** Total number of loads forwaded from LSQ stores. */ 481 Stats::Scalar lsqForwLoads; 482 483 /** Total number of loads ignored due to invalid addresses. */ 484 Stats::Scalar invAddrLoads; 485 486 /** Total number of squashed loads. */ 487 Stats::Scalar lsqSquashedLoads; 488 489 /** Total number of responses from the memory system that are 490 * ignored due to the instruction already being squashed. */ 491 Stats::Scalar lsqIgnoredResponses; 492 493 /** Tota number of memory ordering violations. */ 494 Stats::Scalar lsqMemOrderViolation; 495 496 /** Total number of squashed stores. */ 497 Stats::Scalar lsqSquashedStores; 498 499 /** Total number of software prefetches ignored due to invalid addresses. */ 500 Stats::Scalar invAddrSwpfs; 501 502 /** Ready loads blocked due to partial store-forwarding. */ 503 Stats::Scalar lsqBlockedLoads; 504 505 /** Number of loads that were rescheduled. */ 506 Stats::Scalar lsqRescheduledLoads; 507 508 /** Number of times the LSQ is blocked due to the cache. */ 509 Stats::Scalar lsqCacheBlocked; 510 511 public: 512 /** Executes the load at the given index. */ 513 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 514 uint8_t *data, int load_idx); 515 516 /** Executes the store at the given index. */ 517 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 518 uint8_t *data, int store_idx); 519 520 /** Returns the index of the head load instruction. */ 521 int getLoadHead() { return loadHead; } 522 /** Returns the sequence number of the head load instruction. */ 523 InstSeqNum getLoadHeadSeqNum() 524 { 525 if (loadQueue[loadHead]) { 526 return loadQueue[loadHead]->seqNum; 527 } else { 528 return 0; 529 } 530 531 } 532 533 /** Returns the index of the head store instruction. */ 534 int getStoreHead() { return storeHead; } 535 /** Returns the sequence number of the head store instruction. */ 536 InstSeqNum getStoreHeadSeqNum() 537 { 538 if (storeQueue[storeHead].inst) { 539 return storeQueue[storeHead].inst->seqNum; 540 } else { 541 return 0; 542 } 543 544 } 545 546 /** Returns whether or not the LSQ unit is stalled. */ 547 bool isStalled() { return stalled; } 548}; 549 550template <class Impl> 551Fault 552LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 553 uint8_t *data, int load_idx) 554{ 555 DynInstPtr load_inst = loadQueue[load_idx]; 556 557 assert(load_inst); 558 559 assert(!load_inst->isExecuted()); 560 561 // Make sure this isn't an uncacheable access 562 // A bit of a hackish way to get uncached accesses to work only if they're 563 // at the head of the LSQ and are ready to commit (at the head of the ROB 564 // too). 565 if (req->isUncacheable() && 566 (load_idx != loadHead || !load_inst->isAtCommit())) { 567 iewStage->rescheduleMemInst(load_inst); 568 ++lsqRescheduledLoads; 569 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 570 load_inst->seqNum, load_inst->pcState()); 571 572 // Must delete request now that it wasn't handed off to 573 // memory. This is quite ugly. @todo: Figure out the proper 574 // place to really handle request deletes. 575 delete req; 576 if (TheISA::HasUnalignedMemAcc && sreqLow) { 577 delete sreqLow; 578 delete sreqHigh; 579 } 580 return std::make_shared<GenericISA::M5PanicFault>( 581 "Uncachable load [sn:%llx] PC %s\n", 582 load_inst->seqNum, load_inst->pcState()); 583 } 584 585 // Check the SQ for any previous stores that might lead to forwarding 586 int store_idx = load_inst->sqIdx; 587 588 int store_size = 0; 589 590 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 591 "storeHead: %i addr: %#x%s\n", 592 load_idx, store_idx, storeHead, req->getPaddr(), 593 sreqLow ? " split" : ""); 594 595 if (req->isLLSC()) { 596 assert(!sreqLow); 597 // Disable recording the result temporarily. Writing to misc 598 // regs normally updates the result, but this is not the 599 // desired behavior when handling store conditionals. 600 load_inst->recordResult(false); 601 TheISA::handleLockedRead(load_inst.get(), req); 602 load_inst->recordResult(true); 603 } 604 605 if (req->isMmappedIpr()) { 606 assert(!load_inst->memData); 607 load_inst->memData = new uint8_t[64]; 608 609 ThreadContext *thread = cpu->tcBase(lsqID); 610 Cycles delay(0); 611 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 612 613 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 614 data_pkt->dataStatic(load_inst->memData); 615 delay = TheISA::handleIprRead(thread, data_pkt); 616 } else { 617 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 618 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 619 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 620 621 fst_data_pkt->dataStatic(load_inst->memData); 622 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 623 624 delay = TheISA::handleIprRead(thread, fst_data_pkt); 625 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 626 if (delay2 > delay) 627 delay = delay2; 628 629 delete sreqLow; 630 delete sreqHigh; 631 delete fst_data_pkt; 632 delete snd_data_pkt; 633 } 634 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 635 cpu->schedule(wb, cpu->clockEdge(delay)); 636 return NoFault; 637 } 638 639 while (store_idx != -1) { 640 // End once we've reached the top of the LSQ 641 if (store_idx == storeWBIdx) { 642 break; 643 } 644 645 // Move the index to one younger 646 if (--store_idx < 0) 647 store_idx += SQEntries; 648 649 assert(storeQueue[store_idx].inst); 650 651 store_size = storeQueue[store_idx].size; 652 653 if (store_size == 0) 654 continue; 655 else if (storeQueue[store_idx].inst->uncacheable()) 656 continue; 657 658 assert(storeQueue[store_idx].inst->effAddrValid()); 659 660 // Check if the store data is within the lower and upper bounds of 661 // addresses that the request needs. 662 bool store_has_lower_limit = 663 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 664 bool store_has_upper_limit = 665 (req->getVaddr() + req->getSize()) <= 666 (storeQueue[store_idx].inst->effAddr + store_size); 667 bool lower_load_has_store_part = 668 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 669 store_size); 670 bool upper_load_has_store_part = 671 (req->getVaddr() + req->getSize()) > 672 storeQueue[store_idx].inst->effAddr; 673 674 // If the store's data has all of the data needed, we can forward. 675 if ((store_has_lower_limit && store_has_upper_limit)) { 676 // Get shift amount for offset into the store's data. 677 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 678 679 if (storeQueue[store_idx].isAllZeros) 680 memset(data, 0, req->getSize()); 681 else 682 memcpy(data, storeQueue[store_idx].data + shift_amt, 683 req->getSize()); 684 685 // Allocate memory if this is the first time a load is issued. 686 if (!load_inst->memData) { 687 load_inst->memData = new uint8_t[req->getSize()]; 688 } 689 if (storeQueue[store_idx].isAllZeros) 690 memset(load_inst->memData, 0, req->getSize()); 691 else 692 memcpy(load_inst->memData, 693 storeQueue[store_idx].data + shift_amt, req->getSize()); 694 695 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 696 "addr %#x\n", store_idx, req->getVaddr()); 697 698 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 699 data_pkt->dataStatic(load_inst->memData); 700 701 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 702 703 // We'll say this has a 1 cycle load-store forwarding latency 704 // for now. 705 // @todo: Need to make this a parameter. 706 cpu->schedule(wb, curTick()); 707 708 // Don't need to do anything special for split loads. 709 if (TheISA::HasUnalignedMemAcc && sreqLow) { 710 delete sreqLow; 711 delete sreqHigh; 712 } 713 714 ++lsqForwLoads; 715 return NoFault; 716 } else if ((store_has_lower_limit && lower_load_has_store_part) || 717 (store_has_upper_limit && upper_load_has_store_part) || 718 (lower_load_has_store_part && upper_load_has_store_part)) { 719 // This is the partial store-load forwarding case where a store 720 // has only part of the load's data. 721 722 // If it's already been written back, then don't worry about 723 // stalling on it. 724 if (storeQueue[store_idx].completed) { 725 panic("Should not check one of these"); 726 continue; 727 } 728 729 // Must stall load and force it to retry, so long as it's the oldest 730 // load that needs to do so. 731 if (!stalled || 732 (stalled && 733 load_inst->seqNum < 734 loadQueue[stallingLoadIdx]->seqNum)) { 735 stalled = true; 736 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 737 stallingLoadIdx = load_idx; 738 } 739 740 // Tell IQ/mem dep unit that this instruction will need to be 741 // rescheduled eventually 742 iewStage->rescheduleMemInst(load_inst); 743 load_inst->clearIssued(); 744 ++lsqRescheduledLoads; 745 746 // Do not generate a writeback event as this instruction is not 747 // complete. 748 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 749 "Store idx %i to load addr %#x\n", 750 store_idx, req->getVaddr()); 751 752 // Must delete request now that it wasn't handed off to 753 // memory. This is quite ugly. @todo: Figure out the 754 // proper place to really handle request deletes. 755 delete req; 756 if (TheISA::HasUnalignedMemAcc && sreqLow) { 757 delete sreqLow; 758 delete sreqHigh; 759 } 760 761 return NoFault; 762 } 763 } 764 765 // If there's no forwarding case, then go access memory 766 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 767 load_inst->seqNum, load_inst->pcState()); 768 769 // Allocate memory if this is the first time a load is issued. 770 if (!load_inst->memData) { 771 load_inst->memData = new uint8_t[req->getSize()]; 772 } 773 774 ++usedPorts; 775 776 // if we the cache is not blocked, do cache access 777 bool completedFirst = false; 778 PacketPtr data_pkt = Packet::createRead(req); 779 PacketPtr fst_data_pkt = NULL; 780 PacketPtr snd_data_pkt = NULL; 781 782 data_pkt->dataStatic(load_inst->memData); 783 784 LSQSenderState *state = new LSQSenderState; 785 state->isLoad = true; 786 state->idx = load_idx; 787 state->inst = load_inst; 788 data_pkt->senderState = state; 789 790 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 791 // Point the first packet at the main data packet. 792 fst_data_pkt = data_pkt; 793 } else { 794 // Create the split packets. 795 fst_data_pkt = Packet::createRead(sreqLow); 796 snd_data_pkt = Packet::createRead(sreqHigh); 797 798 fst_data_pkt->dataStatic(load_inst->memData); 799 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 800 801 fst_data_pkt->senderState = state; 802 snd_data_pkt->senderState = state; 803 804 state->isSplit = true; 805 state->outstanding = 2; 806 state->mainPkt = data_pkt; 807 } 808 809 bool successful_load = true; 810 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 811 successful_load = false; 812 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 813 completedFirst = true; 814 815 // The first packet was sent without problems, so send this one 816 // too. If there is a problem with this packet then the whole 817 // load will be squashed, so indicate this to the state object. 818 // The first packet will return in completeDataAccess and be 819 // handled there. 820 ++usedPorts; 821 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 822 // The main packet will be deleted in completeDataAccess. 823 state->complete(); 824 // Signify to 1st half that the 2nd half was blocked via state 825 state->cacheBlocked = true; 826 successful_load = false; 827 } 828 } 829 830 // If the cache was blocked, or has become blocked due to the access, 831 // handle it. 832 if (!successful_load) { 833 if (!sreqLow) { 834 // Packet wasn't split, just delete main packet info 835 delete state; 836 delete req; 837 delete data_pkt; 838 } 839 840 if (TheISA::HasUnalignedMemAcc && sreqLow) { 841 if (!completedFirst) { 842 // Split packet, but first failed. Delete all state. 843 delete state; 844 delete req; 845 delete data_pkt; 846 delete fst_data_pkt; 847 delete snd_data_pkt; 848 delete sreqLow; 849 delete sreqHigh; 850 sreqLow = NULL; 851 sreqHigh = NULL; 852 } else { 853 // Can't delete main packet data or state because first packet 854 // was sent to the memory system 855 delete data_pkt; 856 delete req; 857 delete sreqHigh; 858 delete snd_data_pkt; 859 sreqHigh = NULL; 860 } 861 } 862 863 ++lsqCacheBlocked; 864 865 iewStage->blockMemInst(load_inst); 866 867 // No fault occurred, even though the interface is blocked. 868 return NoFault; 869 } 870 871 return NoFault; 872} 873 874template <class Impl> 875Fault 876LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 877 uint8_t *data, int store_idx) 878{ 879 assert(storeQueue[store_idx].inst); 880 881 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" 882 " | storeHead:%i [sn:%i]\n", 883 store_idx, req->getPaddr(), storeHead, 884 storeQueue[store_idx].inst->seqNum); 885 886 storeQueue[store_idx].req = req; 887 storeQueue[store_idx].sreqLow = sreqLow; 888 storeQueue[store_idx].sreqHigh = sreqHigh; 889 unsigned size = req->getSize(); 890 storeQueue[store_idx].size = size; 891 storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO; 892 assert(size <= sizeof(storeQueue[store_idx].data) || 893 (req->getFlags() & Request::CACHE_BLOCK_ZERO)); 894 895 // Split stores can only occur in ISAs with unaligned memory accesses. If 896 // a store request has been split, sreqLow and sreqHigh will be non-null. 897 if (TheISA::HasUnalignedMemAcc && sreqLow) { 898 storeQueue[store_idx].isSplit = true; 899 } 900 901 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO)) 902 memcpy(storeQueue[store_idx].data, data, size); 903 904 // This function only writes the data to the store queue, so no fault 905 // can happen here. 906 return NoFault; 907} 908 909#endif // __CPU_O3_LSQ_UNIT_HH__ 910