lsq_unit.hh revision 10342
1/* 2 * Copyright (c) 2012-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2013 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_LSQ_UNIT_HH__ 46#define __CPU_O3_LSQ_UNIT_HH__ 47 48#include <algorithm> 49#include <cstring> 50#include <map> 51#include <queue> 52 53#include "arch/generic/debugfaults.hh" 54#include "arch/isa_traits.hh" 55#include "arch/locked_mem.hh" 56#include "arch/mmapped_ipr.hh" 57#include "base/hashmap.hh" 58#include "config/the_isa.hh" 59#include "cpu/inst_seq.hh" 60#include "cpu/timebuf.hh" 61#include "debug/LSQUnit.hh" 62#include "mem/packet.hh" 63#include "mem/port.hh" 64#include "sim/fault_fwd.hh" 65 66struct DerivO3CPUParams; 67 68/** 69 * Class that implements the actual LQ and SQ for each specific 70 * thread. Both are circular queues; load entries are freed upon 71 * committing, while store entries are freed once they writeback. The 72 * LSQUnit tracks if there are memory ordering violations, and also 73 * detects partial load to store forwarding cases (a store only has 74 * part of a load's data) that requires the load to wait until the 75 * store writes back. In the former case it holds onto the instruction 76 * until the dependence unit looks at it, and in the latter it stalls 77 * the LSQ until the store writes back. At that point the load is 78 * replayed. 79 */ 80template <class Impl> 81class LSQUnit { 82 public: 83 typedef typename Impl::O3CPU O3CPU; 84 typedef typename Impl::DynInstPtr DynInstPtr; 85 typedef typename Impl::CPUPol::IEW IEW; 86 typedef typename Impl::CPUPol::LSQ LSQ; 87 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 88 89 public: 90 /** Constructs an LSQ unit. init() must be called prior to use. */ 91 LSQUnit(); 92 93 /** Initializes the LSQ unit with the specified number of entries. */ 94 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 95 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 96 unsigned id); 97 98 /** Returns the name of the LSQ unit. */ 99 std::string name() const; 100 101 /** Registers statistics. */ 102 void regStats(); 103 104 /** Sets the pointer to the dcache port. */ 105 void setDcachePort(MasterPort *dcache_port); 106 107 /** Perform sanity checks after a drain. */ 108 void drainSanityCheck() const; 109 110 /** Takes over from another CPU's thread. */ 111 void takeOverFrom(); 112 113 /** Ticks the LSQ unit, which in this case only resets the number of 114 * used cache ports. 115 * @todo: Move the number of used ports up to the LSQ level so it can 116 * be shared by all LSQ units. 117 */ 118 void tick() { usedPorts = 0; } 119 120 /** Inserts an instruction. */ 121 void insert(DynInstPtr &inst); 122 /** Inserts a load instruction. */ 123 void insertLoad(DynInstPtr &load_inst); 124 /** Inserts a store instruction. */ 125 void insertStore(DynInstPtr &store_inst); 126 127 /** Check for ordering violations in the LSQ. For a store squash if we 128 * ever find a conflicting load. For a load, only squash if we 129 * an external snoop invalidate has been seen for that load address 130 * @param load_idx index to start checking at 131 * @param inst the instruction to check 132 */ 133 Fault checkViolations(int load_idx, DynInstPtr &inst); 134 135 /** Check if an incoming invalidate hits in the lsq on a load 136 * that might have issued out of order wrt another load beacuse 137 * of the intermediate invalidate. 138 */ 139 void checkSnoop(PacketPtr pkt); 140 141 /** Executes a load instruction. */ 142 Fault executeLoad(DynInstPtr &inst); 143 144 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 145 /** Executes a store instruction. */ 146 Fault executeStore(DynInstPtr &inst); 147 148 /** Commits the head load. */ 149 void commitLoad(); 150 /** Commits loads older than a specific sequence number. */ 151 void commitLoads(InstSeqNum &youngest_inst); 152 153 /** Commits stores older than a specific sequence number. */ 154 void commitStores(InstSeqNum &youngest_inst); 155 156 /** Writes back stores. */ 157 void writebackStores(); 158 159 /** Completes the data access that has been returned from the 160 * memory system. */ 161 void completeDataAccess(PacketPtr pkt); 162 163 /** Clears all the entries in the LQ. */ 164 void clearLQ(); 165 166 /** Clears all the entries in the SQ. */ 167 void clearSQ(); 168 169 /** Resizes the LQ to a given size. */ 170 void resizeLQ(unsigned size); 171 172 /** Resizes the SQ to a given size. */ 173 void resizeSQ(unsigned size); 174 175 /** Squashes all instructions younger than a specific sequence number. */ 176 void squash(const InstSeqNum &squashed_num); 177 178 /** Returns if there is a memory ordering violation. Value is reset upon 179 * call to getMemDepViolator(). 180 */ 181 bool violation() { return memDepViolator; } 182 183 /** Returns the memory ordering violator. */ 184 DynInstPtr getMemDepViolator(); 185 186 /** Returns the number of free LQ entries. */ 187 unsigned numFreeLoadEntries(); 188 189 /** Returns the number of free SQ entries. */ 190 unsigned numFreeStoreEntries(); 191 192 /** Returns the number of loads in the LQ. */ 193 int numLoads() { return loads; } 194 195 /** Returns the number of stores in the SQ. */ 196 int numStores() { return stores; } 197 198 /** Returns if either the LQ or SQ is full. */ 199 bool isFull() { return lqFull() || sqFull(); } 200 201 /** Returns if both the LQ and SQ are empty. */ 202 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 203 204 /** Returns if the LQ is full. */ 205 bool lqFull() { return loads >= (LQEntries - 1); } 206 207 /** Returns if the SQ is full. */ 208 bool sqFull() { return stores >= (SQEntries - 1); } 209 210 /** Returns if the LQ is empty. */ 211 bool lqEmpty() const { return loads == 0; } 212 213 /** Returns if the SQ is empty. */ 214 bool sqEmpty() const { return stores == 0; } 215 216 /** Returns the number of instructions in the LSQ. */ 217 unsigned getCount() { return loads + stores; } 218 219 /** Returns if there are any stores to writeback. */ 220 bool hasStoresToWB() { return storesToWB; } 221 222 /** Returns the number of stores to writeback. */ 223 int numStoresToWB() { return storesToWB; } 224 225 /** Returns if the LSQ unit will writeback on this cycle. */ 226 bool willWB() { return storeQueue[storeWBIdx].canWB && 227 !storeQueue[storeWBIdx].completed && 228 !isStoreBlocked; } 229 230 /** Handles doing the retry. */ 231 void recvRetry(); 232 233 private: 234 /** Reset the LSQ state */ 235 void resetState(); 236 237 /** Writes back the instruction, sending it to IEW. */ 238 void writeback(DynInstPtr &inst, PacketPtr pkt); 239 240 /** Writes back a store that couldn't be completed the previous cycle. */ 241 void writebackPendingStore(); 242 243 /** Handles completing the send of a store to memory. */ 244 void storePostSend(PacketPtr pkt); 245 246 /** Completes the store at the specified index. */ 247 void completeStore(int store_idx); 248 249 /** Attempts to send a store to the cache. */ 250 bool sendStore(PacketPtr data_pkt); 251 252 /** Increments the given store index (circular queue). */ 253 inline void incrStIdx(int &store_idx) const; 254 /** Decrements the given store index (circular queue). */ 255 inline void decrStIdx(int &store_idx) const; 256 /** Increments the given load index (circular queue). */ 257 inline void incrLdIdx(int &load_idx) const; 258 /** Decrements the given load index (circular queue). */ 259 inline void decrLdIdx(int &load_idx) const; 260 261 public: 262 /** Debugging function to dump instructions in the LSQ. */ 263 void dumpInsts() const; 264 265 private: 266 /** Pointer to the CPU. */ 267 O3CPU *cpu; 268 269 /** Pointer to the IEW stage. */ 270 IEW *iewStage; 271 272 /** Pointer to the LSQ. */ 273 LSQ *lsq; 274 275 /** Pointer to the dcache port. Used only for sending. */ 276 MasterPort *dcachePort; 277 278 /** Derived class to hold any sender state the LSQ needs. */ 279 class LSQSenderState : public Packet::SenderState 280 { 281 public: 282 /** Default constructor. */ 283 LSQSenderState() 284 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 285 noWB(false), isSplit(false), pktToSend(false), cacheBlocked(false) 286 { } 287 288 /** Instruction who initiated the access to memory. */ 289 DynInstPtr inst; 290 /** The main packet from a split load, used during writeback. */ 291 PacketPtr mainPkt; 292 /** A second packet from a split store that needs sending. */ 293 PacketPtr pendingPacket; 294 /** The LQ/SQ index of the instruction. */ 295 uint8_t idx; 296 /** Number of outstanding packets to complete. */ 297 uint8_t outstanding; 298 /** Whether or not it is a load. */ 299 bool isLoad; 300 /** Whether or not the instruction will need to writeback. */ 301 bool noWB; 302 /** Whether or not this access is split in two. */ 303 bool isSplit; 304 /** Whether or not there is a packet that needs sending. */ 305 bool pktToSend; 306 /** Whether or not the second packet of this split load was blocked */ 307 bool cacheBlocked; 308 309 /** Completes a packet and returns whether the access is finished. */ 310 inline bool complete() { return --outstanding == 0; } 311 }; 312 313 /** Writeback event, specifically for when stores forward data to loads. */ 314 class WritebackEvent : public Event { 315 public: 316 /** Constructs a writeback event. */ 317 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 318 319 /** Processes the writeback event. */ 320 void process(); 321 322 /** Returns the description of this event. */ 323 const char *description() const; 324 325 private: 326 /** Instruction whose results are being written back. */ 327 DynInstPtr inst; 328 329 /** The packet that would have been sent to memory. */ 330 PacketPtr pkt; 331 332 /** The pointer to the LSQ unit that issued the store. */ 333 LSQUnit<Impl> *lsqPtr; 334 }; 335 336 public: 337 struct SQEntry { 338 /** Constructs an empty store queue entry. */ 339 SQEntry() 340 : inst(NULL), req(NULL), size(0), 341 canWB(0), committed(0), completed(0) 342 { 343 std::memset(data, 0, sizeof(data)); 344 } 345 346 ~SQEntry() 347 { 348 inst = NULL; 349 } 350 351 /** Constructs a store queue entry for a given instruction. */ 352 SQEntry(DynInstPtr &_inst) 353 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 354 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 355 { 356 std::memset(data, 0, sizeof(data)); 357 } 358 /** The store data. */ 359 char data[16]; 360 /** The store instruction. */ 361 DynInstPtr inst; 362 /** The request for the store. */ 363 RequestPtr req; 364 /** The split requests for the store. */ 365 RequestPtr sreqLow; 366 RequestPtr sreqHigh; 367 /** The size of the store. */ 368 uint8_t size; 369 /** Whether or not the store is split into two requests. */ 370 bool isSplit; 371 /** Whether or not the store can writeback. */ 372 bool canWB; 373 /** Whether or not the store is committed. */ 374 bool committed; 375 /** Whether or not the store is completed. */ 376 bool completed; 377 /** Does this request write all zeros and thus doesn't 378 * have any data attached to it. Used for cache block zero 379 * style instructs (ARM DC ZVA; ALPHA WH64) 380 */ 381 bool isAllZeros; 382 }; 383 384 private: 385 /** The LSQUnit thread id. */ 386 ThreadID lsqID; 387 388 /** The store queue. */ 389 std::vector<SQEntry> storeQueue; 390 391 /** The load queue. */ 392 std::vector<DynInstPtr> loadQueue; 393 394 /** The number of LQ entries, plus a sentinel entry (circular queue). 395 * @todo: Consider having var that records the true number of LQ entries. 396 */ 397 unsigned LQEntries; 398 /** The number of SQ entries, plus a sentinel entry (circular queue). 399 * @todo: Consider having var that records the true number of SQ entries. 400 */ 401 unsigned SQEntries; 402 403 /** The number of places to shift addresses in the LSQ before checking 404 * for dependency violations 405 */ 406 unsigned depCheckShift; 407 408 /** Should loads be checked for dependency issues */ 409 bool checkLoads; 410 411 /** The number of load instructions in the LQ. */ 412 int loads; 413 /** The number of store instructions in the SQ. */ 414 int stores; 415 /** The number of store instructions in the SQ waiting to writeback. */ 416 int storesToWB; 417 418 /** The index of the head instruction in the LQ. */ 419 int loadHead; 420 /** The index of the tail instruction in the LQ. */ 421 int loadTail; 422 423 /** The index of the head instruction in the SQ. */ 424 int storeHead; 425 /** The index of the first instruction that may be ready to be 426 * written back, and has not yet been written back. 427 */ 428 int storeWBIdx; 429 /** The index of the tail instruction in the SQ. */ 430 int storeTail; 431 432 /// @todo Consider moving to a more advanced model with write vs read ports 433 /** The number of cache ports available each cycle. */ 434 int cachePorts; 435 436 /** The number of used cache ports in this cycle. */ 437 int usedPorts; 438 439 //list<InstSeqNum> mshrSeqNums; 440 441 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 442 Addr cacheBlockMask; 443 444 /** Wire to read information from the issue stage time queue. */ 445 typename TimeBuffer<IssueStruct>::wire fromIssue; 446 447 /** Whether or not the LSQ is stalled. */ 448 bool stalled; 449 /** The store that causes the stall due to partial store to load 450 * forwarding. 451 */ 452 InstSeqNum stallingStoreIsn; 453 /** The index of the above store. */ 454 int stallingLoadIdx; 455 456 /** The packet that needs to be retried. */ 457 PacketPtr retryPkt; 458 459 /** Whehter or not a store is blocked due to the memory system. */ 460 bool isStoreBlocked; 461 462 /** Whether or not a store is in flight. */ 463 bool storeInFlight; 464 465 /** The oldest load that caused a memory ordering violation. */ 466 DynInstPtr memDepViolator; 467 468 /** Whether or not there is a packet that couldn't be sent because of 469 * a lack of cache ports. */ 470 bool hasPendingPkt; 471 472 /** The packet that is pending free cache ports. */ 473 PacketPtr pendingPkt; 474 475 /** Flag for memory model. */ 476 bool needsTSO; 477 478 // Will also need how many read/write ports the Dcache has. Or keep track 479 // of that in stage that is one level up, and only call executeLoad/Store 480 // the appropriate number of times. 481 /** Total number of loads forwaded from LSQ stores. */ 482 Stats::Scalar lsqForwLoads; 483 484 /** Total number of loads ignored due to invalid addresses. */ 485 Stats::Scalar invAddrLoads; 486 487 /** Total number of squashed loads. */ 488 Stats::Scalar lsqSquashedLoads; 489 490 /** Total number of responses from the memory system that are 491 * ignored due to the instruction already being squashed. */ 492 Stats::Scalar lsqIgnoredResponses; 493 494 /** Tota number of memory ordering violations. */ 495 Stats::Scalar lsqMemOrderViolation; 496 497 /** Total number of squashed stores. */ 498 Stats::Scalar lsqSquashedStores; 499 500 /** Total number of software prefetches ignored due to invalid addresses. */ 501 Stats::Scalar invAddrSwpfs; 502 503 /** Ready loads blocked due to partial store-forwarding. */ 504 Stats::Scalar lsqBlockedLoads; 505 506 /** Number of loads that were rescheduled. */ 507 Stats::Scalar lsqRescheduledLoads; 508 509 /** Number of times the LSQ is blocked due to the cache. */ 510 Stats::Scalar lsqCacheBlocked; 511 512 public: 513 /** Executes the load at the given index. */ 514 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 515 uint8_t *data, int load_idx); 516 517 /** Executes the store at the given index. */ 518 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 519 uint8_t *data, int store_idx); 520 521 /** Returns the index of the head load instruction. */ 522 int getLoadHead() { return loadHead; } 523 /** Returns the sequence number of the head load instruction. */ 524 InstSeqNum getLoadHeadSeqNum() 525 { 526 if (loadQueue[loadHead]) { 527 return loadQueue[loadHead]->seqNum; 528 } else { 529 return 0; 530 } 531 532 } 533 534 /** Returns the index of the head store instruction. */ 535 int getStoreHead() { return storeHead; } 536 /** Returns the sequence number of the head store instruction. */ 537 InstSeqNum getStoreHeadSeqNum() 538 { 539 if (storeQueue[storeHead].inst) { 540 return storeQueue[storeHead].inst->seqNum; 541 } else { 542 return 0; 543 } 544 545 } 546 547 /** Returns whether or not the LSQ unit is stalled. */ 548 bool isStalled() { return stalled; } 549}; 550 551template <class Impl> 552Fault 553LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 554 uint8_t *data, int load_idx) 555{ 556 DynInstPtr load_inst = loadQueue[load_idx]; 557 558 assert(load_inst); 559 560 assert(!load_inst->isExecuted()); 561 562 // Make sure this isn't an uncacheable access 563 // A bit of a hackish way to get uncached accesses to work only if they're 564 // at the head of the LSQ and are ready to commit (at the head of the ROB 565 // too). 566 if (req->isUncacheable() && 567 (load_idx != loadHead || !load_inst->isAtCommit())) { 568 iewStage->rescheduleMemInst(load_inst); 569 ++lsqRescheduledLoads; 570 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 571 load_inst->seqNum, load_inst->pcState()); 572 573 // Must delete request now that it wasn't handed off to 574 // memory. This is quite ugly. @todo: Figure out the proper 575 // place to really handle request deletes. 576 delete req; 577 if (TheISA::HasUnalignedMemAcc && sreqLow) { 578 delete sreqLow; 579 delete sreqHigh; 580 } 581 return new GenericISA::M5PanicFault( 582 "Uncachable load [sn:%llx] PC %s\n", 583 load_inst->seqNum, load_inst->pcState()); 584 } 585 586 // Check the SQ for any previous stores that might lead to forwarding 587 int store_idx = load_inst->sqIdx; 588 589 int store_size = 0; 590 591 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 592 "storeHead: %i addr: %#x%s\n", 593 load_idx, store_idx, storeHead, req->getPaddr(), 594 sreqLow ? " split" : ""); 595 596 if (req->isLLSC()) { 597 assert(!sreqLow); 598 // Disable recording the result temporarily. Writing to misc 599 // regs normally updates the result, but this is not the 600 // desired behavior when handling store conditionals. 601 load_inst->recordResult(false); 602 TheISA::handleLockedRead(load_inst.get(), req); 603 load_inst->recordResult(true); 604 } 605 606 if (req->isMmappedIpr()) { 607 assert(!load_inst->memData); 608 load_inst->memData = new uint8_t[64]; 609 610 ThreadContext *thread = cpu->tcBase(lsqID); 611 Cycles delay(0); 612 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 613 614 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 615 data_pkt->dataStatic(load_inst->memData); 616 delay = TheISA::handleIprRead(thread, data_pkt); 617 } else { 618 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 619 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 620 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 621 622 fst_data_pkt->dataStatic(load_inst->memData); 623 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 624 625 delay = TheISA::handleIprRead(thread, fst_data_pkt); 626 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 627 if (delay2 > delay) 628 delay = delay2; 629 630 delete sreqLow; 631 delete sreqHigh; 632 delete fst_data_pkt; 633 delete snd_data_pkt; 634 } 635 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 636 cpu->schedule(wb, cpu->clockEdge(delay)); 637 return NoFault; 638 } 639 640 while (store_idx != -1) { 641 // End once we've reached the top of the LSQ 642 if (store_idx == storeWBIdx) { 643 break; 644 } 645 646 // Move the index to one younger 647 if (--store_idx < 0) 648 store_idx += SQEntries; 649 650 assert(storeQueue[store_idx].inst); 651 652 store_size = storeQueue[store_idx].size; 653 654 if (store_size == 0) 655 continue; 656 else if (storeQueue[store_idx].inst->uncacheable()) 657 continue; 658 659 assert(storeQueue[store_idx].inst->effAddrValid()); 660 661 // Check if the store data is within the lower and upper bounds of 662 // addresses that the request needs. 663 bool store_has_lower_limit = 664 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 665 bool store_has_upper_limit = 666 (req->getVaddr() + req->getSize()) <= 667 (storeQueue[store_idx].inst->effAddr + store_size); 668 bool lower_load_has_store_part = 669 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 670 store_size); 671 bool upper_load_has_store_part = 672 (req->getVaddr() + req->getSize()) > 673 storeQueue[store_idx].inst->effAddr; 674 675 // If the store's data has all of the data needed, we can forward. 676 if ((store_has_lower_limit && store_has_upper_limit)) { 677 // Get shift amount for offset into the store's data. 678 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 679 680 if (storeQueue[store_idx].isAllZeros) 681 memset(data, 0, req->getSize()); 682 else 683 memcpy(data, storeQueue[store_idx].data + shift_amt, 684 req->getSize()); 685 686 // Allocate memory if this is the first time a load is issued. 687 if (!load_inst->memData) { 688 load_inst->memData = new uint8_t[req->getSize()]; 689 } 690 if (storeQueue[store_idx].isAllZeros) 691 memset(load_inst->memData, 0, req->getSize()); 692 else 693 memcpy(load_inst->memData, 694 storeQueue[store_idx].data + shift_amt, req->getSize()); 695 696 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 697 "addr %#x\n", store_idx, req->getVaddr()); 698 699 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 700 data_pkt->dataStatic(load_inst->memData); 701 702 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 703 704 // We'll say this has a 1 cycle load-store forwarding latency 705 // for now. 706 // @todo: Need to make this a parameter. 707 cpu->schedule(wb, curTick()); 708 709 // Don't need to do anything special for split loads. 710 if (TheISA::HasUnalignedMemAcc && sreqLow) { 711 delete sreqLow; 712 delete sreqHigh; 713 } 714 715 ++lsqForwLoads; 716 return NoFault; 717 } else if ((store_has_lower_limit && lower_load_has_store_part) || 718 (store_has_upper_limit && upper_load_has_store_part) || 719 (lower_load_has_store_part && upper_load_has_store_part)) { 720 // This is the partial store-load forwarding case where a store 721 // has only part of the load's data. 722 723 // If it's already been written back, then don't worry about 724 // stalling on it. 725 if (storeQueue[store_idx].completed) { 726 panic("Should not check one of these"); 727 continue; 728 } 729 730 // Must stall load and force it to retry, so long as it's the oldest 731 // load that needs to do so. 732 if (!stalled || 733 (stalled && 734 load_inst->seqNum < 735 loadQueue[stallingLoadIdx]->seqNum)) { 736 stalled = true; 737 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 738 stallingLoadIdx = load_idx; 739 } 740 741 // Tell IQ/mem dep unit that this instruction will need to be 742 // rescheduled eventually 743 iewStage->rescheduleMemInst(load_inst); 744 load_inst->clearIssued(); 745 ++lsqRescheduledLoads; 746 747 // Do not generate a writeback event as this instruction is not 748 // complete. 749 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 750 "Store idx %i to load addr %#x\n", 751 store_idx, req->getVaddr()); 752 753 // Must delete request now that it wasn't handed off to 754 // memory. This is quite ugly. @todo: Figure out the 755 // proper place to really handle request deletes. 756 delete req; 757 if (TheISA::HasUnalignedMemAcc && sreqLow) { 758 delete sreqLow; 759 delete sreqHigh; 760 } 761 762 return NoFault; 763 } 764 } 765 766 // If there's no forwarding case, then go access memory 767 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 768 load_inst->seqNum, load_inst->pcState()); 769 770 // Allocate memory if this is the first time a load is issued. 771 if (!load_inst->memData) { 772 load_inst->memData = new uint8_t[req->getSize()]; 773 } 774 775 ++usedPorts; 776 777 // if we the cache is not blocked, do cache access 778 bool completedFirst = false; 779 PacketPtr data_pkt = Packet::createRead(req); 780 PacketPtr fst_data_pkt = NULL; 781 PacketPtr snd_data_pkt = NULL; 782 783 data_pkt->dataStatic(load_inst->memData); 784 785 LSQSenderState *state = new LSQSenderState; 786 state->isLoad = true; 787 state->idx = load_idx; 788 state->inst = load_inst; 789 data_pkt->senderState = state; 790 791 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 792 // Point the first packet at the main data packet. 793 fst_data_pkt = data_pkt; 794 } else { 795 // Create the split packets. 796 fst_data_pkt = Packet::createRead(sreqLow); 797 snd_data_pkt = Packet::createRead(sreqHigh); 798 799 fst_data_pkt->dataStatic(load_inst->memData); 800 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 801 802 fst_data_pkt->senderState = state; 803 snd_data_pkt->senderState = state; 804 805 state->isSplit = true; 806 state->outstanding = 2; 807 state->mainPkt = data_pkt; 808 } 809 810 bool successful_load = true; 811 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 812 successful_load = false; 813 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 814 completedFirst = true; 815 816 // The first packet was sent without problems, so send this one 817 // too. If there is a problem with this packet then the whole 818 // load will be squashed, so indicate this to the state object. 819 // The first packet will return in completeDataAccess and be 820 // handled there. 821 ++usedPorts; 822 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 823 // The main packet will be deleted in completeDataAccess. 824 state->complete(); 825 // Signify to 1st half that the 2nd half was blocked via state 826 state->cacheBlocked = true; 827 successful_load = false; 828 } 829 } 830 831 // If the cache was blocked, or has become blocked due to the access, 832 // handle it. 833 if (!successful_load) { 834 if (!sreqLow) { 835 // Packet wasn't split, just delete main packet info 836 delete state; 837 delete req; 838 delete data_pkt; 839 } 840 841 if (TheISA::HasUnalignedMemAcc && sreqLow) { 842 if (!completedFirst) { 843 // Split packet, but first failed. Delete all state. 844 delete state; 845 delete req; 846 delete data_pkt; 847 delete fst_data_pkt; 848 delete snd_data_pkt; 849 delete sreqLow; 850 delete sreqHigh; 851 sreqLow = NULL; 852 sreqHigh = NULL; 853 } else { 854 // Can't delete main packet data or state because first packet 855 // was sent to the memory system 856 delete data_pkt; 857 delete req; 858 delete sreqHigh; 859 delete snd_data_pkt; 860 sreqHigh = NULL; 861 } 862 } 863 864 ++lsqCacheBlocked; 865 866 iewStage->blockMemInst(load_inst); 867 868 // No fault occurred, even though the interface is blocked. 869 return NoFault; 870 } 871 872 return NoFault; 873} 874 875template <class Impl> 876Fault 877LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 878 uint8_t *data, int store_idx) 879{ 880 assert(storeQueue[store_idx].inst); 881 882 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" 883 " | storeHead:%i [sn:%i]\n", 884 store_idx, req->getPaddr(), storeHead, 885 storeQueue[store_idx].inst->seqNum); 886 887 storeQueue[store_idx].req = req; 888 storeQueue[store_idx].sreqLow = sreqLow; 889 storeQueue[store_idx].sreqHigh = sreqHigh; 890 unsigned size = req->getSize(); 891 storeQueue[store_idx].size = size; 892 storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO; 893 assert(size <= sizeof(storeQueue[store_idx].data) || 894 (req->getFlags() & Request::CACHE_BLOCK_ZERO)); 895 896 // Split stores can only occur in ISAs with unaligned memory accesses. If 897 // a store request has been split, sreqLow and sreqHigh will be non-null. 898 if (TheISA::HasUnalignedMemAcc && sreqLow) { 899 storeQueue[store_idx].isSplit = true; 900 } 901 902 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO)) 903 memcpy(storeQueue[store_idx].data, data, size); 904 905 // This function only writes the data to the store queue, so no fault 906 // can happen here. 907 return NoFault; 908} 909 910#endif // __CPU_O3_LSQ_UNIT_HH__ 911