lsq_unit.hh revision 10239
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2013 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_HH__
46#define __CPU_O3_LSQ_UNIT_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <map>
51#include <queue>
52
53#include "arch/generic/debugfaults.hh"
54#include "arch/isa_traits.hh"
55#include "arch/locked_mem.hh"
56#include "arch/mmapped_ipr.hh"
57#include "base/hashmap.hh"
58#include "config/the_isa.hh"
59#include "cpu/inst_seq.hh"
60#include "cpu/timebuf.hh"
61#include "debug/LSQUnit.hh"
62#include "mem/packet.hh"
63#include "mem/port.hh"
64#include "sim/fault_fwd.hh"
65
66struct DerivO3CPUParams;
67
68/**
69 * Class that implements the actual LQ and SQ for each specific
70 * thread.  Both are circular queues; load entries are freed upon
71 * committing, while store entries are freed once they writeback. The
72 * LSQUnit tracks if there are memory ordering violations, and also
73 * detects partial load to store forwarding cases (a store only has
74 * part of a load's data) that requires the load to wait until the
75 * store writes back. In the former case it holds onto the instruction
76 * until the dependence unit looks at it, and in the latter it stalls
77 * the LSQ until the store writes back. At that point the load is
78 * replayed.
79 */
80template <class Impl>
81class LSQUnit {
82  public:
83    typedef typename Impl::O3CPU O3CPU;
84    typedef typename Impl::DynInstPtr DynInstPtr;
85    typedef typename Impl::CPUPol::IEW IEW;
86    typedef typename Impl::CPUPol::LSQ LSQ;
87    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
88
89  public:
90    /** Constructs an LSQ unit. init() must be called prior to use. */
91    LSQUnit();
92
93    /** Initializes the LSQ unit with the specified number of entries. */
94    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
95            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
96            unsigned id);
97
98    /** Returns the name of the LSQ unit. */
99    std::string name() const;
100
101    /** Registers statistics. */
102    void regStats();
103
104    /** Sets the pointer to the dcache port. */
105    void setDcachePort(MasterPort *dcache_port);
106
107    /** Perform sanity checks after a drain. */
108    void drainSanityCheck() const;
109
110    /** Takes over from another CPU's thread. */
111    void takeOverFrom();
112
113    /** Ticks the LSQ unit, which in this case only resets the number of
114     * used cache ports.
115     * @todo: Move the number of used ports up to the LSQ level so it can
116     * be shared by all LSQ units.
117     */
118    void tick() { usedPorts = 0; }
119
120    /** Inserts an instruction. */
121    void insert(DynInstPtr &inst);
122    /** Inserts a load instruction. */
123    void insertLoad(DynInstPtr &load_inst);
124    /** Inserts a store instruction. */
125    void insertStore(DynInstPtr &store_inst);
126
127    /** Check for ordering violations in the LSQ. For a store squash if we
128     * ever find a conflicting load. For a load, only squash if we
129     * an external snoop invalidate has been seen for that load address
130     * @param load_idx index to start checking at
131     * @param inst the instruction to check
132     */
133    Fault checkViolations(int load_idx, DynInstPtr &inst);
134
135    /** Check if an incoming invalidate hits in the lsq on a load
136     * that might have issued out of order wrt another load beacuse
137     * of the intermediate invalidate.
138     */
139    void checkSnoop(PacketPtr pkt);
140
141    /** Executes a load instruction. */
142    Fault executeLoad(DynInstPtr &inst);
143
144    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
145    /** Executes a store instruction. */
146    Fault executeStore(DynInstPtr &inst);
147
148    /** Commits the head load. */
149    void commitLoad();
150    /** Commits loads older than a specific sequence number. */
151    void commitLoads(InstSeqNum &youngest_inst);
152
153    /** Commits stores older than a specific sequence number. */
154    void commitStores(InstSeqNum &youngest_inst);
155
156    /** Writes back stores. */
157    void writebackStores();
158
159    /** Completes the data access that has been returned from the
160     * memory system. */
161    void completeDataAccess(PacketPtr pkt);
162
163    /** Clears all the entries in the LQ. */
164    void clearLQ();
165
166    /** Clears all the entries in the SQ. */
167    void clearSQ();
168
169    /** Resizes the LQ to a given size. */
170    void resizeLQ(unsigned size);
171
172    /** Resizes the SQ to a given size. */
173    void resizeSQ(unsigned size);
174
175    /** Squashes all instructions younger than a specific sequence number. */
176    void squash(const InstSeqNum &squashed_num);
177
178    /** Returns if there is a memory ordering violation. Value is reset upon
179     * call to getMemDepViolator().
180     */
181    bool violation() { return memDepViolator; }
182
183    /** Returns the memory ordering violator. */
184    DynInstPtr getMemDepViolator();
185
186    /** Returns if a load became blocked due to the memory system. */
187    bool loadBlocked()
188    { return isLoadBlocked; }
189
190    /** Clears the signal that a load became blocked. */
191    void clearLoadBlocked()
192    { isLoadBlocked = false; }
193
194    /** Returns if the blocked load was handled. */
195    bool isLoadBlockedHandled()
196    { return loadBlockedHandled; }
197
198    /** Records the blocked load as being handled. */
199    void setLoadBlockedHandled()
200    { loadBlockedHandled = true; }
201
202    /** Returns the number of free LQ entries. */
203    unsigned numFreeLoadEntries();
204
205    /** Returns the number of free SQ entries. */
206    unsigned numFreeStoreEntries();
207
208    /** Returns the number of loads in the LQ. */
209    int numLoads() { return loads; }
210
211    /** Returns the number of stores in the SQ. */
212    int numStores() { return stores; }
213
214    /** Returns if either the LQ or SQ is full. */
215    bool isFull() { return lqFull() || sqFull(); }
216
217    /** Returns if both the LQ and SQ are empty. */
218    bool isEmpty() const { return lqEmpty() && sqEmpty(); }
219
220    /** Returns if the LQ is full. */
221    bool lqFull() { return loads >= (LQEntries - 1); }
222
223    /** Returns if the SQ is full. */
224    bool sqFull() { return stores >= (SQEntries - 1); }
225
226    /** Returns if the LQ is empty. */
227    bool lqEmpty() const { return loads == 0; }
228
229    /** Returns if the SQ is empty. */
230    bool sqEmpty() const { return stores == 0; }
231
232    /** Returns the number of instructions in the LSQ. */
233    unsigned getCount() { return loads + stores; }
234
235    /** Returns if there are any stores to writeback. */
236    bool hasStoresToWB() { return storesToWB; }
237
238    /** Returns the number of stores to writeback. */
239    int numStoresToWB() { return storesToWB; }
240
241    /** Returns if the LSQ unit will writeback on this cycle. */
242    bool willWB() { return storeQueue[storeWBIdx].canWB &&
243                        !storeQueue[storeWBIdx].completed &&
244                        !isStoreBlocked; }
245
246    /** Handles doing the retry. */
247    void recvRetry();
248
249  private:
250    /** Reset the LSQ state */
251    void resetState();
252
253    /** Writes back the instruction, sending it to IEW. */
254    void writeback(DynInstPtr &inst, PacketPtr pkt);
255
256    /** Writes back a store that couldn't be completed the previous cycle. */
257    void writebackPendingStore();
258
259    /** Handles completing the send of a store to memory. */
260    void storePostSend(PacketPtr pkt);
261
262    /** Completes the store at the specified index. */
263    void completeStore(int store_idx);
264
265    /** Attempts to send a store to the cache. */
266    bool sendStore(PacketPtr data_pkt);
267
268    /** Increments the given store index (circular queue). */
269    inline void incrStIdx(int &store_idx) const;
270    /** Decrements the given store index (circular queue). */
271    inline void decrStIdx(int &store_idx) const;
272    /** Increments the given load index (circular queue). */
273    inline void incrLdIdx(int &load_idx) const;
274    /** Decrements the given load index (circular queue). */
275    inline void decrLdIdx(int &load_idx) const;
276
277  public:
278    /** Debugging function to dump instructions in the LSQ. */
279    void dumpInsts() const;
280
281  private:
282    /** Pointer to the CPU. */
283    O3CPU *cpu;
284
285    /** Pointer to the IEW stage. */
286    IEW *iewStage;
287
288    /** Pointer to the LSQ. */
289    LSQ *lsq;
290
291    /** Pointer to the dcache port.  Used only for sending. */
292    MasterPort *dcachePort;
293
294    /** Derived class to hold any sender state the LSQ needs. */
295    class LSQSenderState : public Packet::SenderState
296    {
297      public:
298        /** Default constructor. */
299        LSQSenderState()
300            : mainPkt(NULL), pendingPacket(NULL), outstanding(1),
301              noWB(false), isSplit(false), pktToSend(false)
302          { }
303
304        /** Instruction who initiated the access to memory. */
305        DynInstPtr inst;
306        /** The main packet from a split load, used during writeback. */
307        PacketPtr mainPkt;
308        /** A second packet from a split store that needs sending. */
309        PacketPtr pendingPacket;
310        /** The LQ/SQ index of the instruction. */
311        uint8_t idx;
312        /** Number of outstanding packets to complete. */
313        uint8_t outstanding;
314        /** Whether or not it is a load. */
315        bool isLoad;
316        /** Whether or not the instruction will need to writeback. */
317        bool noWB;
318        /** Whether or not this access is split in two. */
319        bool isSplit;
320        /** Whether or not there is a packet that needs sending. */
321        bool pktToSend;
322
323        /** Completes a packet and returns whether the access is finished. */
324        inline bool complete() { return --outstanding == 0; }
325    };
326
327    /** Writeback event, specifically for when stores forward data to loads. */
328    class WritebackEvent : public Event {
329      public:
330        /** Constructs a writeback event. */
331        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
332
333        /** Processes the writeback event. */
334        void process();
335
336        /** Returns the description of this event. */
337        const char *description() const;
338
339      private:
340        /** Instruction whose results are being written back. */
341        DynInstPtr inst;
342
343        /** The packet that would have been sent to memory. */
344        PacketPtr pkt;
345
346        /** The pointer to the LSQ unit that issued the store. */
347        LSQUnit<Impl> *lsqPtr;
348    };
349
350  public:
351    struct SQEntry {
352        /** Constructs an empty store queue entry. */
353        SQEntry()
354            : inst(NULL), req(NULL), size(0),
355              canWB(0), committed(0), completed(0)
356        {
357            std::memset(data, 0, sizeof(data));
358        }
359
360        ~SQEntry()
361        {
362            inst = NULL;
363        }
364
365        /** Constructs a store queue entry for a given instruction. */
366        SQEntry(DynInstPtr &_inst)
367            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
368              isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0)
369        {
370            std::memset(data, 0, sizeof(data));
371        }
372        /** The store data. */
373        char data[16];
374        /** The store instruction. */
375        DynInstPtr inst;
376        /** The request for the store. */
377        RequestPtr req;
378        /** The split requests for the store. */
379        RequestPtr sreqLow;
380        RequestPtr sreqHigh;
381        /** The size of the store. */
382        uint8_t size;
383        /** Whether or not the store is split into two requests. */
384        bool isSplit;
385        /** Whether or not the store can writeback. */
386        bool canWB;
387        /** Whether or not the store is committed. */
388        bool committed;
389        /** Whether or not the store is completed. */
390        bool completed;
391        /** Does this request write all zeros and thus doesn't
392         * have any data attached to it. Used for cache block zero
393         * style instructs (ARM DC ZVA; ALPHA WH64)
394         */
395        bool isAllZeros;
396    };
397
398  private:
399    /** The LSQUnit thread id. */
400    ThreadID lsqID;
401
402    /** The store queue. */
403    std::vector<SQEntry> storeQueue;
404
405    /** The load queue. */
406    std::vector<DynInstPtr> loadQueue;
407
408    /** The number of LQ entries, plus a sentinel entry (circular queue).
409     *  @todo: Consider having var that records the true number of LQ entries.
410     */
411    unsigned LQEntries;
412    /** The number of SQ entries, plus a sentinel entry (circular queue).
413     *  @todo: Consider having var that records the true number of SQ entries.
414     */
415    unsigned SQEntries;
416
417    /** The number of places to shift addresses in the LSQ before checking
418     * for dependency violations
419     */
420    unsigned depCheckShift;
421
422    /** Should loads be checked for dependency issues */
423    bool checkLoads;
424
425    /** The number of load instructions in the LQ. */
426    int loads;
427    /** The number of store instructions in the SQ. */
428    int stores;
429    /** The number of store instructions in the SQ waiting to writeback. */
430    int storesToWB;
431
432    /** The index of the head instruction in the LQ. */
433    int loadHead;
434    /** The index of the tail instruction in the LQ. */
435    int loadTail;
436
437    /** The index of the head instruction in the SQ. */
438    int storeHead;
439    /** The index of the first instruction that may be ready to be
440     * written back, and has not yet been written back.
441     */
442    int storeWBIdx;
443    /** The index of the tail instruction in the SQ. */
444    int storeTail;
445
446    /// @todo Consider moving to a more advanced model with write vs read ports
447    /** The number of cache ports available each cycle. */
448    int cachePorts;
449
450    /** The number of used cache ports in this cycle. */
451    int usedPorts;
452
453    //list<InstSeqNum> mshrSeqNums;
454
455    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
456    Addr cacheBlockMask;
457
458    /** Wire to read information from the issue stage time queue. */
459    typename TimeBuffer<IssueStruct>::wire fromIssue;
460
461    /** Whether or not the LSQ is stalled. */
462    bool stalled;
463    /** The store that causes the stall due to partial store to load
464     * forwarding.
465     */
466    InstSeqNum stallingStoreIsn;
467    /** The index of the above store. */
468    int stallingLoadIdx;
469
470    /** The packet that needs to be retried. */
471    PacketPtr retryPkt;
472
473    /** Whehter or not a store is blocked due to the memory system. */
474    bool isStoreBlocked;
475
476    /** Whether or not a load is blocked due to the memory system. */
477    bool isLoadBlocked;
478
479    /** Has the blocked load been handled. */
480    bool loadBlockedHandled;
481
482    /** Whether or not a store is in flight. */
483    bool storeInFlight;
484
485    /** The sequence number of the blocked load. */
486    InstSeqNum blockedLoadSeqNum;
487
488    /** The oldest load that caused a memory ordering violation. */
489    DynInstPtr memDepViolator;
490
491    /** Whether or not there is a packet that couldn't be sent because of
492     * a lack of cache ports. */
493    bool hasPendingPkt;
494
495    /** The packet that is pending free cache ports. */
496    PacketPtr pendingPkt;
497
498    /** Flag for memory model. */
499    bool needsTSO;
500
501    // Will also need how many read/write ports the Dcache has.  Or keep track
502    // of that in stage that is one level up, and only call executeLoad/Store
503    // the appropriate number of times.
504    /** Total number of loads forwaded from LSQ stores. */
505    Stats::Scalar lsqForwLoads;
506
507    /** Total number of loads ignored due to invalid addresses. */
508    Stats::Scalar invAddrLoads;
509
510    /** Total number of squashed loads. */
511    Stats::Scalar lsqSquashedLoads;
512
513    /** Total number of responses from the memory system that are
514     * ignored due to the instruction already being squashed. */
515    Stats::Scalar lsqIgnoredResponses;
516
517    /** Tota number of memory ordering violations. */
518    Stats::Scalar lsqMemOrderViolation;
519
520    /** Total number of squashed stores. */
521    Stats::Scalar lsqSquashedStores;
522
523    /** Total number of software prefetches ignored due to invalid addresses. */
524    Stats::Scalar invAddrSwpfs;
525
526    /** Ready loads blocked due to partial store-forwarding. */
527    Stats::Scalar lsqBlockedLoads;
528
529    /** Number of loads that were rescheduled. */
530    Stats::Scalar lsqRescheduledLoads;
531
532    /** Number of times the LSQ is blocked due to the cache. */
533    Stats::Scalar lsqCacheBlocked;
534
535  public:
536    /** Executes the load at the given index. */
537    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
538               uint8_t *data, int load_idx);
539
540    /** Executes the store at the given index. */
541    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
542                uint8_t *data, int store_idx);
543
544    /** Returns the index of the head load instruction. */
545    int getLoadHead() { return loadHead; }
546    /** Returns the sequence number of the head load instruction. */
547    InstSeqNum getLoadHeadSeqNum()
548    {
549        if (loadQueue[loadHead]) {
550            return loadQueue[loadHead]->seqNum;
551        } else {
552            return 0;
553        }
554
555    }
556
557    /** Returns the index of the head store instruction. */
558    int getStoreHead() { return storeHead; }
559    /** Returns the sequence number of the head store instruction. */
560    InstSeqNum getStoreHeadSeqNum()
561    {
562        if (storeQueue[storeHead].inst) {
563            return storeQueue[storeHead].inst->seqNum;
564        } else {
565            return 0;
566        }
567
568    }
569
570    /** Returns whether or not the LSQ unit is stalled. */
571    bool isStalled()  { return stalled; }
572};
573
574template <class Impl>
575Fault
576LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
577                    uint8_t *data, int load_idx)
578{
579    DynInstPtr load_inst = loadQueue[load_idx];
580
581    assert(load_inst);
582
583    assert(!load_inst->isExecuted());
584
585    // Make sure this isn't an uncacheable access
586    // A bit of a hackish way to get uncached accesses to work only if they're
587    // at the head of the LSQ and are ready to commit (at the head of the ROB
588    // too).
589    if (req->isUncacheable() &&
590        (load_idx != loadHead || !load_inst->isAtCommit())) {
591        iewStage->rescheduleMemInst(load_inst);
592        ++lsqRescheduledLoads;
593        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
594                load_inst->seqNum, load_inst->pcState());
595
596        // Must delete request now that it wasn't handed off to
597        // memory.  This is quite ugly.  @todo: Figure out the proper
598        // place to really handle request deletes.
599        delete req;
600        if (TheISA::HasUnalignedMemAcc && sreqLow) {
601            delete sreqLow;
602            delete sreqHigh;
603        }
604        return new GenericISA::M5PanicFault(
605                "Uncachable load [sn:%llx] PC %s\n",
606                load_inst->seqNum, load_inst->pcState());
607    }
608
609    // Check the SQ for any previous stores that might lead to forwarding
610    int store_idx = load_inst->sqIdx;
611
612    int store_size = 0;
613
614    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
615            "storeHead: %i addr: %#x%s\n",
616            load_idx, store_idx, storeHead, req->getPaddr(),
617            sreqLow ? " split" : "");
618
619    if (req->isLLSC()) {
620        assert(!sreqLow);
621        // Disable recording the result temporarily.  Writing to misc
622        // regs normally updates the result, but this is not the
623        // desired behavior when handling store conditionals.
624        load_inst->recordResult(false);
625        TheISA::handleLockedRead(load_inst.get(), req);
626        load_inst->recordResult(true);
627    }
628
629    if (req->isMmappedIpr()) {
630        assert(!load_inst->memData);
631        load_inst->memData = new uint8_t[64];
632
633        ThreadContext *thread = cpu->tcBase(lsqID);
634        Cycles delay(0);
635        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
636
637        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
638            data_pkt->dataStatic(load_inst->memData);
639            delay = TheISA::handleIprRead(thread, data_pkt);
640        } else {
641            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
642            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
643            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
644
645            fst_data_pkt->dataStatic(load_inst->memData);
646            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
647
648            delay = TheISA::handleIprRead(thread, fst_data_pkt);
649            Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
650            if (delay2 > delay)
651                delay = delay2;
652
653            delete sreqLow;
654            delete sreqHigh;
655            delete fst_data_pkt;
656            delete snd_data_pkt;
657        }
658        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
659        cpu->schedule(wb, cpu->clockEdge(delay));
660        return NoFault;
661    }
662
663    while (store_idx != -1) {
664        // End once we've reached the top of the LSQ
665        if (store_idx == storeWBIdx) {
666            break;
667        }
668
669        // Move the index to one younger
670        if (--store_idx < 0)
671            store_idx += SQEntries;
672
673        assert(storeQueue[store_idx].inst);
674
675        store_size = storeQueue[store_idx].size;
676
677        if (store_size == 0)
678            continue;
679        else if (storeQueue[store_idx].inst->uncacheable())
680            continue;
681
682        assert(storeQueue[store_idx].inst->effAddrValid());
683
684        // Check if the store data is within the lower and upper bounds of
685        // addresses that the request needs.
686        bool store_has_lower_limit =
687            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
688        bool store_has_upper_limit =
689            (req->getVaddr() + req->getSize()) <=
690            (storeQueue[store_idx].inst->effAddr + store_size);
691        bool lower_load_has_store_part =
692            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
693                           store_size);
694        bool upper_load_has_store_part =
695            (req->getVaddr() + req->getSize()) >
696            storeQueue[store_idx].inst->effAddr;
697
698        // If the store's data has all of the data needed, we can forward.
699        if ((store_has_lower_limit && store_has_upper_limit)) {
700            // Get shift amount for offset into the store's data.
701            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
702
703            if (storeQueue[store_idx].isAllZeros)
704                memset(data, 0, req->getSize());
705            else
706                memcpy(data, storeQueue[store_idx].data + shift_amt,
707                   req->getSize());
708
709            assert(!load_inst->memData);
710            load_inst->memData = new uint8_t[req->getSize()];
711            if (storeQueue[store_idx].isAllZeros)
712                memset(load_inst->memData, 0, req->getSize());
713            else
714                memcpy(load_inst->memData,
715                    storeQueue[store_idx].data + shift_amt, req->getSize());
716
717            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
718                    "addr %#x\n", store_idx, req->getVaddr());
719
720            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
721            data_pkt->dataStatic(load_inst->memData);
722
723            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
724
725            // We'll say this has a 1 cycle load-store forwarding latency
726            // for now.
727            // @todo: Need to make this a parameter.
728            cpu->schedule(wb, curTick());
729
730            // Don't need to do anything special for split loads.
731            if (TheISA::HasUnalignedMemAcc && sreqLow) {
732                delete sreqLow;
733                delete sreqHigh;
734            }
735
736            ++lsqForwLoads;
737            return NoFault;
738        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
739                   (store_has_upper_limit && upper_load_has_store_part) ||
740                   (lower_load_has_store_part && upper_load_has_store_part)) {
741            // This is the partial store-load forwarding case where a store
742            // has only part of the load's data.
743
744            // If it's already been written back, then don't worry about
745            // stalling on it.
746            if (storeQueue[store_idx].completed) {
747                panic("Should not check one of these");
748                continue;
749            }
750
751            // Must stall load and force it to retry, so long as it's the oldest
752            // load that needs to do so.
753            if (!stalled ||
754                (stalled &&
755                 load_inst->seqNum <
756                 loadQueue[stallingLoadIdx]->seqNum)) {
757                stalled = true;
758                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
759                stallingLoadIdx = load_idx;
760            }
761
762            // Tell IQ/mem dep unit that this instruction will need to be
763            // rescheduled eventually
764            iewStage->rescheduleMemInst(load_inst);
765            iewStage->decrWb(load_inst->seqNum);
766            load_inst->clearIssued();
767            ++lsqRescheduledLoads;
768
769            // Do not generate a writeback event as this instruction is not
770            // complete.
771            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
772                    "Store idx %i to load addr %#x\n",
773                    store_idx, req->getVaddr());
774
775            // Must delete request now that it wasn't handed off to
776            // memory.  This is quite ugly.  @todo: Figure out the
777            // proper place to really handle request deletes.
778            delete req;
779            if (TheISA::HasUnalignedMemAcc && sreqLow) {
780                delete sreqLow;
781                delete sreqHigh;
782            }
783
784            return NoFault;
785        }
786    }
787
788    // If there's no forwarding case, then go access memory
789    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
790            load_inst->seqNum, load_inst->pcState());
791
792    assert(!load_inst->memData);
793    load_inst->memData = new uint8_t[req->getSize()];
794
795    ++usedPorts;
796
797    // if we the cache is not blocked, do cache access
798    bool completedFirst = false;
799    if (!lsq->cacheBlocked()) {
800        MemCmd command =
801            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
802        PacketPtr data_pkt = new Packet(req, command);
803        PacketPtr fst_data_pkt = NULL;
804        PacketPtr snd_data_pkt = NULL;
805
806        data_pkt->dataStatic(load_inst->memData);
807
808        LSQSenderState *state = new LSQSenderState;
809        state->isLoad = true;
810        state->idx = load_idx;
811        state->inst = load_inst;
812        data_pkt->senderState = state;
813
814        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
815
816            // Point the first packet at the main data packet.
817            fst_data_pkt = data_pkt;
818        } else {
819
820            // Create the split packets.
821            fst_data_pkt = new Packet(sreqLow, command);
822            snd_data_pkt = new Packet(sreqHigh, command);
823
824            fst_data_pkt->dataStatic(load_inst->memData);
825            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
826
827            fst_data_pkt->senderState = state;
828            snd_data_pkt->senderState = state;
829
830            state->isSplit = true;
831            state->outstanding = 2;
832            state->mainPkt = data_pkt;
833        }
834
835        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
836            // Delete state and data packet because a load retry
837            // initiates a pipeline restart; it does not retry.
838            delete state;
839            delete data_pkt->req;
840            delete data_pkt;
841            if (TheISA::HasUnalignedMemAcc && sreqLow) {
842                delete fst_data_pkt->req;
843                delete fst_data_pkt;
844                delete snd_data_pkt->req;
845                delete snd_data_pkt;
846                sreqLow = NULL;
847                sreqHigh = NULL;
848            }
849
850            req = NULL;
851
852            // If the access didn't succeed, tell the LSQ by setting
853            // the retry thread id.
854            lsq->setRetryTid(lsqID);
855        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
856            completedFirst = true;
857
858            // The first packet was sent without problems, so send this one
859            // too. If there is a problem with this packet then the whole
860            // load will be squashed, so indicate this to the state object.
861            // The first packet will return in completeDataAccess and be
862            // handled there.
863            ++usedPorts;
864            if (!dcachePort->sendTimingReq(snd_data_pkt)) {
865
866                // The main packet will be deleted in completeDataAccess.
867                delete snd_data_pkt->req;
868                delete snd_data_pkt;
869
870                state->complete();
871
872                req = NULL;
873                sreqHigh = NULL;
874
875                lsq->setRetryTid(lsqID);
876            }
877        }
878    }
879
880    // If the cache was blocked, or has become blocked due to the access,
881    // handle it.
882    if (lsq->cacheBlocked()) {
883        if (req)
884            delete req;
885        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
886            delete sreqLow;
887            delete sreqHigh;
888        }
889
890        ++lsqCacheBlocked;
891
892        // If the first part of a split access succeeds, then let the LSQ
893        // handle the decrWb when completeDataAccess is called upon return
894        // of the requested first part of data
895        if (!completedFirst)
896            iewStage->decrWb(load_inst->seqNum);
897
898        // There's an older load that's already going to squash.
899        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
900            return NoFault;
901
902        // Record that the load was blocked due to memory.  This
903        // load will squash all instructions after it, be
904        // refetched, and re-executed.
905        isLoadBlocked = true;
906        loadBlockedHandled = false;
907        blockedLoadSeqNum = load_inst->seqNum;
908        // No fault occurred, even though the interface is blocked.
909        return NoFault;
910    }
911
912    return NoFault;
913}
914
915template <class Impl>
916Fault
917LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
918                     uint8_t *data, int store_idx)
919{
920    assert(storeQueue[store_idx].inst);
921
922    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x"
923            " | storeHead:%i [sn:%i]\n",
924            store_idx, req->getPaddr(), storeHead,
925            storeQueue[store_idx].inst->seqNum);
926
927    storeQueue[store_idx].req = req;
928    storeQueue[store_idx].sreqLow = sreqLow;
929    storeQueue[store_idx].sreqHigh = sreqHigh;
930    unsigned size = req->getSize();
931    storeQueue[store_idx].size = size;
932    storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO;
933    assert(size <= sizeof(storeQueue[store_idx].data) ||
934            (req->getFlags() & Request::CACHE_BLOCK_ZERO));
935
936    // Split stores can only occur in ISAs with unaligned memory accesses.  If
937    // a store request has been split, sreqLow and sreqHigh will be non-null.
938    if (TheISA::HasUnalignedMemAcc && sreqLow) {
939        storeQueue[store_idx].isSplit = true;
940    }
941
942    if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO))
943        memcpy(storeQueue[store_idx].data, data, size);
944
945    // This function only writes the data to the store queue, so no fault
946    // can happen here.
947    return NoFault;
948}
949
950#endif // __CPU_O3_LSQ_UNIT_HH__
951