lsq_unit.hh revision 10239
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2013 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_LSQ_UNIT_HH__ 46#define __CPU_O3_LSQ_UNIT_HH__ 47 48#include <algorithm> 49#include <cstring> 50#include <map> 51#include <queue> 52 53#include "arch/generic/debugfaults.hh" 54#include "arch/isa_traits.hh" 55#include "arch/locked_mem.hh" 56#include "arch/mmapped_ipr.hh" 57#include "base/hashmap.hh" 58#include "config/the_isa.hh" 59#include "cpu/inst_seq.hh" 60#include "cpu/timebuf.hh" 61#include "debug/LSQUnit.hh" 62#include "mem/packet.hh" 63#include "mem/port.hh" 64#include "sim/fault_fwd.hh" 65 66struct DerivO3CPUParams; 67 68/** 69 * Class that implements the actual LQ and SQ for each specific 70 * thread. Both are circular queues; load entries are freed upon 71 * committing, while store entries are freed once they writeback. The 72 * LSQUnit tracks if there are memory ordering violations, and also 73 * detects partial load to store forwarding cases (a store only has 74 * part of a load's data) that requires the load to wait until the 75 * store writes back. In the former case it holds onto the instruction 76 * until the dependence unit looks at it, and in the latter it stalls 77 * the LSQ until the store writes back. At that point the load is 78 * replayed. 79 */ 80template <class Impl> 81class LSQUnit { 82 public: 83 typedef typename Impl::O3CPU O3CPU; 84 typedef typename Impl::DynInstPtr DynInstPtr; 85 typedef typename Impl::CPUPol::IEW IEW; 86 typedef typename Impl::CPUPol::LSQ LSQ; 87 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 88 89 public: 90 /** Constructs an LSQ unit. init() must be called prior to use. */ 91 LSQUnit(); 92 93 /** Initializes the LSQ unit with the specified number of entries. */ 94 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 95 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 96 unsigned id); 97 98 /** Returns the name of the LSQ unit. */ 99 std::string name() const; 100 101 /** Registers statistics. */ 102 void regStats(); 103 104 /** Sets the pointer to the dcache port. */ 105 void setDcachePort(MasterPort *dcache_port); 106 107 /** Perform sanity checks after a drain. */ 108 void drainSanityCheck() const; 109 110 /** Takes over from another CPU's thread. */ 111 void takeOverFrom(); 112 113 /** Ticks the LSQ unit, which in this case only resets the number of 114 * used cache ports. 115 * @todo: Move the number of used ports up to the LSQ level so it can 116 * be shared by all LSQ units. 117 */ 118 void tick() { usedPorts = 0; } 119 120 /** Inserts an instruction. */ 121 void insert(DynInstPtr &inst); 122 /** Inserts a load instruction. */ 123 void insertLoad(DynInstPtr &load_inst); 124 /** Inserts a store instruction. */ 125 void insertStore(DynInstPtr &store_inst); 126 127 /** Check for ordering violations in the LSQ. For a store squash if we 128 * ever find a conflicting load. For a load, only squash if we 129 * an external snoop invalidate has been seen for that load address 130 * @param load_idx index to start checking at 131 * @param inst the instruction to check 132 */ 133 Fault checkViolations(int load_idx, DynInstPtr &inst); 134 135 /** Check if an incoming invalidate hits in the lsq on a load 136 * that might have issued out of order wrt another load beacuse 137 * of the intermediate invalidate. 138 */ 139 void checkSnoop(PacketPtr pkt); 140 141 /** Executes a load instruction. */ 142 Fault executeLoad(DynInstPtr &inst); 143 144 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 145 /** Executes a store instruction. */ 146 Fault executeStore(DynInstPtr &inst); 147 148 /** Commits the head load. */ 149 void commitLoad(); 150 /** Commits loads older than a specific sequence number. */ 151 void commitLoads(InstSeqNum &youngest_inst); 152 153 /** Commits stores older than a specific sequence number. */ 154 void commitStores(InstSeqNum &youngest_inst); 155 156 /** Writes back stores. */ 157 void writebackStores(); 158 159 /** Completes the data access that has been returned from the 160 * memory system. */ 161 void completeDataAccess(PacketPtr pkt); 162 163 /** Clears all the entries in the LQ. */ 164 void clearLQ(); 165 166 /** Clears all the entries in the SQ. */ 167 void clearSQ(); 168 169 /** Resizes the LQ to a given size. */ 170 void resizeLQ(unsigned size); 171 172 /** Resizes the SQ to a given size. */ 173 void resizeSQ(unsigned size); 174 175 /** Squashes all instructions younger than a specific sequence number. */ 176 void squash(const InstSeqNum &squashed_num); 177 178 /** Returns if there is a memory ordering violation. Value is reset upon 179 * call to getMemDepViolator(). 180 */ 181 bool violation() { return memDepViolator; } 182 183 /** Returns the memory ordering violator. */ 184 DynInstPtr getMemDepViolator(); 185 186 /** Returns if a load became blocked due to the memory system. */ 187 bool loadBlocked() 188 { return isLoadBlocked; } 189 190 /** Clears the signal that a load became blocked. */ 191 void clearLoadBlocked() 192 { isLoadBlocked = false; } 193 194 /** Returns if the blocked load was handled. */ 195 bool isLoadBlockedHandled() 196 { return loadBlockedHandled; } 197 198 /** Records the blocked load as being handled. */ 199 void setLoadBlockedHandled() 200 { loadBlockedHandled = true; } 201 202 /** Returns the number of free LQ entries. */ 203 unsigned numFreeLoadEntries(); 204 205 /** Returns the number of free SQ entries. */ 206 unsigned numFreeStoreEntries(); 207 208 /** Returns the number of loads in the LQ. */ 209 int numLoads() { return loads; } 210 211 /** Returns the number of stores in the SQ. */ 212 int numStores() { return stores; } 213 214 /** Returns if either the LQ or SQ is full. */ 215 bool isFull() { return lqFull() || sqFull(); } 216 217 /** Returns if both the LQ and SQ are empty. */ 218 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 219 220 /** Returns if the LQ is full. */ 221 bool lqFull() { return loads >= (LQEntries - 1); } 222 223 /** Returns if the SQ is full. */ 224 bool sqFull() { return stores >= (SQEntries - 1); } 225 226 /** Returns if the LQ is empty. */ 227 bool lqEmpty() const { return loads == 0; } 228 229 /** Returns if the SQ is empty. */ 230 bool sqEmpty() const { return stores == 0; } 231 232 /** Returns the number of instructions in the LSQ. */ 233 unsigned getCount() { return loads + stores; } 234 235 /** Returns if there are any stores to writeback. */ 236 bool hasStoresToWB() { return storesToWB; } 237 238 /** Returns the number of stores to writeback. */ 239 int numStoresToWB() { return storesToWB; } 240 241 /** Returns if the LSQ unit will writeback on this cycle. */ 242 bool willWB() { return storeQueue[storeWBIdx].canWB && 243 !storeQueue[storeWBIdx].completed && 244 !isStoreBlocked; } 245 246 /** Handles doing the retry. */ 247 void recvRetry(); 248 249 private: 250 /** Reset the LSQ state */ 251 void resetState(); 252 253 /** Writes back the instruction, sending it to IEW. */ 254 void writeback(DynInstPtr &inst, PacketPtr pkt); 255 256 /** Writes back a store that couldn't be completed the previous cycle. */ 257 void writebackPendingStore(); 258 259 /** Handles completing the send of a store to memory. */ 260 void storePostSend(PacketPtr pkt); 261 262 /** Completes the store at the specified index. */ 263 void completeStore(int store_idx); 264 265 /** Attempts to send a store to the cache. */ 266 bool sendStore(PacketPtr data_pkt); 267 268 /** Increments the given store index (circular queue). */ 269 inline void incrStIdx(int &store_idx) const; 270 /** Decrements the given store index (circular queue). */ 271 inline void decrStIdx(int &store_idx) const; 272 /** Increments the given load index (circular queue). */ 273 inline void incrLdIdx(int &load_idx) const; 274 /** Decrements the given load index (circular queue). */ 275 inline void decrLdIdx(int &load_idx) const; 276 277 public: 278 /** Debugging function to dump instructions in the LSQ. */ 279 void dumpInsts() const; 280 281 private: 282 /** Pointer to the CPU. */ 283 O3CPU *cpu; 284 285 /** Pointer to the IEW stage. */ 286 IEW *iewStage; 287 288 /** Pointer to the LSQ. */ 289 LSQ *lsq; 290 291 /** Pointer to the dcache port. Used only for sending. */ 292 MasterPort *dcachePort; 293 294 /** Derived class to hold any sender state the LSQ needs. */ 295 class LSQSenderState : public Packet::SenderState 296 { 297 public: 298 /** Default constructor. */ 299 LSQSenderState() 300 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 301 noWB(false), isSplit(false), pktToSend(false) 302 { } 303 304 /** Instruction who initiated the access to memory. */ 305 DynInstPtr inst; 306 /** The main packet from a split load, used during writeback. */ 307 PacketPtr mainPkt; 308 /** A second packet from a split store that needs sending. */ 309 PacketPtr pendingPacket; 310 /** The LQ/SQ index of the instruction. */ 311 uint8_t idx; 312 /** Number of outstanding packets to complete. */ 313 uint8_t outstanding; 314 /** Whether or not it is a load. */ 315 bool isLoad; 316 /** Whether or not the instruction will need to writeback. */ 317 bool noWB; 318 /** Whether or not this access is split in two. */ 319 bool isSplit; 320 /** Whether or not there is a packet that needs sending. */ 321 bool pktToSend; 322 323 /** Completes a packet and returns whether the access is finished. */ 324 inline bool complete() { return --outstanding == 0; } 325 }; 326 327 /** Writeback event, specifically for when stores forward data to loads. */ 328 class WritebackEvent : public Event { 329 public: 330 /** Constructs a writeback event. */ 331 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 332 333 /** Processes the writeback event. */ 334 void process(); 335 336 /** Returns the description of this event. */ 337 const char *description() const; 338 339 private: 340 /** Instruction whose results are being written back. */ 341 DynInstPtr inst; 342 343 /** The packet that would have been sent to memory. */ 344 PacketPtr pkt; 345 346 /** The pointer to the LSQ unit that issued the store. */ 347 LSQUnit<Impl> *lsqPtr; 348 }; 349 350 public: 351 struct SQEntry { 352 /** Constructs an empty store queue entry. */ 353 SQEntry() 354 : inst(NULL), req(NULL), size(0), 355 canWB(0), committed(0), completed(0) 356 { 357 std::memset(data, 0, sizeof(data)); 358 } 359 360 ~SQEntry() 361 { 362 inst = NULL; 363 } 364 365 /** Constructs a store queue entry for a given instruction. */ 366 SQEntry(DynInstPtr &_inst) 367 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 368 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 369 { 370 std::memset(data, 0, sizeof(data)); 371 } 372 /** The store data. */ 373 char data[16]; 374 /** The store instruction. */ 375 DynInstPtr inst; 376 /** The request for the store. */ 377 RequestPtr req; 378 /** The split requests for the store. */ 379 RequestPtr sreqLow; 380 RequestPtr sreqHigh; 381 /** The size of the store. */ 382 uint8_t size; 383 /** Whether or not the store is split into two requests. */ 384 bool isSplit; 385 /** Whether or not the store can writeback. */ 386 bool canWB; 387 /** Whether or not the store is committed. */ 388 bool committed; 389 /** Whether or not the store is completed. */ 390 bool completed; 391 /** Does this request write all zeros and thus doesn't 392 * have any data attached to it. Used for cache block zero 393 * style instructs (ARM DC ZVA; ALPHA WH64) 394 */ 395 bool isAllZeros; 396 }; 397 398 private: 399 /** The LSQUnit thread id. */ 400 ThreadID lsqID; 401 402 /** The store queue. */ 403 std::vector<SQEntry> storeQueue; 404 405 /** The load queue. */ 406 std::vector<DynInstPtr> loadQueue; 407 408 /** The number of LQ entries, plus a sentinel entry (circular queue). 409 * @todo: Consider having var that records the true number of LQ entries. 410 */ 411 unsigned LQEntries; 412 /** The number of SQ entries, plus a sentinel entry (circular queue). 413 * @todo: Consider having var that records the true number of SQ entries. 414 */ 415 unsigned SQEntries; 416 417 /** The number of places to shift addresses in the LSQ before checking 418 * for dependency violations 419 */ 420 unsigned depCheckShift; 421 422 /** Should loads be checked for dependency issues */ 423 bool checkLoads; 424 425 /** The number of load instructions in the LQ. */ 426 int loads; 427 /** The number of store instructions in the SQ. */ 428 int stores; 429 /** The number of store instructions in the SQ waiting to writeback. */ 430 int storesToWB; 431 432 /** The index of the head instruction in the LQ. */ 433 int loadHead; 434 /** The index of the tail instruction in the LQ. */ 435 int loadTail; 436 437 /** The index of the head instruction in the SQ. */ 438 int storeHead; 439 /** The index of the first instruction that may be ready to be 440 * written back, and has not yet been written back. 441 */ 442 int storeWBIdx; 443 /** The index of the tail instruction in the SQ. */ 444 int storeTail; 445 446 /// @todo Consider moving to a more advanced model with write vs read ports 447 /** The number of cache ports available each cycle. */ 448 int cachePorts; 449 450 /** The number of used cache ports in this cycle. */ 451 int usedPorts; 452 453 //list<InstSeqNum> mshrSeqNums; 454 455 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 456 Addr cacheBlockMask; 457 458 /** Wire to read information from the issue stage time queue. */ 459 typename TimeBuffer<IssueStruct>::wire fromIssue; 460 461 /** Whether or not the LSQ is stalled. */ 462 bool stalled; 463 /** The store that causes the stall due to partial store to load 464 * forwarding. 465 */ 466 InstSeqNum stallingStoreIsn; 467 /** The index of the above store. */ 468 int stallingLoadIdx; 469 470 /** The packet that needs to be retried. */ 471 PacketPtr retryPkt; 472 473 /** Whehter or not a store is blocked due to the memory system. */ 474 bool isStoreBlocked; 475 476 /** Whether or not a load is blocked due to the memory system. */ 477 bool isLoadBlocked; 478 479 /** Has the blocked load been handled. */ 480 bool loadBlockedHandled; 481 482 /** Whether or not a store is in flight. */ 483 bool storeInFlight; 484 485 /** The sequence number of the blocked load. */ 486 InstSeqNum blockedLoadSeqNum; 487 488 /** The oldest load that caused a memory ordering violation. */ 489 DynInstPtr memDepViolator; 490 491 /** Whether or not there is a packet that couldn't be sent because of 492 * a lack of cache ports. */ 493 bool hasPendingPkt; 494 495 /** The packet that is pending free cache ports. */ 496 PacketPtr pendingPkt; 497 498 /** Flag for memory model. */ 499 bool needsTSO; 500 501 // Will also need how many read/write ports the Dcache has. Or keep track 502 // of that in stage that is one level up, and only call executeLoad/Store 503 // the appropriate number of times. 504 /** Total number of loads forwaded from LSQ stores. */ 505 Stats::Scalar lsqForwLoads; 506 507 /** Total number of loads ignored due to invalid addresses. */ 508 Stats::Scalar invAddrLoads; 509 510 /** Total number of squashed loads. */ 511 Stats::Scalar lsqSquashedLoads; 512 513 /** Total number of responses from the memory system that are 514 * ignored due to the instruction already being squashed. */ 515 Stats::Scalar lsqIgnoredResponses; 516 517 /** Tota number of memory ordering violations. */ 518 Stats::Scalar lsqMemOrderViolation; 519 520 /** Total number of squashed stores. */ 521 Stats::Scalar lsqSquashedStores; 522 523 /** Total number of software prefetches ignored due to invalid addresses. */ 524 Stats::Scalar invAddrSwpfs; 525 526 /** Ready loads blocked due to partial store-forwarding. */ 527 Stats::Scalar lsqBlockedLoads; 528 529 /** Number of loads that were rescheduled. */ 530 Stats::Scalar lsqRescheduledLoads; 531 532 /** Number of times the LSQ is blocked due to the cache. */ 533 Stats::Scalar lsqCacheBlocked; 534 535 public: 536 /** Executes the load at the given index. */ 537 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 538 uint8_t *data, int load_idx); 539 540 /** Executes the store at the given index. */ 541 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 542 uint8_t *data, int store_idx); 543 544 /** Returns the index of the head load instruction. */ 545 int getLoadHead() { return loadHead; } 546 /** Returns the sequence number of the head load instruction. */ 547 InstSeqNum getLoadHeadSeqNum() 548 { 549 if (loadQueue[loadHead]) { 550 return loadQueue[loadHead]->seqNum; 551 } else { 552 return 0; 553 } 554 555 } 556 557 /** Returns the index of the head store instruction. */ 558 int getStoreHead() { return storeHead; } 559 /** Returns the sequence number of the head store instruction. */ 560 InstSeqNum getStoreHeadSeqNum() 561 { 562 if (storeQueue[storeHead].inst) { 563 return storeQueue[storeHead].inst->seqNum; 564 } else { 565 return 0; 566 } 567 568 } 569 570 /** Returns whether or not the LSQ unit is stalled. */ 571 bool isStalled() { return stalled; } 572}; 573 574template <class Impl> 575Fault 576LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 577 uint8_t *data, int load_idx) 578{ 579 DynInstPtr load_inst = loadQueue[load_idx]; 580 581 assert(load_inst); 582 583 assert(!load_inst->isExecuted()); 584 585 // Make sure this isn't an uncacheable access 586 // A bit of a hackish way to get uncached accesses to work only if they're 587 // at the head of the LSQ and are ready to commit (at the head of the ROB 588 // too). 589 if (req->isUncacheable() && 590 (load_idx != loadHead || !load_inst->isAtCommit())) { 591 iewStage->rescheduleMemInst(load_inst); 592 ++lsqRescheduledLoads; 593 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 594 load_inst->seqNum, load_inst->pcState()); 595 596 // Must delete request now that it wasn't handed off to 597 // memory. This is quite ugly. @todo: Figure out the proper 598 // place to really handle request deletes. 599 delete req; 600 if (TheISA::HasUnalignedMemAcc && sreqLow) { 601 delete sreqLow; 602 delete sreqHigh; 603 } 604 return new GenericISA::M5PanicFault( 605 "Uncachable load [sn:%llx] PC %s\n", 606 load_inst->seqNum, load_inst->pcState()); 607 } 608 609 // Check the SQ for any previous stores that might lead to forwarding 610 int store_idx = load_inst->sqIdx; 611 612 int store_size = 0; 613 614 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 615 "storeHead: %i addr: %#x%s\n", 616 load_idx, store_idx, storeHead, req->getPaddr(), 617 sreqLow ? " split" : ""); 618 619 if (req->isLLSC()) { 620 assert(!sreqLow); 621 // Disable recording the result temporarily. Writing to misc 622 // regs normally updates the result, but this is not the 623 // desired behavior when handling store conditionals. 624 load_inst->recordResult(false); 625 TheISA::handleLockedRead(load_inst.get(), req); 626 load_inst->recordResult(true); 627 } 628 629 if (req->isMmappedIpr()) { 630 assert(!load_inst->memData); 631 load_inst->memData = new uint8_t[64]; 632 633 ThreadContext *thread = cpu->tcBase(lsqID); 634 Cycles delay(0); 635 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 636 637 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 638 data_pkt->dataStatic(load_inst->memData); 639 delay = TheISA::handleIprRead(thread, data_pkt); 640 } else { 641 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 642 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 643 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 644 645 fst_data_pkt->dataStatic(load_inst->memData); 646 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 647 648 delay = TheISA::handleIprRead(thread, fst_data_pkt); 649 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 650 if (delay2 > delay) 651 delay = delay2; 652 653 delete sreqLow; 654 delete sreqHigh; 655 delete fst_data_pkt; 656 delete snd_data_pkt; 657 } 658 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 659 cpu->schedule(wb, cpu->clockEdge(delay)); 660 return NoFault; 661 } 662 663 while (store_idx != -1) { 664 // End once we've reached the top of the LSQ 665 if (store_idx == storeWBIdx) { 666 break; 667 } 668 669 // Move the index to one younger 670 if (--store_idx < 0) 671 store_idx += SQEntries; 672 673 assert(storeQueue[store_idx].inst); 674 675 store_size = storeQueue[store_idx].size; 676 677 if (store_size == 0) 678 continue; 679 else if (storeQueue[store_idx].inst->uncacheable()) 680 continue; 681 682 assert(storeQueue[store_idx].inst->effAddrValid()); 683 684 // Check if the store data is within the lower and upper bounds of 685 // addresses that the request needs. 686 bool store_has_lower_limit = 687 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 688 bool store_has_upper_limit = 689 (req->getVaddr() + req->getSize()) <= 690 (storeQueue[store_idx].inst->effAddr + store_size); 691 bool lower_load_has_store_part = 692 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 693 store_size); 694 bool upper_load_has_store_part = 695 (req->getVaddr() + req->getSize()) > 696 storeQueue[store_idx].inst->effAddr; 697 698 // If the store's data has all of the data needed, we can forward. 699 if ((store_has_lower_limit && store_has_upper_limit)) { 700 // Get shift amount for offset into the store's data. 701 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 702 703 if (storeQueue[store_idx].isAllZeros) 704 memset(data, 0, req->getSize()); 705 else 706 memcpy(data, storeQueue[store_idx].data + shift_amt, 707 req->getSize()); 708 709 assert(!load_inst->memData); 710 load_inst->memData = new uint8_t[req->getSize()]; 711 if (storeQueue[store_idx].isAllZeros) 712 memset(load_inst->memData, 0, req->getSize()); 713 else 714 memcpy(load_inst->memData, 715 storeQueue[store_idx].data + shift_amt, req->getSize()); 716 717 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 718 "addr %#x\n", store_idx, req->getVaddr()); 719 720 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 721 data_pkt->dataStatic(load_inst->memData); 722 723 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 724 725 // We'll say this has a 1 cycle load-store forwarding latency 726 // for now. 727 // @todo: Need to make this a parameter. 728 cpu->schedule(wb, curTick()); 729 730 // Don't need to do anything special for split loads. 731 if (TheISA::HasUnalignedMemAcc && sreqLow) { 732 delete sreqLow; 733 delete sreqHigh; 734 } 735 736 ++lsqForwLoads; 737 return NoFault; 738 } else if ((store_has_lower_limit && lower_load_has_store_part) || 739 (store_has_upper_limit && upper_load_has_store_part) || 740 (lower_load_has_store_part && upper_load_has_store_part)) { 741 // This is the partial store-load forwarding case where a store 742 // has only part of the load's data. 743 744 // If it's already been written back, then don't worry about 745 // stalling on it. 746 if (storeQueue[store_idx].completed) { 747 panic("Should not check one of these"); 748 continue; 749 } 750 751 // Must stall load and force it to retry, so long as it's the oldest 752 // load that needs to do so. 753 if (!stalled || 754 (stalled && 755 load_inst->seqNum < 756 loadQueue[stallingLoadIdx]->seqNum)) { 757 stalled = true; 758 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 759 stallingLoadIdx = load_idx; 760 } 761 762 // Tell IQ/mem dep unit that this instruction will need to be 763 // rescheduled eventually 764 iewStage->rescheduleMemInst(load_inst); 765 iewStage->decrWb(load_inst->seqNum); 766 load_inst->clearIssued(); 767 ++lsqRescheduledLoads; 768 769 // Do not generate a writeback event as this instruction is not 770 // complete. 771 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 772 "Store idx %i to load addr %#x\n", 773 store_idx, req->getVaddr()); 774 775 // Must delete request now that it wasn't handed off to 776 // memory. This is quite ugly. @todo: Figure out the 777 // proper place to really handle request deletes. 778 delete req; 779 if (TheISA::HasUnalignedMemAcc && sreqLow) { 780 delete sreqLow; 781 delete sreqHigh; 782 } 783 784 return NoFault; 785 } 786 } 787 788 // If there's no forwarding case, then go access memory 789 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 790 load_inst->seqNum, load_inst->pcState()); 791 792 assert(!load_inst->memData); 793 load_inst->memData = new uint8_t[req->getSize()]; 794 795 ++usedPorts; 796 797 // if we the cache is not blocked, do cache access 798 bool completedFirst = false; 799 if (!lsq->cacheBlocked()) { 800 MemCmd command = 801 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 802 PacketPtr data_pkt = new Packet(req, command); 803 PacketPtr fst_data_pkt = NULL; 804 PacketPtr snd_data_pkt = NULL; 805 806 data_pkt->dataStatic(load_inst->memData); 807 808 LSQSenderState *state = new LSQSenderState; 809 state->isLoad = true; 810 state->idx = load_idx; 811 state->inst = load_inst; 812 data_pkt->senderState = state; 813 814 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 815 816 // Point the first packet at the main data packet. 817 fst_data_pkt = data_pkt; 818 } else { 819 820 // Create the split packets. 821 fst_data_pkt = new Packet(sreqLow, command); 822 snd_data_pkt = new Packet(sreqHigh, command); 823 824 fst_data_pkt->dataStatic(load_inst->memData); 825 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 826 827 fst_data_pkt->senderState = state; 828 snd_data_pkt->senderState = state; 829 830 state->isSplit = true; 831 state->outstanding = 2; 832 state->mainPkt = data_pkt; 833 } 834 835 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 836 // Delete state and data packet because a load retry 837 // initiates a pipeline restart; it does not retry. 838 delete state; 839 delete data_pkt->req; 840 delete data_pkt; 841 if (TheISA::HasUnalignedMemAcc && sreqLow) { 842 delete fst_data_pkt->req; 843 delete fst_data_pkt; 844 delete snd_data_pkt->req; 845 delete snd_data_pkt; 846 sreqLow = NULL; 847 sreqHigh = NULL; 848 } 849 850 req = NULL; 851 852 // If the access didn't succeed, tell the LSQ by setting 853 // the retry thread id. 854 lsq->setRetryTid(lsqID); 855 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 856 completedFirst = true; 857 858 // The first packet was sent without problems, so send this one 859 // too. If there is a problem with this packet then the whole 860 // load will be squashed, so indicate this to the state object. 861 // The first packet will return in completeDataAccess and be 862 // handled there. 863 ++usedPorts; 864 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 865 866 // The main packet will be deleted in completeDataAccess. 867 delete snd_data_pkt->req; 868 delete snd_data_pkt; 869 870 state->complete(); 871 872 req = NULL; 873 sreqHigh = NULL; 874 875 lsq->setRetryTid(lsqID); 876 } 877 } 878 } 879 880 // If the cache was blocked, or has become blocked due to the access, 881 // handle it. 882 if (lsq->cacheBlocked()) { 883 if (req) 884 delete req; 885 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 886 delete sreqLow; 887 delete sreqHigh; 888 } 889 890 ++lsqCacheBlocked; 891 892 // If the first part of a split access succeeds, then let the LSQ 893 // handle the decrWb when completeDataAccess is called upon return 894 // of the requested first part of data 895 if (!completedFirst) 896 iewStage->decrWb(load_inst->seqNum); 897 898 // There's an older load that's already going to squash. 899 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 900 return NoFault; 901 902 // Record that the load was blocked due to memory. This 903 // load will squash all instructions after it, be 904 // refetched, and re-executed. 905 isLoadBlocked = true; 906 loadBlockedHandled = false; 907 blockedLoadSeqNum = load_inst->seqNum; 908 // No fault occurred, even though the interface is blocked. 909 return NoFault; 910 } 911 912 return NoFault; 913} 914 915template <class Impl> 916Fault 917LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 918 uint8_t *data, int store_idx) 919{ 920 assert(storeQueue[store_idx].inst); 921 922 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" 923 " | storeHead:%i [sn:%i]\n", 924 store_idx, req->getPaddr(), storeHead, 925 storeQueue[store_idx].inst->seqNum); 926 927 storeQueue[store_idx].req = req; 928 storeQueue[store_idx].sreqLow = sreqLow; 929 storeQueue[store_idx].sreqHigh = sreqHigh; 930 unsigned size = req->getSize(); 931 storeQueue[store_idx].size = size; 932 storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO; 933 assert(size <= sizeof(storeQueue[store_idx].data) || 934 (req->getFlags() & Request::CACHE_BLOCK_ZERO)); 935 936 // Split stores can only occur in ISAs with unaligned memory accesses. If 937 // a store request has been split, sreqLow and sreqHigh will be non-null. 938 if (TheISA::HasUnalignedMemAcc && sreqLow) { 939 storeQueue[store_idx].isSplit = true; 940 } 941 942 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO)) 943 memcpy(storeQueue[store_idx].data, data, size); 944 945 // This function only writes the data to the store queue, so no fault 946 // can happen here. 947 return NoFault; 948} 949 950#endif // __CPU_O3_LSQ_UNIT_HH__ 951