lsq_unit.hh revision 10031
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 * Korey Sewell 42 */ 43 44#ifndef __CPU_O3_LSQ_UNIT_HH__ 45#define __CPU_O3_LSQ_UNIT_HH__ 46 47#include <algorithm> 48#include <cstring> 49#include <map> 50#include <queue> 51 52#include "arch/generic/debugfaults.hh" 53#include "arch/isa_traits.hh" 54#include "arch/locked_mem.hh" 55#include "arch/mmapped_ipr.hh" 56#include "base/hashmap.hh" 57#include "config/the_isa.hh" 58#include "cpu/inst_seq.hh" 59#include "cpu/timebuf.hh" 60#include "debug/LSQUnit.hh" 61#include "mem/packet.hh" 62#include "mem/port.hh" 63#include "sim/fault_fwd.hh" 64 65struct DerivO3CPUParams; 66 67/** 68 * Class that implements the actual LQ and SQ for each specific 69 * thread. Both are circular queues; load entries are freed upon 70 * committing, while store entries are freed once they writeback. The 71 * LSQUnit tracks if there are memory ordering violations, and also 72 * detects partial load to store forwarding cases (a store only has 73 * part of a load's data) that requires the load to wait until the 74 * store writes back. In the former case it holds onto the instruction 75 * until the dependence unit looks at it, and in the latter it stalls 76 * the LSQ until the store writes back. At that point the load is 77 * replayed. 78 */ 79template <class Impl> 80class LSQUnit { 81 public: 82 typedef typename Impl::O3CPU O3CPU; 83 typedef typename Impl::DynInstPtr DynInstPtr; 84 typedef typename Impl::CPUPol::IEW IEW; 85 typedef typename Impl::CPUPol::LSQ LSQ; 86 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 87 88 public: 89 /** Constructs an LSQ unit. init() must be called prior to use. */ 90 LSQUnit(); 91 92 /** Initializes the LSQ unit with the specified number of entries. */ 93 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 94 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 95 unsigned id); 96 97 /** Returns the name of the LSQ unit. */ 98 std::string name() const; 99 100 /** Registers statistics. */ 101 void regStats(); 102 103 /** Sets the pointer to the dcache port. */ 104 void setDcachePort(MasterPort *dcache_port); 105 106 /** Perform sanity checks after a drain. */ 107 void drainSanityCheck() const; 108 109 /** Takes over from another CPU's thread. */ 110 void takeOverFrom(); 111 112 /** Ticks the LSQ unit, which in this case only resets the number of 113 * used cache ports. 114 * @todo: Move the number of used ports up to the LSQ level so it can 115 * be shared by all LSQ units. 116 */ 117 void tick() { usedPorts = 0; } 118 119 /** Inserts an instruction. */ 120 void insert(DynInstPtr &inst); 121 /** Inserts a load instruction. */ 122 void insertLoad(DynInstPtr &load_inst); 123 /** Inserts a store instruction. */ 124 void insertStore(DynInstPtr &store_inst); 125 126 /** Check for ordering violations in the LSQ. For a store squash if we 127 * ever find a conflicting load. For a load, only squash if we 128 * an external snoop invalidate has been seen for that load address 129 * @param load_idx index to start checking at 130 * @param inst the instruction to check 131 */ 132 Fault checkViolations(int load_idx, DynInstPtr &inst); 133 134 /** Check if an incoming invalidate hits in the lsq on a load 135 * that might have issued out of order wrt another load beacuse 136 * of the intermediate invalidate. 137 */ 138 void checkSnoop(PacketPtr pkt); 139 140 /** Executes a load instruction. */ 141 Fault executeLoad(DynInstPtr &inst); 142 143 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 144 /** Executes a store instruction. */ 145 Fault executeStore(DynInstPtr &inst); 146 147 /** Commits the head load. */ 148 void commitLoad(); 149 /** Commits loads older than a specific sequence number. */ 150 void commitLoads(InstSeqNum &youngest_inst); 151 152 /** Commits stores older than a specific sequence number. */ 153 void commitStores(InstSeqNum &youngest_inst); 154 155 /** Writes back stores. */ 156 void writebackStores(); 157 158 /** Completes the data access that has been returned from the 159 * memory system. */ 160 void completeDataAccess(PacketPtr pkt); 161 162 /** Clears all the entries in the LQ. */ 163 void clearLQ(); 164 165 /** Clears all the entries in the SQ. */ 166 void clearSQ(); 167 168 /** Resizes the LQ to a given size. */ 169 void resizeLQ(unsigned size); 170 171 /** Resizes the SQ to a given size. */ 172 void resizeSQ(unsigned size); 173 174 /** Squashes all instructions younger than a specific sequence number. */ 175 void squash(const InstSeqNum &squashed_num); 176 177 /** Returns if there is a memory ordering violation. Value is reset upon 178 * call to getMemDepViolator(). 179 */ 180 bool violation() { return memDepViolator; } 181 182 /** Returns the memory ordering violator. */ 183 DynInstPtr getMemDepViolator(); 184 185 /** Returns if a load became blocked due to the memory system. */ 186 bool loadBlocked() 187 { return isLoadBlocked; } 188 189 /** Clears the signal that a load became blocked. */ 190 void clearLoadBlocked() 191 { isLoadBlocked = false; } 192 193 /** Returns if the blocked load was handled. */ 194 bool isLoadBlockedHandled() 195 { return loadBlockedHandled; } 196 197 /** Records the blocked load as being handled. */ 198 void setLoadBlockedHandled() 199 { loadBlockedHandled = true; } 200 201 /** Returns the number of free entries (min of free LQ and SQ entries). */ 202 unsigned numFreeEntries(); 203 204 /** Returns the number of loads in the LQ. */ 205 int numLoads() { return loads; } 206 207 /** Returns the number of stores in the SQ. */ 208 int numStores() { return stores; } 209 210 /** Returns if either the LQ or SQ is full. */ 211 bool isFull() { return lqFull() || sqFull(); } 212 213 /** Returns if both the LQ and SQ are empty. */ 214 bool isEmpty() const { return lqEmpty() && sqEmpty(); } 215 216 /** Returns if the LQ is full. */ 217 bool lqFull() { return loads >= (LQEntries - 1); } 218 219 /** Returns if the SQ is full. */ 220 bool sqFull() { return stores >= (SQEntries - 1); } 221 222 /** Returns if the LQ is empty. */ 223 bool lqEmpty() const { return loads == 0; } 224 225 /** Returns if the SQ is empty. */ 226 bool sqEmpty() const { return stores == 0; } 227 228 /** Returns the number of instructions in the LSQ. */ 229 unsigned getCount() { return loads + stores; } 230 231 /** Returns if there are any stores to writeback. */ 232 bool hasStoresToWB() { return storesToWB; } 233 234 /** Returns the number of stores to writeback. */ 235 int numStoresToWB() { return storesToWB; } 236 237 /** Returns if the LSQ unit will writeback on this cycle. */ 238 bool willWB() { return storeQueue[storeWBIdx].canWB && 239 !storeQueue[storeWBIdx].completed && 240 !isStoreBlocked; } 241 242 /** Handles doing the retry. */ 243 void recvRetry(); 244 245 private: 246 /** Reset the LSQ state */ 247 void resetState(); 248 249 /** Writes back the instruction, sending it to IEW. */ 250 void writeback(DynInstPtr &inst, PacketPtr pkt); 251 252 /** Writes back a store that couldn't be completed the previous cycle. */ 253 void writebackPendingStore(); 254 255 /** Handles completing the send of a store to memory. */ 256 void storePostSend(PacketPtr pkt); 257 258 /** Completes the store at the specified index. */ 259 void completeStore(int store_idx); 260 261 /** Attempts to send a store to the cache. */ 262 bool sendStore(PacketPtr data_pkt); 263 264 /** Increments the given store index (circular queue). */ 265 inline void incrStIdx(int &store_idx) const; 266 /** Decrements the given store index (circular queue). */ 267 inline void decrStIdx(int &store_idx) const; 268 /** Increments the given load index (circular queue). */ 269 inline void incrLdIdx(int &load_idx) const; 270 /** Decrements the given load index (circular queue). */ 271 inline void decrLdIdx(int &load_idx) const; 272 273 public: 274 /** Debugging function to dump instructions in the LSQ. */ 275 void dumpInsts() const; 276 277 private: 278 /** Pointer to the CPU. */ 279 O3CPU *cpu; 280 281 /** Pointer to the IEW stage. */ 282 IEW *iewStage; 283 284 /** Pointer to the LSQ. */ 285 LSQ *lsq; 286 287 /** Pointer to the dcache port. Used only for sending. */ 288 MasterPort *dcachePort; 289 290 /** Derived class to hold any sender state the LSQ needs. */ 291 class LSQSenderState : public Packet::SenderState 292 { 293 public: 294 /** Default constructor. */ 295 LSQSenderState() 296 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 297 noWB(false), isSplit(false), pktToSend(false) 298 { } 299 300 /** Instruction who initiated the access to memory. */ 301 DynInstPtr inst; 302 /** The main packet from a split load, used during writeback. */ 303 PacketPtr mainPkt; 304 /** A second packet from a split store that needs sending. */ 305 PacketPtr pendingPacket; 306 /** The LQ/SQ index of the instruction. */ 307 uint8_t idx; 308 /** Number of outstanding packets to complete. */ 309 uint8_t outstanding; 310 /** Whether or not it is a load. */ 311 bool isLoad; 312 /** Whether or not the instruction will need to writeback. */ 313 bool noWB; 314 /** Whether or not this access is split in two. */ 315 bool isSplit; 316 /** Whether or not there is a packet that needs sending. */ 317 bool pktToSend; 318 319 /** Completes a packet and returns whether the access is finished. */ 320 inline bool complete() { return --outstanding == 0; } 321 }; 322 323 /** Writeback event, specifically for when stores forward data to loads. */ 324 class WritebackEvent : public Event { 325 public: 326 /** Constructs a writeback event. */ 327 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 328 329 /** Processes the writeback event. */ 330 void process(); 331 332 /** Returns the description of this event. */ 333 const char *description() const; 334 335 private: 336 /** Instruction whose results are being written back. */ 337 DynInstPtr inst; 338 339 /** The packet that would have been sent to memory. */ 340 PacketPtr pkt; 341 342 /** The pointer to the LSQ unit that issued the store. */ 343 LSQUnit<Impl> *lsqPtr; 344 }; 345 346 public: 347 struct SQEntry { 348 /** Constructs an empty store queue entry. */ 349 SQEntry() 350 : inst(NULL), req(NULL), size(0), 351 canWB(0), committed(0), completed(0) 352 { 353 std::memset(data, 0, sizeof(data)); 354 } 355 356 ~SQEntry() 357 { 358 inst = NULL; 359 } 360 361 /** Constructs a store queue entry for a given instruction. */ 362 SQEntry(DynInstPtr &_inst) 363 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 364 isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) 365 { 366 std::memset(data, 0, sizeof(data)); 367 } 368 /** The store data. */ 369 char data[16]; 370 /** The store instruction. */ 371 DynInstPtr inst; 372 /** The request for the store. */ 373 RequestPtr req; 374 /** The split requests for the store. */ 375 RequestPtr sreqLow; 376 RequestPtr sreqHigh; 377 /** The size of the store. */ 378 uint8_t size; 379 /** Whether or not the store is split into two requests. */ 380 bool isSplit; 381 /** Whether or not the store can writeback. */ 382 bool canWB; 383 /** Whether or not the store is committed. */ 384 bool committed; 385 /** Whether or not the store is completed. */ 386 bool completed; 387 /** Does this request write all zeros and thus doesn't 388 * have any data attached to it. Used for cache block zero 389 * style instructs (ARM DC ZVA; ALPHA WH64) 390 */ 391 bool isAllZeros; 392 }; 393 394 private: 395 /** The LSQUnit thread id. */ 396 ThreadID lsqID; 397 398 /** The store queue. */ 399 std::vector<SQEntry> storeQueue; 400 401 /** The load queue. */ 402 std::vector<DynInstPtr> loadQueue; 403 404 /** The number of LQ entries, plus a sentinel entry (circular queue). 405 * @todo: Consider having var that records the true number of LQ entries. 406 */ 407 unsigned LQEntries; 408 /** The number of SQ entries, plus a sentinel entry (circular queue). 409 * @todo: Consider having var that records the true number of SQ entries. 410 */ 411 unsigned SQEntries; 412 413 /** The number of places to shift addresses in the LSQ before checking 414 * for dependency violations 415 */ 416 unsigned depCheckShift; 417 418 /** Should loads be checked for dependency issues */ 419 bool checkLoads; 420 421 /** The number of load instructions in the LQ. */ 422 int loads; 423 /** The number of store instructions in the SQ. */ 424 int stores; 425 /** The number of store instructions in the SQ waiting to writeback. */ 426 int storesToWB; 427 428 /** The index of the head instruction in the LQ. */ 429 int loadHead; 430 /** The index of the tail instruction in the LQ. */ 431 int loadTail; 432 433 /** The index of the head instruction in the SQ. */ 434 int storeHead; 435 /** The index of the first instruction that may be ready to be 436 * written back, and has not yet been written back. 437 */ 438 int storeWBIdx; 439 /** The index of the tail instruction in the SQ. */ 440 int storeTail; 441 442 /// @todo Consider moving to a more advanced model with write vs read ports 443 /** The number of cache ports available each cycle. */ 444 int cachePorts; 445 446 /** The number of used cache ports in this cycle. */ 447 int usedPorts; 448 449 //list<InstSeqNum> mshrSeqNums; 450 451 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 452 Addr cacheBlockMask; 453 454 /** Wire to read information from the issue stage time queue. */ 455 typename TimeBuffer<IssueStruct>::wire fromIssue; 456 457 /** Whether or not the LSQ is stalled. */ 458 bool stalled; 459 /** The store that causes the stall due to partial store to load 460 * forwarding. 461 */ 462 InstSeqNum stallingStoreIsn; 463 /** The index of the above store. */ 464 int stallingLoadIdx; 465 466 /** The packet that needs to be retried. */ 467 PacketPtr retryPkt; 468 469 /** Whehter or not a store is blocked due to the memory system. */ 470 bool isStoreBlocked; 471 472 /** Whether or not a load is blocked due to the memory system. */ 473 bool isLoadBlocked; 474 475 /** Has the blocked load been handled. */ 476 bool loadBlockedHandled; 477 478 /** Whether or not a store is in flight. */ 479 bool storeInFlight; 480 481 /** The sequence number of the blocked load. */ 482 InstSeqNum blockedLoadSeqNum; 483 484 /** The oldest load that caused a memory ordering violation. */ 485 DynInstPtr memDepViolator; 486 487 /** Whether or not there is a packet that couldn't be sent because of 488 * a lack of cache ports. */ 489 bool hasPendingPkt; 490 491 /** The packet that is pending free cache ports. */ 492 PacketPtr pendingPkt; 493 494 /** Flag for memory model. */ 495 bool needsTSO; 496 497 // Will also need how many read/write ports the Dcache has. Or keep track 498 // of that in stage that is one level up, and only call executeLoad/Store 499 // the appropriate number of times. 500 /** Total number of loads forwaded from LSQ stores. */ 501 Stats::Scalar lsqForwLoads; 502 503 /** Total number of loads ignored due to invalid addresses. */ 504 Stats::Scalar invAddrLoads; 505 506 /** Total number of squashed loads. */ 507 Stats::Scalar lsqSquashedLoads; 508 509 /** Total number of responses from the memory system that are 510 * ignored due to the instruction already being squashed. */ 511 Stats::Scalar lsqIgnoredResponses; 512 513 /** Tota number of memory ordering violations. */ 514 Stats::Scalar lsqMemOrderViolation; 515 516 /** Total number of squashed stores. */ 517 Stats::Scalar lsqSquashedStores; 518 519 /** Total number of software prefetches ignored due to invalid addresses. */ 520 Stats::Scalar invAddrSwpfs; 521 522 /** Ready loads blocked due to partial store-forwarding. */ 523 Stats::Scalar lsqBlockedLoads; 524 525 /** Number of loads that were rescheduled. */ 526 Stats::Scalar lsqRescheduledLoads; 527 528 /** Number of times the LSQ is blocked due to the cache. */ 529 Stats::Scalar lsqCacheBlocked; 530 531 public: 532 /** Executes the load at the given index. */ 533 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 534 uint8_t *data, int load_idx); 535 536 /** Executes the store at the given index. */ 537 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 538 uint8_t *data, int store_idx); 539 540 /** Returns the index of the head load instruction. */ 541 int getLoadHead() { return loadHead; } 542 /** Returns the sequence number of the head load instruction. */ 543 InstSeqNum getLoadHeadSeqNum() 544 { 545 if (loadQueue[loadHead]) { 546 return loadQueue[loadHead]->seqNum; 547 } else { 548 return 0; 549 } 550 551 } 552 553 /** Returns the index of the head store instruction. */ 554 int getStoreHead() { return storeHead; } 555 /** Returns the sequence number of the head store instruction. */ 556 InstSeqNum getStoreHeadSeqNum() 557 { 558 if (storeQueue[storeHead].inst) { 559 return storeQueue[storeHead].inst->seqNum; 560 } else { 561 return 0; 562 } 563 564 } 565 566 /** Returns whether or not the LSQ unit is stalled. */ 567 bool isStalled() { return stalled; } 568}; 569 570template <class Impl> 571Fault 572LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 573 uint8_t *data, int load_idx) 574{ 575 DynInstPtr load_inst = loadQueue[load_idx]; 576 577 assert(load_inst); 578 579 assert(!load_inst->isExecuted()); 580 581 // Make sure this isn't an uncacheable access 582 // A bit of a hackish way to get uncached accesses to work only if they're 583 // at the head of the LSQ and are ready to commit (at the head of the ROB 584 // too). 585 if (req->isUncacheable() && 586 (load_idx != loadHead || !load_inst->isAtCommit())) { 587 iewStage->rescheduleMemInst(load_inst); 588 ++lsqRescheduledLoads; 589 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 590 load_inst->seqNum, load_inst->pcState()); 591 592 // Must delete request now that it wasn't handed off to 593 // memory. This is quite ugly. @todo: Figure out the proper 594 // place to really handle request deletes. 595 delete req; 596 if (TheISA::HasUnalignedMemAcc && sreqLow) { 597 delete sreqLow; 598 delete sreqHigh; 599 } 600 return new GenericISA::M5PanicFault( 601 "Uncachable load [sn:%llx] PC %s\n", 602 load_inst->seqNum, load_inst->pcState()); 603 } 604 605 // Check the SQ for any previous stores that might lead to forwarding 606 int store_idx = load_inst->sqIdx; 607 608 int store_size = 0; 609 610 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 611 "storeHead: %i addr: %#x%s\n", 612 load_idx, store_idx, storeHead, req->getPaddr(), 613 sreqLow ? " split" : ""); 614 615 if (req->isLLSC()) { 616 assert(!sreqLow); 617 // Disable recording the result temporarily. Writing to misc 618 // regs normally updates the result, but this is not the 619 // desired behavior when handling store conditionals. 620 load_inst->recordResult(false); 621 TheISA::handleLockedRead(load_inst.get(), req); 622 load_inst->recordResult(true); 623 } 624 625 if (req->isMmappedIpr()) { 626 assert(!load_inst->memData); 627 load_inst->memData = new uint8_t[64]; 628 629 ThreadContext *thread = cpu->tcBase(lsqID); 630 Cycles delay(0); 631 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 632 633 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 634 data_pkt->dataStatic(load_inst->memData); 635 delay = TheISA::handleIprRead(thread, data_pkt); 636 } else { 637 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 638 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 639 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 640 641 fst_data_pkt->dataStatic(load_inst->memData); 642 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 643 644 delay = TheISA::handleIprRead(thread, fst_data_pkt); 645 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 646 if (delay2 > delay) 647 delay = delay2; 648 649 delete sreqLow; 650 delete sreqHigh; 651 delete fst_data_pkt; 652 delete snd_data_pkt; 653 } 654 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 655 cpu->schedule(wb, cpu->clockEdge(delay)); 656 return NoFault; 657 } 658 659 while (store_idx != -1) { 660 // End once we've reached the top of the LSQ 661 if (store_idx == storeWBIdx) { 662 break; 663 } 664 665 // Move the index to one younger 666 if (--store_idx < 0) 667 store_idx += SQEntries; 668 669 assert(storeQueue[store_idx].inst); 670 671 store_size = storeQueue[store_idx].size; 672 673 if (store_size == 0) 674 continue; 675 else if (storeQueue[store_idx].inst->uncacheable()) 676 continue; 677 678 assert(storeQueue[store_idx].inst->effAddrValid()); 679 680 // Check if the store data is within the lower and upper bounds of 681 // addresses that the request needs. 682 bool store_has_lower_limit = 683 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 684 bool store_has_upper_limit = 685 (req->getVaddr() + req->getSize()) <= 686 (storeQueue[store_idx].inst->effAddr + store_size); 687 bool lower_load_has_store_part = 688 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 689 store_size); 690 bool upper_load_has_store_part = 691 (req->getVaddr() + req->getSize()) > 692 storeQueue[store_idx].inst->effAddr; 693 694 // If the store's data has all of the data needed, we can forward. 695 if ((store_has_lower_limit && store_has_upper_limit)) { 696 // Get shift amount for offset into the store's data. 697 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 698 699 if (storeQueue[store_idx].isAllZeros) 700 memset(data, 0, req->getSize()); 701 else 702 memcpy(data, storeQueue[store_idx].data + shift_amt, 703 req->getSize()); 704 705 assert(!load_inst->memData); 706 load_inst->memData = new uint8_t[req->getSize()]; 707 if (storeQueue[store_idx].isAllZeros) 708 memset(load_inst->memData, 0, req->getSize()); 709 else 710 memcpy(load_inst->memData, 711 storeQueue[store_idx].data + shift_amt, req->getSize()); 712 713 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 714 "addr %#x, data %#x\n", 715 store_idx, req->getVaddr(), data); 716 717 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 718 data_pkt->dataStatic(load_inst->memData); 719 720 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 721 722 // We'll say this has a 1 cycle load-store forwarding latency 723 // for now. 724 // @todo: Need to make this a parameter. 725 cpu->schedule(wb, curTick()); 726 727 // Don't need to do anything special for split loads. 728 if (TheISA::HasUnalignedMemAcc && sreqLow) { 729 delete sreqLow; 730 delete sreqHigh; 731 } 732 733 ++lsqForwLoads; 734 return NoFault; 735 } else if ((store_has_lower_limit && lower_load_has_store_part) || 736 (store_has_upper_limit && upper_load_has_store_part) || 737 (lower_load_has_store_part && upper_load_has_store_part)) { 738 // This is the partial store-load forwarding case where a store 739 // has only part of the load's data. 740 741 // If it's already been written back, then don't worry about 742 // stalling on it. 743 if (storeQueue[store_idx].completed) { 744 panic("Should not check one of these"); 745 continue; 746 } 747 748 // Must stall load and force it to retry, so long as it's the oldest 749 // load that needs to do so. 750 if (!stalled || 751 (stalled && 752 load_inst->seqNum < 753 loadQueue[stallingLoadIdx]->seqNum)) { 754 stalled = true; 755 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 756 stallingLoadIdx = load_idx; 757 } 758 759 // Tell IQ/mem dep unit that this instruction will need to be 760 // rescheduled eventually 761 iewStage->rescheduleMemInst(load_inst); 762 iewStage->decrWb(load_inst->seqNum); 763 load_inst->clearIssued(); 764 ++lsqRescheduledLoads; 765 766 // Do not generate a writeback event as this instruction is not 767 // complete. 768 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 769 "Store idx %i to load addr %#x\n", 770 store_idx, req->getVaddr()); 771 772 // Must delete request now that it wasn't handed off to 773 // memory. This is quite ugly. @todo: Figure out the 774 // proper place to really handle request deletes. 775 delete req; 776 if (TheISA::HasUnalignedMemAcc && sreqLow) { 777 delete sreqLow; 778 delete sreqHigh; 779 } 780 781 return NoFault; 782 } 783 } 784 785 // If there's no forwarding case, then go access memory 786 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 787 load_inst->seqNum, load_inst->pcState()); 788 789 assert(!load_inst->memData); 790 load_inst->memData = new uint8_t[req->getSize()]; 791 792 ++usedPorts; 793 794 // if we the cache is not blocked, do cache access 795 bool completedFirst = false; 796 if (!lsq->cacheBlocked()) { 797 MemCmd command = 798 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 799 PacketPtr data_pkt = new Packet(req, command); 800 PacketPtr fst_data_pkt = NULL; 801 PacketPtr snd_data_pkt = NULL; 802 803 data_pkt->dataStatic(load_inst->memData); 804 805 LSQSenderState *state = new LSQSenderState; 806 state->isLoad = true; 807 state->idx = load_idx; 808 state->inst = load_inst; 809 data_pkt->senderState = state; 810 811 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 812 813 // Point the first packet at the main data packet. 814 fst_data_pkt = data_pkt; 815 } else { 816 817 // Create the split packets. 818 fst_data_pkt = new Packet(sreqLow, command); 819 snd_data_pkt = new Packet(sreqHigh, command); 820 821 fst_data_pkt->dataStatic(load_inst->memData); 822 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 823 824 fst_data_pkt->senderState = state; 825 snd_data_pkt->senderState = state; 826 827 state->isSplit = true; 828 state->outstanding = 2; 829 state->mainPkt = data_pkt; 830 } 831 832 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 833 // Delete state and data packet because a load retry 834 // initiates a pipeline restart; it does not retry. 835 delete state; 836 delete data_pkt->req; 837 delete data_pkt; 838 if (TheISA::HasUnalignedMemAcc && sreqLow) { 839 delete fst_data_pkt->req; 840 delete fst_data_pkt; 841 delete snd_data_pkt->req; 842 delete snd_data_pkt; 843 sreqLow = NULL; 844 sreqHigh = NULL; 845 } 846 847 req = NULL; 848 849 // If the access didn't succeed, tell the LSQ by setting 850 // the retry thread id. 851 lsq->setRetryTid(lsqID); 852 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 853 completedFirst = true; 854 855 // The first packet was sent without problems, so send this one 856 // too. If there is a problem with this packet then the whole 857 // load will be squashed, so indicate this to the state object. 858 // The first packet will return in completeDataAccess and be 859 // handled there. 860 ++usedPorts; 861 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 862 863 // The main packet will be deleted in completeDataAccess. 864 delete snd_data_pkt->req; 865 delete snd_data_pkt; 866 867 state->complete(); 868 869 req = NULL; 870 sreqHigh = NULL; 871 872 lsq->setRetryTid(lsqID); 873 } 874 } 875 } 876 877 // If the cache was blocked, or has become blocked due to the access, 878 // handle it. 879 if (lsq->cacheBlocked()) { 880 if (req) 881 delete req; 882 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 883 delete sreqLow; 884 delete sreqHigh; 885 } 886 887 ++lsqCacheBlocked; 888 889 // If the first part of a split access succeeds, then let the LSQ 890 // handle the decrWb when completeDataAccess is called upon return 891 // of the requested first part of data 892 if (!completedFirst) 893 iewStage->decrWb(load_inst->seqNum); 894 895 // There's an older load that's already going to squash. 896 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 897 return NoFault; 898 899 // Record that the load was blocked due to memory. This 900 // load will squash all instructions after it, be 901 // refetched, and re-executed. 902 isLoadBlocked = true; 903 loadBlockedHandled = false; 904 blockedLoadSeqNum = load_inst->seqNum; 905 // No fault occurred, even though the interface is blocked. 906 return NoFault; 907 } 908 909 return NoFault; 910} 911 912template <class Impl> 913Fault 914LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 915 uint8_t *data, int store_idx) 916{ 917 assert(storeQueue[store_idx].inst); 918 919 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 920 " | storeHead:%i [sn:%i]\n", 921 store_idx, req->getPaddr(), data, storeHead, 922 storeQueue[store_idx].inst->seqNum); 923 924 storeQueue[store_idx].req = req; 925 storeQueue[store_idx].sreqLow = sreqLow; 926 storeQueue[store_idx].sreqHigh = sreqHigh; 927 unsigned size = req->getSize(); 928 storeQueue[store_idx].size = size; 929 storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO; 930 assert(size <= sizeof(storeQueue[store_idx].data) || 931 (req->getFlags() & Request::CACHE_BLOCK_ZERO)); 932 933 // Split stores can only occur in ISAs with unaligned memory accesses. If 934 // a store request has been split, sreqLow and sreqHigh will be non-null. 935 if (TheISA::HasUnalignedMemAcc && sreqLow) { 936 storeQueue[store_idx].isSplit = true; 937 } 938 939 if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO)) 940 memcpy(storeQueue[store_idx].data, data, size); 941 942 // This function only writes the data to the store queue, so no fault 943 // can happen here. 944 return NoFault; 945} 946 947#endif // __CPU_O3_LSQ_UNIT_HH__ 948