lsq_unit.hh revision 5386
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/locked_mem.hh" 42#include "config/full_system.hh" 43#include "base/fast_alloc.hh" 44#include "base/hashmap.hh" 45#include "cpu/inst_seq.hh" 46#include "mem/packet.hh" 47#include "mem/port.hh" 48 49/** 50 * Class that implements the actual LQ and SQ for each specific 51 * thread. Both are circular queues; load entries are freed upon 52 * committing, while store entries are freed once they writeback. The 53 * LSQUnit tracks if there are memory ordering violations, and also 54 * detects partial load to store forwarding cases (a store only has 55 * part of a load's data) that requires the load to wait until the 56 * store writes back. In the former case it holds onto the instruction 57 * until the dependence unit looks at it, and in the latter it stalls 58 * the LSQ until the store writes back. At that point the load is 59 * replayed. 60 */ 61template <class Impl> 62class LSQUnit { 63 protected: 64 typedef TheISA::IntReg IntReg; 65 public: 66 typedef typename Impl::Params Params; 67 typedef typename Impl::O3CPU O3CPU; 68 typedef typename Impl::DynInstPtr DynInstPtr; 69 typedef typename Impl::CPUPol::IEW IEW; 70 typedef typename Impl::CPUPol::LSQ LSQ; 71 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 72 73 public: 74 /** Constructs an LSQ unit. init() must be called prior to use. */ 75 LSQUnit(); 76 77 /** Initializes the LSQ unit with the specified number of entries. */ 78 void init(O3CPU *cpu_ptr, IEW *iew_ptr, Params *params, LSQ *lsq_ptr, 79 unsigned maxLQEntries, unsigned maxSQEntries, unsigned id); 80 81 /** Returns the name of the LSQ unit. */ 82 std::string name() const; 83 84 /** Registers statistics. */ 85 void regStats(); 86 87 /** Sets the pointer to the dcache port. */ 88 void setDcachePort(Port *dcache_port); 89 90 /** Switches out LSQ unit. */ 91 void switchOut(); 92 93 /** Takes over from another CPU's thread. */ 94 void takeOverFrom(); 95 96 /** Returns if the LSQ is switched out. */ 97 bool isSwitchedOut() { return switchedOut; } 98 99 /** Ticks the LSQ unit, which in this case only resets the number of 100 * used cache ports. 101 * @todo: Move the number of used ports up to the LSQ level so it can 102 * be shared by all LSQ units. 103 */ 104 void tick() { usedPorts = 0; } 105 106 /** Inserts an instruction. */ 107 void insert(DynInstPtr &inst); 108 /** Inserts a load instruction. */ 109 void insertLoad(DynInstPtr &load_inst); 110 /** Inserts a store instruction. */ 111 void insertStore(DynInstPtr &store_inst); 112 113 /** Executes a load instruction. */ 114 Fault executeLoad(DynInstPtr &inst); 115 116 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 117 /** Executes a store instruction. */ 118 Fault executeStore(DynInstPtr &inst); 119 120 /** Commits the head load. */ 121 void commitLoad(); 122 /** Commits loads older than a specific sequence number. */ 123 void commitLoads(InstSeqNum &youngest_inst); 124 125 /** Commits stores older than a specific sequence number. */ 126 void commitStores(InstSeqNum &youngest_inst); 127 128 /** Writes back stores. */ 129 void writebackStores(); 130 131 /** Completes the data access that has been returned from the 132 * memory system. */ 133 void completeDataAccess(PacketPtr pkt); 134 135 /** Clears all the entries in the LQ. */ 136 void clearLQ(); 137 138 /** Clears all the entries in the SQ. */ 139 void clearSQ(); 140 141 /** Resizes the LQ to a given size. */ 142 void resizeLQ(unsigned size); 143 144 /** Resizes the SQ to a given size. */ 145 void resizeSQ(unsigned size); 146 147 /** Squashes all instructions younger than a specific sequence number. */ 148 void squash(const InstSeqNum &squashed_num); 149 150 /** Returns if there is a memory ordering violation. Value is reset upon 151 * call to getMemDepViolator(). 152 */ 153 bool violation() { return memDepViolator; } 154 155 /** Returns the memory ordering violator. */ 156 DynInstPtr getMemDepViolator(); 157 158 /** Returns if a load became blocked due to the memory system. */ 159 bool loadBlocked() 160 { return isLoadBlocked; } 161 162 /** Clears the signal that a load became blocked. */ 163 void clearLoadBlocked() 164 { isLoadBlocked = false; } 165 166 /** Returns if the blocked load was handled. */ 167 bool isLoadBlockedHandled() 168 { return loadBlockedHandled; } 169 170 /** Records the blocked load as being handled. */ 171 void setLoadBlockedHandled() 172 { loadBlockedHandled = true; } 173 174 /** Returns the number of free entries (min of free LQ and SQ entries). */ 175 unsigned numFreeEntries(); 176 177 /** Returns the number of loads ready to execute. */ 178 int numLoadsReady(); 179 180 /** Returns the number of loads in the LQ. */ 181 int numLoads() { return loads; } 182 183 /** Returns the number of stores in the SQ. */ 184 int numStores() { return stores; } 185 186 /** Returns if either the LQ or SQ is full. */ 187 bool isFull() { return lqFull() || sqFull(); } 188 189 /** Returns if the LQ is full. */ 190 bool lqFull() { return loads >= (LQEntries - 1); } 191 192 /** Returns if the SQ is full. */ 193 bool sqFull() { return stores >= (SQEntries - 1); } 194 195 /** Returns the number of instructions in the LSQ. */ 196 unsigned getCount() { return loads + stores; } 197 198 /** Returns if there are any stores to writeback. */ 199 bool hasStoresToWB() { return storesToWB; } 200 201 /** Returns the number of stores to writeback. */ 202 int numStoresToWB() { return storesToWB; } 203 204 /** Returns if the LSQ unit will writeback on this cycle. */ 205 bool willWB() { return storeQueue[storeWBIdx].canWB && 206 !storeQueue[storeWBIdx].completed && 207 !isStoreBlocked; } 208 209 /** Handles doing the retry. */ 210 void recvRetry(); 211 212 private: 213 /** Writes back the instruction, sending it to IEW. */ 214 void writeback(DynInstPtr &inst, PacketPtr pkt); 215 216 /** Handles completing the send of a store to memory. */ 217 void storePostSend(PacketPtr pkt); 218 219 /** Completes the store at the specified index. */ 220 void completeStore(int store_idx); 221 222 /** Increments the given store index (circular queue). */ 223 inline void incrStIdx(int &store_idx); 224 /** Decrements the given store index (circular queue). */ 225 inline void decrStIdx(int &store_idx); 226 /** Increments the given load index (circular queue). */ 227 inline void incrLdIdx(int &load_idx); 228 /** Decrements the given load index (circular queue). */ 229 inline void decrLdIdx(int &load_idx); 230 231 public: 232 /** Debugging function to dump instructions in the LSQ. */ 233 void dumpInsts(); 234 235 private: 236 /** Pointer to the CPU. */ 237 O3CPU *cpu; 238 239 /** Pointer to the IEW stage. */ 240 IEW *iewStage; 241 242 /** Pointer to the LSQ. */ 243 LSQ *lsq; 244 245 /** Pointer to the dcache port. Used only for sending. */ 246 Port *dcachePort; 247 248 /** Derived class to hold any sender state the LSQ needs. */ 249 class LSQSenderState : public Packet::SenderState, public FastAlloc 250 { 251 public: 252 /** Default constructor. */ 253 LSQSenderState() 254 : noWB(false) 255 { } 256 257 /** Instruction who initiated the access to memory. */ 258 DynInstPtr inst; 259 /** Whether or not it is a load. */ 260 bool isLoad; 261 /** The LQ/SQ index of the instruction. */ 262 int idx; 263 /** Whether or not the instruction will need to writeback. */ 264 bool noWB; 265 }; 266 267 /** Writeback event, specifically for when stores forward data to loads. */ 268 class WritebackEvent : public Event { 269 public: 270 /** Constructs a writeback event. */ 271 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 272 273 /** Processes the writeback event. */ 274 void process(); 275 276 /** Returns the description of this event. */ 277 const char *description() const; 278 279 private: 280 /** Instruction whose results are being written back. */ 281 DynInstPtr inst; 282 283 /** The packet that would have been sent to memory. */ 284 PacketPtr pkt; 285 286 /** The pointer to the LSQ unit that issued the store. */ 287 LSQUnit<Impl> *lsqPtr; 288 }; 289 290 public: 291 struct SQEntry { 292 /** Constructs an empty store queue entry. */ 293 SQEntry() 294 : inst(NULL), req(NULL), size(0), 295 canWB(0), committed(0), completed(0) 296 { 297 std::memset(data, 0, sizeof(data)); 298 } 299 300 /** Constructs a store queue entry for a given instruction. */ 301 SQEntry(DynInstPtr &_inst) 302 : inst(_inst), req(NULL), size(0), 303 canWB(0), committed(0), completed(0) 304 { 305 std::memset(data, 0, sizeof(data)); 306 } 307 308 /** The store instruction. */ 309 DynInstPtr inst; 310 /** The request for the store. */ 311 RequestPtr req; 312 /** The size of the store. */ 313 int size; 314 /** The store data. */ 315 char data[sizeof(IntReg)]; 316 /** Whether or not the store can writeback. */ 317 bool canWB; 318 /** Whether or not the store is committed. */ 319 bool committed; 320 /** Whether or not the store is completed. */ 321 bool completed; 322 }; 323 324 private: 325 /** The LSQUnit thread id. */ 326 unsigned lsqID; 327 328 /** The store queue. */ 329 std::vector<SQEntry> storeQueue; 330 331 /** The load queue. */ 332 std::vector<DynInstPtr> loadQueue; 333 334 /** The number of LQ entries, plus a sentinel entry (circular queue). 335 * @todo: Consider having var that records the true number of LQ entries. 336 */ 337 unsigned LQEntries; 338 /** The number of SQ entries, plus a sentinel entry (circular queue). 339 * @todo: Consider having var that records the true number of SQ entries. 340 */ 341 unsigned SQEntries; 342 343 /** The number of load instructions in the LQ. */ 344 int loads; 345 /** The number of store instructions in the SQ. */ 346 int stores; 347 /** The number of store instructions in the SQ waiting to writeback. */ 348 int storesToWB; 349 350 /** The index of the head instruction in the LQ. */ 351 int loadHead; 352 /** The index of the tail instruction in the LQ. */ 353 int loadTail; 354 355 /** The index of the head instruction in the SQ. */ 356 int storeHead; 357 /** The index of the first instruction that may be ready to be 358 * written back, and has not yet been written back. 359 */ 360 int storeWBIdx; 361 /** The index of the tail instruction in the SQ. */ 362 int storeTail; 363 364 /// @todo Consider moving to a more advanced model with write vs read ports 365 /** The number of cache ports available each cycle. */ 366 int cachePorts; 367 368 /** The number of used cache ports in this cycle. */ 369 int usedPorts; 370 371 /** Is the LSQ switched out. */ 372 bool switchedOut; 373 374 //list<InstSeqNum> mshrSeqNums; 375 376 /** Wire to read information from the issue stage time queue. */ 377 typename TimeBuffer<IssueStruct>::wire fromIssue; 378 379 /** Whether or not the LSQ is stalled. */ 380 bool stalled; 381 /** The store that causes the stall due to partial store to load 382 * forwarding. 383 */ 384 InstSeqNum stallingStoreIsn; 385 /** The index of the above store. */ 386 int stallingLoadIdx; 387 388 /** The packet that needs to be retried. */ 389 PacketPtr retryPkt; 390 391 /** Whehter or not a store is blocked due to the memory system. */ 392 bool isStoreBlocked; 393 394 /** Whether or not a load is blocked due to the memory system. */ 395 bool isLoadBlocked; 396 397 /** Has the blocked load been handled. */ 398 bool loadBlockedHandled; 399 400 /** The sequence number of the blocked load. */ 401 InstSeqNum blockedLoadSeqNum; 402 403 /** The oldest load that caused a memory ordering violation. */ 404 DynInstPtr memDepViolator; 405 406 // Will also need how many read/write ports the Dcache has. Or keep track 407 // of that in stage that is one level up, and only call executeLoad/Store 408 // the appropriate number of times. 409 /** Total number of loads forwaded from LSQ stores. */ 410 Stats::Scalar<> lsqForwLoads; 411 412 /** Total number of loads ignored due to invalid addresses. */ 413 Stats::Scalar<> invAddrLoads; 414 415 /** Total number of squashed loads. */ 416 Stats::Scalar<> lsqSquashedLoads; 417 418 /** Total number of responses from the memory system that are 419 * ignored due to the instruction already being squashed. */ 420 Stats::Scalar<> lsqIgnoredResponses; 421 422 /** Tota number of memory ordering violations. */ 423 Stats::Scalar<> lsqMemOrderViolation; 424 425 /** Total number of squashed stores. */ 426 Stats::Scalar<> lsqSquashedStores; 427 428 /** Total number of software prefetches ignored due to invalid addresses. */ 429 Stats::Scalar<> invAddrSwpfs; 430 431 /** Ready loads blocked due to partial store-forwarding. */ 432 Stats::Scalar<> lsqBlockedLoads; 433 434 /** Number of loads that were rescheduled. */ 435 Stats::Scalar<> lsqRescheduledLoads; 436 437 /** Number of times the LSQ is blocked due to the cache. */ 438 Stats::Scalar<> lsqCacheBlocked; 439 440 public: 441 /** Executes the load at the given index. */ 442 template <class T> 443 Fault read(Request *req, T &data, int load_idx); 444 445 /** Executes the store at the given index. */ 446 template <class T> 447 Fault write(Request *req, T &data, int store_idx); 448 449 /** Returns the index of the head load instruction. */ 450 int getLoadHead() { return loadHead; } 451 /** Returns the sequence number of the head load instruction. */ 452 InstSeqNum getLoadHeadSeqNum() 453 { 454 if (loadQueue[loadHead]) { 455 return loadQueue[loadHead]->seqNum; 456 } else { 457 return 0; 458 } 459 460 } 461 462 /** Returns the index of the head store instruction. */ 463 int getStoreHead() { return storeHead; } 464 /** Returns the sequence number of the head store instruction. */ 465 InstSeqNum getStoreHeadSeqNum() 466 { 467 if (storeQueue[storeHead].inst) { 468 return storeQueue[storeHead].inst->seqNum; 469 } else { 470 return 0; 471 } 472 473 } 474 475 /** Returns whether or not the LSQ unit is stalled. */ 476 bool isStalled() { return stalled; } 477}; 478 479template <class Impl> 480template <class T> 481Fault 482LSQUnit<Impl>::read(Request *req, T &data, int load_idx) 483{ 484 DynInstPtr load_inst = loadQueue[load_idx]; 485 486 assert(load_inst); 487 488 assert(!load_inst->isExecuted()); 489 490 // Make sure this isn't an uncacheable access 491 // A bit of a hackish way to get uncached accesses to work only if they're 492 // at the head of the LSQ and are ready to commit (at the head of the ROB 493 // too). 494 if (req->isUncacheable() && 495 (load_idx != loadHead || !load_inst->isAtCommit())) { 496 iewStage->rescheduleMemInst(load_inst); 497 ++lsqRescheduledLoads; 498 499 // Must delete request now that it wasn't handed off to 500 // memory. This is quite ugly. @todo: Figure out the proper 501 // place to really handle request deletes. 502 delete req; 503 return TheISA::genMachineCheckFault(); 504 } 505 506 // Check the SQ for any previous stores that might lead to forwarding 507 int store_idx = load_inst->sqIdx; 508 509 int store_size = 0; 510 511 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 512 "storeHead: %i addr: %#x\n", 513 load_idx, store_idx, storeHead, req->getPaddr()); 514 515 if (req->isLocked()) { 516 // Disable recording the result temporarily. Writing to misc 517 // regs normally updates the result, but this is not the 518 // desired behavior when handling store conditionals. 519 load_inst->recordResult = false; 520 TheISA::handleLockedRead(load_inst.get(), req); 521 load_inst->recordResult = true; 522 } 523 524 while (store_idx != -1) { 525 // End once we've reached the top of the LSQ 526 if (store_idx == storeWBIdx) { 527 break; 528 } 529 530 // Move the index to one younger 531 if (--store_idx < 0) 532 store_idx += SQEntries; 533 534 assert(storeQueue[store_idx].inst); 535 536 store_size = storeQueue[store_idx].size; 537 538 if (store_size == 0) 539 continue; 540 else if (storeQueue[store_idx].inst->uncacheable()) 541 continue; 542 543 assert(storeQueue[store_idx].inst->effAddrValid); 544 545 // Check if the store data is within the lower and upper bounds of 546 // addresses that the request needs. 547 bool store_has_lower_limit = 548 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 549 bool store_has_upper_limit = 550 (req->getVaddr() + req->getSize()) <= 551 (storeQueue[store_idx].inst->effAddr + store_size); 552 bool lower_load_has_store_part = 553 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 554 store_size); 555 bool upper_load_has_store_part = 556 (req->getVaddr() + req->getSize()) > 557 storeQueue[store_idx].inst->effAddr; 558 559 // If the store's data has all of the data needed, we can forward. 560 if ((store_has_lower_limit && store_has_upper_limit)) { 561 // Get shift amount for offset into the store's data. 562 int shift_amt = req->getVaddr() & (store_size - 1); 563 564 memcpy(&data, storeQueue[store_idx].data + shift_amt, sizeof(T)); 565 566 assert(!load_inst->memData); 567 load_inst->memData = new uint8_t[64]; 568 569 memcpy(load_inst->memData, 570 storeQueue[store_idx].data + shift_amt, req->getSize()); 571 572 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 573 "addr %#x, data %#x\n", 574 store_idx, req->getVaddr(), data); 575 576 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 577 Packet::Broadcast); 578 data_pkt->dataStatic(load_inst->memData); 579 580 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 581 582 // We'll say this has a 1 cycle load-store forwarding latency 583 // for now. 584 // @todo: Need to make this a parameter. 585 wb->schedule(curTick); 586 587 ++lsqForwLoads; 588 return NoFault; 589 } else if ((store_has_lower_limit && lower_load_has_store_part) || 590 (store_has_upper_limit && upper_load_has_store_part) || 591 (lower_load_has_store_part && upper_load_has_store_part)) { 592 // This is the partial store-load forwarding case where a store 593 // has only part of the load's data. 594 595 // If it's already been written back, then don't worry about 596 // stalling on it. 597 if (storeQueue[store_idx].completed) { 598 panic("Should not check one of these"); 599 continue; 600 } 601 602 // Must stall load and force it to retry, so long as it's the oldest 603 // load that needs to do so. 604 if (!stalled || 605 (stalled && 606 load_inst->seqNum < 607 loadQueue[stallingLoadIdx]->seqNum)) { 608 stalled = true; 609 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 610 stallingLoadIdx = load_idx; 611 } 612 613 // Tell IQ/mem dep unit that this instruction will need to be 614 // rescheduled eventually 615 iewStage->rescheduleMemInst(load_inst); 616 iewStage->decrWb(load_inst->seqNum); 617 load_inst->clearIssued(); 618 ++lsqRescheduledLoads; 619 620 // Do not generate a writeback event as this instruction is not 621 // complete. 622 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 623 "Store idx %i to load addr %#x\n", 624 store_idx, req->getVaddr()); 625 626 // Must delete request now that it wasn't handed off to 627 // memory. This is quite ugly. @todo: Figure out the 628 // proper place to really handle request deletes. 629 delete req; 630 631 return NoFault; 632 } 633 } 634 635 // If there's no forwarding case, then go access memory 636 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n", 637 load_inst->seqNum, load_inst->readPC()); 638 639 assert(!load_inst->memData); 640 load_inst->memData = new uint8_t[64]; 641 642 ++usedPorts; 643 644 // if we the cache is not blocked, do cache access 645 if (!lsq->cacheBlocked()) { 646 PacketPtr data_pkt = 647 new Packet(req, 648 (req->isLocked() ? 649 MemCmd::LoadLockedReq : MemCmd::ReadReq), 650 Packet::Broadcast); 651 data_pkt->dataStatic(load_inst->memData); 652 653 LSQSenderState *state = new LSQSenderState; 654 state->isLoad = true; 655 state->idx = load_idx; 656 state->inst = load_inst; 657 data_pkt->senderState = state; 658 659 if (!dcachePort->sendTiming(data_pkt)) { 660 // Delete state and data packet because a load retry 661 // initiates a pipeline restart; it does not retry. 662 delete state; 663 delete data_pkt->req; 664 delete data_pkt; 665 666 req = NULL; 667 668 // If the access didn't succeed, tell the LSQ by setting 669 // the retry thread id. 670 lsq->setRetryTid(lsqID); 671 } 672 } 673 674 // If the cache was blocked, or has become blocked due to the access, 675 // handle it. 676 if (lsq->cacheBlocked()) { 677 if (req) 678 delete req; 679 680 ++lsqCacheBlocked; 681 682 iewStage->decrWb(load_inst->seqNum); 683 // There's an older load that's already going to squash. 684 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 685 return NoFault; 686 687 // Record that the load was blocked due to memory. This 688 // load will squash all instructions after it, be 689 // refetched, and re-executed. 690 isLoadBlocked = true; 691 loadBlockedHandled = false; 692 blockedLoadSeqNum = load_inst->seqNum; 693 // No fault occurred, even though the interface is blocked. 694 return NoFault; 695 } 696 697 return NoFault; 698} 699 700template <class Impl> 701template <class T> 702Fault 703LSQUnit<Impl>::write(Request *req, T &data, int store_idx) 704{ 705 assert(storeQueue[store_idx].inst); 706 707 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 708 " | storeHead:%i [sn:%i]\n", 709 store_idx, req->getPaddr(), data, storeHead, 710 storeQueue[store_idx].inst->seqNum); 711 712 storeQueue[store_idx].req = req; 713 storeQueue[store_idx].size = sizeof(T); 714 assert(sizeof(T) <= sizeof(storeQueue[store_idx].data)); 715 716 T gData = htog(data); 717 memcpy(storeQueue[store_idx].data, &gData, sizeof(T)); 718 719 // This function only writes the data to the store queue, so no fault 720 // can happen here. 721 return NoFault; 722} 723 724#endif // __CPU_O3_LSQ_UNIT_HH__ 725