lsq_unit.hh revision 2731
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet.hh"
44#include "mem/port.hh"
45
46/**
47 * Class that implements the actual LQ and SQ for each specific
48 * thread.  Both are circular queues; load entries are freed upon
49 * committing, while store entries are freed once they writeback. The
50 * LSQUnit tracks if there are memory ordering violations, and also
51 * detects partial load to store forwarding cases (a store only has
52 * part of a load's data) that requires the load to wait until the
53 * store writes back. In the former case it holds onto the instruction
54 * until the dependence unit looks at it, and in the latter it stalls
55 * the LSQ until the store writes back. At that point the load is
56 * replayed.
57 */
58template <class Impl>
59class LSQUnit {
60  protected:
61    typedef TheISA::IntReg IntReg;
62  public:
63    typedef typename Impl::Params Params;
64    typedef typename Impl::FullCPU FullCPU;
65    typedef typename Impl::DynInstPtr DynInstPtr;
66    typedef typename Impl::CPUPol::IEW IEW;
67    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
68
69  public:
70    /** Constructs an LSQ unit. init() must be called prior to use. */
71    LSQUnit();
72
73    /** Initializes the LSQ unit with the specified number of entries. */
74    void init(Params *params, unsigned maxLQEntries,
75              unsigned maxSQEntries, unsigned id);
76
77    /** Returns the name of the LSQ unit. */
78    std::string name() const;
79
80    /** Registers statistics. */
81    void regStats();
82
83    /** Sets the CPU pointer. */
84    void setCPU(FullCPU *cpu_ptr);
85
86    /** Sets the IEW stage pointer. */
87    void setIEW(IEW *iew_ptr)
88    { iewStage = iew_ptr; }
89
90    /** Switches out LSQ unit. */
91    void switchOut();
92
93    /** Takes over from another CPU's thread. */
94    void takeOverFrom();
95
96    /** Returns if the LSQ is switched out. */
97    bool isSwitchedOut() { return switchedOut; }
98
99    /** Ticks the LSQ unit, which in this case only resets the number of
100     * used cache ports.
101     * @todo: Move the number of used ports up to the LSQ level so it can
102     * be shared by all LSQ units.
103     */
104    void tick() { usedPorts = 0; }
105
106    /** Inserts an instruction. */
107    void insert(DynInstPtr &inst);
108    /** Inserts a load instruction. */
109    void insertLoad(DynInstPtr &load_inst);
110    /** Inserts a store instruction. */
111    void insertStore(DynInstPtr &store_inst);
112
113    /** Executes a load instruction. */
114    Fault executeLoad(DynInstPtr &inst);
115
116    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
117    /** Executes a store instruction. */
118    Fault executeStore(DynInstPtr &inst);
119
120    /** Commits the head load. */
121    void commitLoad();
122    /** Commits loads older than a specific sequence number. */
123    void commitLoads(InstSeqNum &youngest_inst);
124
125    /** Commits stores older than a specific sequence number. */
126    void commitStores(InstSeqNum &youngest_inst);
127
128    /** Writes back stores. */
129    void writebackStores();
130
131    void completeDataAccess(PacketPtr pkt);
132
133    /** Clears all the entries in the LQ. */
134    void clearLQ();
135
136    /** Clears all the entries in the SQ. */
137    void clearSQ();
138
139    /** Resizes the LQ to a given size. */
140    void resizeLQ(unsigned size);
141
142    /** Resizes the SQ to a given size. */
143    void resizeSQ(unsigned size);
144
145    /** Squashes all instructions younger than a specific sequence number. */
146    void squash(const InstSeqNum &squashed_num);
147
148    /** Returns if there is a memory ordering violation. Value is reset upon
149     * call to getMemDepViolator().
150     */
151    bool violation() { return memDepViolator; }
152
153    /** Returns the memory ordering violator. */
154    DynInstPtr getMemDepViolator();
155
156    /** Returns if a load became blocked due to the memory system. */
157    bool loadBlocked()
158    { return isLoadBlocked; }
159
160    /** Clears the signal that a load became blocked. */
161    void clearLoadBlocked()
162    { isLoadBlocked = false; }
163
164    /** Returns if the blocked load was handled. */
165    bool isLoadBlockedHandled()
166    { return loadBlockedHandled; }
167
168    /** Records the blocked load as being handled. */
169    void setLoadBlockedHandled()
170    { loadBlockedHandled = true; }
171
172    /** Returns the number of free entries (min of free LQ and SQ entries). */
173    unsigned numFreeEntries();
174
175    /** Returns the number of loads ready to execute. */
176    int numLoadsReady();
177
178    /** Returns the number of loads in the LQ. */
179    int numLoads() { return loads; }
180
181    /** Returns the number of stores in the SQ. */
182    int numStores() { return stores; }
183
184    /** Returns if either the LQ or SQ is full. */
185    bool isFull() { return lqFull() || sqFull(); }
186
187    /** Returns if the LQ is full. */
188    bool lqFull() { return loads >= (LQEntries - 1); }
189
190    /** Returns if the SQ is full. */
191    bool sqFull() { return stores >= (SQEntries - 1); }
192
193    /** Returns the number of instructions in the LSQ. */
194    unsigned getCount() { return loads + stores; }
195
196    /** Returns if there are any stores to writeback. */
197    bool hasStoresToWB() { return storesToWB; }
198
199    /** Returns the number of stores to writeback. */
200    int numStoresToWB() { return storesToWB; }
201
202    /** Returns if the LSQ unit will writeback on this cycle. */
203    bool willWB() { return storeQueue[storeWBIdx].canWB &&
204                        !storeQueue[storeWBIdx].completed &&
205                        !isStoreBlocked; }
206
207  private:
208    /** Writes back the instruction, sending it to IEW. */
209    void writeback(DynInstPtr &inst, PacketPtr pkt);
210
211    /** Handles completing the send of a store to memory. */
212    void storePostSend(Packet *pkt);
213
214    /** Completes the store at the specified index. */
215    void completeStore(int store_idx);
216
217    /** Handles doing the retry. */
218    void recvRetry();
219
220    /** Increments the given store index (circular queue). */
221    inline void incrStIdx(int &store_idx);
222    /** Decrements the given store index (circular queue). */
223    inline void decrStIdx(int &store_idx);
224    /** Increments the given load index (circular queue). */
225    inline void incrLdIdx(int &load_idx);
226    /** Decrements the given load index (circular queue). */
227    inline void decrLdIdx(int &load_idx);
228
229  public:
230    /** Debugging function to dump instructions in the LSQ. */
231    void dumpInsts();
232
233  private:
234    /** Pointer to the CPU. */
235    FullCPU *cpu;
236
237    /** Pointer to the IEW stage. */
238    IEW *iewStage;
239
240    /** Pointer to memory object. */
241    MemObject *mem;
242
243    /** DcachePort class for this LSQ Unit.  Handles doing the
244     * communication with the cache/memory.
245     * @todo: Needs to be moved to the LSQ level and have some sort
246     * of arbitration.
247     */
248    class DcachePort : public Port
249    {
250      protected:
251        /** Pointer to CPU. */
252        FullCPU *cpu;
253        /** Pointer to LSQ. */
254        LSQUnit *lsq;
255
256      public:
257        /** Default constructor. */
258        DcachePort(FullCPU *_cpu, LSQUnit *_lsq)
259            : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq)
260        { }
261
262      protected:
263        /** Atomic version of receive.  Panics. */
264        virtual Tick recvAtomic(PacketPtr pkt);
265
266        /** Functional version of receive.  Panics. */
267        virtual void recvFunctional(PacketPtr pkt);
268
269        /** Receives status change.  Other than range changing, panics. */
270        virtual void recvStatusChange(Status status);
271
272        /** Returns the address ranges of this device. */
273        virtual void getDeviceAddressRanges(AddrRangeList &resp,
274                                            AddrRangeList &snoop)
275        { resp.clear(); snoop.clear(); }
276
277        /** Timing version of receive.  Handles writing back and
278         * completing the load or store that has returned from
279         * memory. */
280        virtual bool recvTiming(PacketPtr pkt);
281
282        /** Handles doing a retry of the previous send. */
283        virtual void recvRetry();
284    };
285
286    /** Pointer to the D-cache. */
287    DcachePort *dcachePort;
288
289    /** Derived class to hold any sender state the LSQ needs. */
290    class LSQSenderState : public Packet::SenderState
291    {
292      public:
293        /** Default constructor. */
294        LSQSenderState()
295            : noWB(false)
296        { }
297
298        /** Instruction who initiated the access to memory. */
299        DynInstPtr inst;
300        /** Whether or not it is a load. */
301        bool isLoad;
302        /** The LQ/SQ index of the instruction. */
303        int idx;
304        /** Whether or not the instruction will need to writeback. */
305        bool noWB;
306    };
307
308    /** Writeback event, specifically for when stores forward data to loads. */
309    class WritebackEvent : public Event {
310      public:
311        /** Constructs a writeback event. */
312        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
313
314        /** Processes the writeback event. */
315        void process();
316
317        /** Returns the description of this event. */
318        const char *description();
319
320      private:
321        /** Instruction whose results are being written back. */
322        DynInstPtr inst;
323
324        /** The packet that would have been sent to memory. */
325        PacketPtr pkt;
326
327        /** The pointer to the LSQ unit that issued the store. */
328        LSQUnit<Impl> *lsqPtr;
329    };
330
331  public:
332    struct SQEntry {
333        /** Constructs an empty store queue entry. */
334        SQEntry()
335            : inst(NULL), req(NULL), size(0), data(0),
336              canWB(0), committed(0), completed(0)
337        { }
338
339        /** Constructs a store queue entry for a given instruction. */
340        SQEntry(DynInstPtr &_inst)
341            : inst(_inst), req(NULL), size(0), data(0),
342              canWB(0), committed(0), completed(0)
343        { }
344
345        /** The store instruction. */
346        DynInstPtr inst;
347        /** The request for the store. */
348        RequestPtr req;
349        /** The size of the store. */
350        int size;
351        /** The store data. */
352        IntReg data;
353        /** Whether or not the store can writeback. */
354        bool canWB;
355        /** Whether or not the store is committed. */
356        bool committed;
357        /** Whether or not the store is completed. */
358        bool completed;
359    };
360
361  private:
362    /** The LSQUnit thread id. */
363    unsigned lsqID;
364
365    /** The store queue. */
366    std::vector<SQEntry> storeQueue;
367
368    /** The load queue. */
369    std::vector<DynInstPtr> loadQueue;
370
371    /** The number of LQ entries, plus a sentinel entry (circular queue).
372     *  @todo: Consider having var that records the true number of LQ entries.
373     */
374    unsigned LQEntries;
375    /** The number of SQ entries, plus a sentinel entry (circular queue).
376     *  @todo: Consider having var that records the true number of SQ entries.
377     */
378    unsigned SQEntries;
379
380    /** The number of load instructions in the LQ. */
381    int loads;
382    /** The number of store instructions in the SQ. */
383    int stores;
384    /** The number of store instructions in the SQ waiting to writeback. */
385    int storesToWB;
386
387    /** The index of the head instruction in the LQ. */
388    int loadHead;
389    /** The index of the tail instruction in the LQ. */
390    int loadTail;
391
392    /** The index of the head instruction in the SQ. */
393    int storeHead;
394    /** The index of the first instruction that may be ready to be
395     * written back, and has not yet been written back.
396     */
397    int storeWBIdx;
398    /** The index of the tail instruction in the SQ. */
399    int storeTail;
400
401    /// @todo Consider moving to a more advanced model with write vs read ports
402    /** The number of cache ports available each cycle. */
403    int cachePorts;
404
405    /** The number of used cache ports in this cycle. */
406    int usedPorts;
407
408    /** Is the LSQ switched out. */
409    bool switchedOut;
410
411    //list<InstSeqNum> mshrSeqNums;
412
413    /** Wire to read information from the issue stage time queue. */
414    typename TimeBuffer<IssueStruct>::wire fromIssue;
415
416    /** Whether or not the LSQ is stalled. */
417    bool stalled;
418    /** The store that causes the stall due to partial store to load
419     * forwarding.
420     */
421    InstSeqNum stallingStoreIsn;
422    /** The index of the above store. */
423    int stallingLoadIdx;
424
425    /** The packet that needs to be retried. */
426    PacketPtr retryPkt;
427
428    /** Whehter or not a store is blocked due to the memory system. */
429    bool isStoreBlocked;
430
431    /** Whether or not a load is blocked due to the memory system. */
432    bool isLoadBlocked;
433
434    /** Has the blocked load been handled. */
435    bool loadBlockedHandled;
436
437    /** The sequence number of the blocked load. */
438    InstSeqNum blockedLoadSeqNum;
439
440    /** The oldest load that caused a memory ordering violation. */
441    DynInstPtr memDepViolator;
442
443    // Will also need how many read/write ports the Dcache has.  Or keep track
444    // of that in stage that is one level up, and only call executeLoad/Store
445    // the appropriate number of times.
446
447    /** Total number of loads forwaded from LSQ stores. */
448    Stats::Scalar<> lsqForwLoads;
449
450    /** Total number of loads ignored due to invalid addresses. */
451    Stats::Scalar<> invAddrLoads;
452
453    /** Total number of squashed loads. */
454    Stats::Scalar<> lsqSquashedLoads;
455
456    /** Total number of responses from the memory system that are
457     * ignored due to the instruction already being squashed. */
458    Stats::Scalar<> lsqIgnoredResponses;
459
460    /** Total number of squashed stores. */
461    Stats::Scalar<> lsqSquashedStores;
462
463    /** Total number of software prefetches ignored due to invalid addresses. */
464    Stats::Scalar<> invAddrSwpfs;
465
466    /** Ready loads blocked due to partial store-forwarding. */
467    Stats::Scalar<> lsqBlockedLoads;
468
469    /** Number of loads that were rescheduled. */
470    Stats::Scalar<> lsqRescheduledLoads;
471
472    /** Number of times the LSQ is blocked due to the cache. */
473    Stats::Scalar<> lsqCacheBlocked;
474
475  public:
476    /** Executes the load at the given index. */
477    template <class T>
478    Fault read(Request *req, T &data, int load_idx);
479
480    /** Executes the store at the given index. */
481    template <class T>
482    Fault write(Request *req, T &data, int store_idx);
483
484    /** Returns the index of the head load instruction. */
485    int getLoadHead() { return loadHead; }
486    /** Returns the sequence number of the head load instruction. */
487    InstSeqNum getLoadHeadSeqNum()
488    {
489        if (loadQueue[loadHead]) {
490            return loadQueue[loadHead]->seqNum;
491        } else {
492            return 0;
493        }
494
495    }
496
497    /** Returns the index of the head store instruction. */
498    int getStoreHead() { return storeHead; }
499    /** Returns the sequence number of the head store instruction. */
500    InstSeqNum getStoreHeadSeqNum()
501    {
502        if (storeQueue[storeHead].inst) {
503            return storeQueue[storeHead].inst->seqNum;
504        } else {
505            return 0;
506        }
507
508    }
509
510    /** Returns whether or not the LSQ unit is stalled. */
511    bool isStalled()  { return stalled; }
512};
513
514template <class Impl>
515template <class T>
516Fault
517LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
518{
519    DynInstPtr load_inst = loadQueue[load_idx];
520
521    assert(load_inst);
522
523    assert(!load_inst->isExecuted());
524
525    // Make sure this isn't an uncacheable access
526    // A bit of a hackish way to get uncached accesses to work only if they're
527    // at the head of the LSQ and are ready to commit (at the head of the ROB
528    // too).
529    if (req->getFlags() & UNCACHEABLE &&
530        (load_idx != loadHead || !load_inst->isAtCommit())) {
531        iewStage->rescheduleMemInst(load_inst);
532        ++lsqRescheduledLoads;
533        return TheISA::genMachineCheckFault();
534    }
535
536    // Check the SQ for any previous stores that might lead to forwarding
537    int store_idx = load_inst->sqIdx;
538
539    int store_size = 0;
540
541    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
542            "storeHead: %i addr: %#x\n",
543            load_idx, store_idx, storeHead, req->getPaddr());
544
545#if FULL_SYSTEM
546    if (req->getFlags() & LOCKED) {
547        cpu->lockAddr = req->getPaddr();
548        cpu->lockFlag = true;
549    }
550#endif
551
552    while (store_idx != -1) {
553        // End once we've reached the top of the LSQ
554        if (store_idx == storeWBIdx) {
555            break;
556        }
557
558        // Move the index to one younger
559        if (--store_idx < 0)
560            store_idx += SQEntries;
561
562        assert(storeQueue[store_idx].inst);
563
564        store_size = storeQueue[store_idx].size;
565
566        if (store_size == 0)
567            continue;
568
569        // Check if the store data is within the lower and upper bounds of
570        // addresses that the request needs.
571        bool store_has_lower_limit =
572            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
573        bool store_has_upper_limit =
574            (req->getVaddr() + req->getSize()) <=
575            (storeQueue[store_idx].inst->effAddr + store_size);
576        bool lower_load_has_store_part =
577            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
578                           store_size);
579        bool upper_load_has_store_part =
580            (req->getVaddr() + req->getSize()) >
581            storeQueue[store_idx].inst->effAddr;
582
583        // If the store's data has all of the data needed, we can forward.
584        if (store_has_lower_limit && store_has_upper_limit) {
585            // Get shift amount for offset into the store's data.
586            int shift_amt = req->getVaddr() & (store_size - 1);
587            // @todo: Magic number, assumes byte addressing
588            shift_amt = shift_amt << 3;
589
590            // Cast this to type T?
591            data = storeQueue[store_idx].data >> shift_amt;
592
593            assert(!load_inst->memData);
594            load_inst->memData = new uint8_t[64];
595
596            memcpy(load_inst->memData, &data, req->getSize());
597
598            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
599                    "addr %#x, data %#x\n",
600                    store_idx, req->getVaddr(), data);
601
602            PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
603            data_pkt->dataStatic(load_inst->memData);
604
605            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
606
607            // We'll say this has a 1 cycle load-store forwarding latency
608            // for now.
609            // @todo: Need to make this a parameter.
610            wb->schedule(curTick);
611
612            ++lsqForwLoads;
613            return NoFault;
614        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
615                   (store_has_upper_limit && upper_load_has_store_part) ||
616                   (lower_load_has_store_part && upper_load_has_store_part)) {
617            // This is the partial store-load forwarding case where a store
618            // has only part of the load's data.
619
620            // If it's already been written back, then don't worry about
621            // stalling on it.
622            if (storeQueue[store_idx].completed) {
623                continue;
624            }
625
626            // Must stall load and force it to retry, so long as it's the oldest
627            // load that needs to do so.
628            if (!stalled ||
629                (stalled &&
630                 load_inst->seqNum <
631                 loadQueue[stallingLoadIdx]->seqNum)) {
632                stalled = true;
633                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
634                stallingLoadIdx = load_idx;
635            }
636
637            // Tell IQ/mem dep unit that this instruction will need to be
638            // rescheduled eventually
639            iewStage->rescheduleMemInst(load_inst);
640            ++lsqRescheduledLoads;
641
642            // Do not generate a writeback event as this instruction is not
643            // complete.
644            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
645                    "Store idx %i to load addr %#x\n",
646                    store_idx, req->getVaddr());
647
648            ++lsqBlockedLoads;
649            return NoFault;
650        }
651    }
652
653    // If there's no forwarding case, then go access memory
654    DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n",
655            load_inst->seqNum, load_inst->readPC());
656
657    assert(!load_inst->memData);
658    load_inst->memData = new uint8_t[64];
659
660    ++usedPorts;
661
662    DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
663            load_inst->readPC());
664
665    PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
666    data_pkt->dataStatic(load_inst->memData);
667
668    LSQSenderState *state = new LSQSenderState;
669    state->isLoad = true;
670    state->idx = load_idx;
671    state->inst = load_inst;
672    data_pkt->senderState = state;
673
674    // if we have a cache, do cache access too
675    if (!dcachePort->sendTiming(data_pkt)) {
676        ++lsqCacheBlocked;
677        // There's an older load that's already going to squash.
678        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
679            return NoFault;
680
681        // Record that the load was blocked due to memory.  This
682        // load will squash all instructions after it, be
683        // refetched, and re-executed.
684        isLoadBlocked = true;
685        loadBlockedHandled = false;
686        blockedLoadSeqNum = load_inst->seqNum;
687        // No fault occurred, even though the interface is blocked.
688        return NoFault;
689    }
690
691    if (data_pkt->result != Packet::Success) {
692        DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
693        DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
694                load_inst->seqNum);
695    } else {
696        DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
697        DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
698                load_inst->seqNum);
699    }
700
701    return NoFault;
702}
703
704template <class Impl>
705template <class T>
706Fault
707LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
708{
709    assert(storeQueue[store_idx].inst);
710
711    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
712            " | storeHead:%i [sn:%i]\n",
713            store_idx, req->getPaddr(), data, storeHead,
714            storeQueue[store_idx].inst->seqNum);
715
716    storeQueue[store_idx].req = req;
717    storeQueue[store_idx].size = sizeof(T);
718    storeQueue[store_idx].data = data;
719
720    // This function only writes the data to the store queue, so no fault
721    // can happen here.
722    return NoFault;
723}
724
725#endif // __CPU_O3_LSQ_UNIT_HH__
726