inst_queue_impl.hh revision 9444:ab47fe7f03f0
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <limits>
45#include <vector>
46
47#include "cpu/o3/fu_pool.hh"
48#include "cpu/o3/inst_queue.hh"
49#include "debug/IQ.hh"
50#include "enums/OpClass.hh"
51#include "params/DerivO3CPU.hh"
52#include "sim/core.hh"
53
54// clang complains about std::set being overloaded with Packet::set if
55// we open up the entire namespace std
56using std::list;
57
58template <class Impl>
59InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
60    int fu_idx, InstructionQueue<Impl> *iq_ptr)
61    : Event(Stat_Event_Pri, AutoDelete),
62      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
63{
64}
65
66template <class Impl>
67void
68InstructionQueue<Impl>::FUCompletion::process()
69{
70    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
71    inst = NULL;
72}
73
74
75template <class Impl>
76const char *
77InstructionQueue<Impl>::FUCompletion::description() const
78{
79    return "Functional unit completion";
80}
81
82template <class Impl>
83InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
84                                         DerivO3CPUParams *params)
85    : cpu(cpu_ptr),
86      iewStage(iew_ptr),
87      fuPool(params->fuPool),
88      numEntries(params->numIQEntries),
89      totalWidth(params->issueWidth),
90      numPhysIntRegs(params->numPhysIntRegs),
91      numPhysFloatRegs(params->numPhysFloatRegs),
92      commitToIEWDelay(params->commitToIEWDelay)
93{
94    assert(fuPool);
95
96    numThreads = params->numThreads;
97
98    // Set the number of physical registers as the number of int + float
99    numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
100
101    //Create an entry for each physical register within the
102    //dependency graph.
103    dependGraph.resize(numPhysRegs);
104
105    // Resize the register scoreboard.
106    regScoreboard.resize(numPhysRegs);
107
108    //Initialize Mem Dependence Units
109    for (ThreadID tid = 0; tid < numThreads; tid++) {
110        memDepUnit[tid].init(params, tid);
111        memDepUnit[tid].setIQ(this);
112    }
113
114    resetState();
115
116    std::string policy = params->smtIQPolicy;
117
118    //Convert string to lowercase
119    std::transform(policy.begin(), policy.end(), policy.begin(),
120                   (int(*)(int)) tolower);
121
122    //Figure out resource sharing policy
123    if (policy == "dynamic") {
124        iqPolicy = Dynamic;
125
126        //Set Max Entries to Total ROB Capacity
127        for (ThreadID tid = 0; tid < numThreads; tid++) {
128            maxEntries[tid] = numEntries;
129        }
130
131    } else if (policy == "partitioned") {
132        iqPolicy = Partitioned;
133
134        //@todo:make work if part_amt doesnt divide evenly.
135        int part_amt = numEntries / numThreads;
136
137        //Divide ROB up evenly
138        for (ThreadID tid = 0; tid < numThreads; tid++) {
139            maxEntries[tid] = part_amt;
140        }
141
142        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
143                "%i entries per thread.\n",part_amt);
144    } else if (policy == "threshold") {
145        iqPolicy = Threshold;
146
147        double threshold =  (double)params->smtIQThreshold / 100;
148
149        int thresholdIQ = (int)((double)threshold * numEntries);
150
151        //Divide up by threshold amount
152        for (ThreadID tid = 0; tid < numThreads; tid++) {
153            maxEntries[tid] = thresholdIQ;
154        }
155
156        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
157                "%i entries per thread.\n",thresholdIQ);
158   } else {
159       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
160              "Partitioned, Threshold}");
161   }
162}
163
164template <class Impl>
165InstructionQueue<Impl>::~InstructionQueue()
166{
167    dependGraph.reset();
168#ifdef DEBUG
169    cprintf("Nodes traversed: %i, removed: %i\n",
170            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
171#endif
172}
173
174template <class Impl>
175std::string
176InstructionQueue<Impl>::name() const
177{
178    return cpu->name() + ".iq";
179}
180
181template <class Impl>
182void
183InstructionQueue<Impl>::regStats()
184{
185    using namespace Stats;
186    iqInstsAdded
187        .name(name() + ".iqInstsAdded")
188        .desc("Number of instructions added to the IQ (excludes non-spec)")
189        .prereq(iqInstsAdded);
190
191    iqNonSpecInstsAdded
192        .name(name() + ".iqNonSpecInstsAdded")
193        .desc("Number of non-speculative instructions added to the IQ")
194        .prereq(iqNonSpecInstsAdded);
195
196    iqInstsIssued
197        .name(name() + ".iqInstsIssued")
198        .desc("Number of instructions issued")
199        .prereq(iqInstsIssued);
200
201    iqIntInstsIssued
202        .name(name() + ".iqIntInstsIssued")
203        .desc("Number of integer instructions issued")
204        .prereq(iqIntInstsIssued);
205
206    iqFloatInstsIssued
207        .name(name() + ".iqFloatInstsIssued")
208        .desc("Number of float instructions issued")
209        .prereq(iqFloatInstsIssued);
210
211    iqBranchInstsIssued
212        .name(name() + ".iqBranchInstsIssued")
213        .desc("Number of branch instructions issued")
214        .prereq(iqBranchInstsIssued);
215
216    iqMemInstsIssued
217        .name(name() + ".iqMemInstsIssued")
218        .desc("Number of memory instructions issued")
219        .prereq(iqMemInstsIssued);
220
221    iqMiscInstsIssued
222        .name(name() + ".iqMiscInstsIssued")
223        .desc("Number of miscellaneous instructions issued")
224        .prereq(iqMiscInstsIssued);
225
226    iqSquashedInstsIssued
227        .name(name() + ".iqSquashedInstsIssued")
228        .desc("Number of squashed instructions issued")
229        .prereq(iqSquashedInstsIssued);
230
231    iqSquashedInstsExamined
232        .name(name() + ".iqSquashedInstsExamined")
233        .desc("Number of squashed instructions iterated over during squash;"
234              " mainly for profiling")
235        .prereq(iqSquashedInstsExamined);
236
237    iqSquashedOperandsExamined
238        .name(name() + ".iqSquashedOperandsExamined")
239        .desc("Number of squashed operands that are examined and possibly "
240              "removed from graph")
241        .prereq(iqSquashedOperandsExamined);
242
243    iqSquashedNonSpecRemoved
244        .name(name() + ".iqSquashedNonSpecRemoved")
245        .desc("Number of squashed non-spec instructions that were removed")
246        .prereq(iqSquashedNonSpecRemoved);
247/*
248    queueResDist
249        .init(Num_OpClasses, 0, 99, 2)
250        .name(name() + ".IQ:residence:")
251        .desc("cycles from dispatch to issue")
252        .flags(total | pdf | cdf )
253        ;
254    for (int i = 0; i < Num_OpClasses; ++i) {
255        queueResDist.subname(i, opClassStrings[i]);
256    }
257*/
258    numIssuedDist
259        .init(0,totalWidth,1)
260        .name(name() + ".issued_per_cycle")
261        .desc("Number of insts issued each cycle")
262        .flags(pdf)
263        ;
264/*
265    dist_unissued
266        .init(Num_OpClasses+2)
267        .name(name() + ".unissued_cause")
268        .desc("Reason ready instruction not issued")
269        .flags(pdf | dist)
270        ;
271    for (int i=0; i < (Num_OpClasses + 2); ++i) {
272        dist_unissued.subname(i, unissued_names[i]);
273    }
274*/
275    statIssuedInstType
276        .init(numThreads,Enums::Num_OpClass)
277        .name(name() + ".FU_type")
278        .desc("Type of FU issued")
279        .flags(total | pdf | dist)
280        ;
281    statIssuedInstType.ysubnames(Enums::OpClassStrings);
282
283    //
284    //  How long did instructions for a particular FU type wait prior to issue
285    //
286/*
287    issueDelayDist
288        .init(Num_OpClasses,0,99,2)
289        .name(name() + ".")
290        .desc("cycles from operands ready to issue")
291        .flags(pdf | cdf)
292        ;
293
294    for (int i=0; i<Num_OpClasses; ++i) {
295        std::stringstream subname;
296        subname << opClassStrings[i] << "_delay";
297        issueDelayDist.subname(i, subname.str());
298    }
299*/
300    issueRate
301        .name(name() + ".rate")
302        .desc("Inst issue rate")
303        .flags(total)
304        ;
305    issueRate = iqInstsIssued / cpu->numCycles;
306
307    statFuBusy
308        .init(Num_OpClasses)
309        .name(name() + ".fu_full")
310        .desc("attempts to use FU when none available")
311        .flags(pdf | dist)
312        ;
313    for (int i=0; i < Num_OpClasses; ++i) {
314        statFuBusy.subname(i, Enums::OpClassStrings[i]);
315    }
316
317    fuBusy
318        .init(numThreads)
319        .name(name() + ".fu_busy_cnt")
320        .desc("FU busy when requested")
321        .flags(total)
322        ;
323
324    fuBusyRate
325        .name(name() + ".fu_busy_rate")
326        .desc("FU busy rate (busy events/executed inst)")
327        .flags(total)
328        ;
329    fuBusyRate = fuBusy / iqInstsIssued;
330
331    for (ThreadID tid = 0; tid < numThreads; tid++) {
332        // Tell mem dependence unit to reg stats as well.
333        memDepUnit[tid].regStats();
334    }
335
336    intInstQueueReads
337        .name(name() + ".int_inst_queue_reads")
338        .desc("Number of integer instruction queue reads")
339        .flags(total);
340
341    intInstQueueWrites
342        .name(name() + ".int_inst_queue_writes")
343        .desc("Number of integer instruction queue writes")
344        .flags(total);
345
346    intInstQueueWakeupAccesses
347        .name(name() + ".int_inst_queue_wakeup_accesses")
348        .desc("Number of integer instruction queue wakeup accesses")
349        .flags(total);
350
351    fpInstQueueReads
352        .name(name() + ".fp_inst_queue_reads")
353        .desc("Number of floating instruction queue reads")
354        .flags(total);
355
356    fpInstQueueWrites
357        .name(name() + ".fp_inst_queue_writes")
358        .desc("Number of floating instruction queue writes")
359        .flags(total);
360
361    fpInstQueueWakeupQccesses
362        .name(name() + ".fp_inst_queue_wakeup_accesses")
363        .desc("Number of floating instruction queue wakeup accesses")
364        .flags(total);
365
366    intAluAccesses
367        .name(name() + ".int_alu_accesses")
368        .desc("Number of integer alu accesses")
369        .flags(total);
370
371    fpAluAccesses
372        .name(name() + ".fp_alu_accesses")
373        .desc("Number of floating point alu accesses")
374        .flags(total);
375
376}
377
378template <class Impl>
379void
380InstructionQueue<Impl>::resetState()
381{
382    //Initialize thread IQ counts
383    for (ThreadID tid = 0; tid <numThreads; tid++) {
384        count[tid] = 0;
385        instList[tid].clear();
386    }
387
388    // Initialize the number of free IQ entries.
389    freeEntries = numEntries;
390
391    // Note that in actuality, the registers corresponding to the logical
392    // registers start off as ready.  However this doesn't matter for the
393    // IQ as the instruction should have been correctly told if those
394    // registers are ready in rename.  Thus it can all be initialized as
395    // unready.
396    for (int i = 0; i < numPhysRegs; ++i) {
397        regScoreboard[i] = false;
398    }
399
400    for (ThreadID tid = 0; tid < numThreads; ++tid) {
401        squashedSeqNum[tid] = 0;
402    }
403
404    for (int i = 0; i < Num_OpClasses; ++i) {
405        while (!readyInsts[i].empty())
406            readyInsts[i].pop();
407        queueOnList[i] = false;
408        readyIt[i] = listOrder.end();
409    }
410    nonSpecInsts.clear();
411    listOrder.clear();
412    deferredMemInsts.clear();
413}
414
415template <class Impl>
416void
417InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
418{
419    activeThreads = at_ptr;
420}
421
422template <class Impl>
423void
424InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
425{
426      issueToExecuteQueue = i2e_ptr;
427}
428
429template <class Impl>
430void
431InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
432{
433    timeBuffer = tb_ptr;
434
435    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
436}
437
438template <class Impl>
439void
440InstructionQueue<Impl>::drainSanityCheck() const
441{
442    assert(dependGraph.empty());
443    assert(instsToExecute.empty());
444    for (ThreadID tid = 0; tid < numThreads; ++tid)
445        memDepUnit[tid].drainSanityCheck();
446}
447
448template <class Impl>
449void
450InstructionQueue<Impl>::takeOverFrom()
451{
452    resetState();
453}
454
455template <class Impl>
456int
457InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
458{
459    if (iqPolicy == Partitioned) {
460        return numEntries / num_threads;
461    } else {
462        return 0;
463    }
464}
465
466
467template <class Impl>
468void
469InstructionQueue<Impl>::resetEntries()
470{
471    if (iqPolicy != Dynamic || numThreads > 1) {
472        int active_threads = activeThreads->size();
473
474        list<ThreadID>::iterator threads = activeThreads->begin();
475        list<ThreadID>::iterator end = activeThreads->end();
476
477        while (threads != end) {
478            ThreadID tid = *threads++;
479
480            if (iqPolicy == Partitioned) {
481                maxEntries[tid] = numEntries / active_threads;
482            } else if(iqPolicy == Threshold && active_threads == 1) {
483                maxEntries[tid] = numEntries;
484            }
485        }
486    }
487}
488
489template <class Impl>
490unsigned
491InstructionQueue<Impl>::numFreeEntries()
492{
493    return freeEntries;
494}
495
496template <class Impl>
497unsigned
498InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
499{
500    return maxEntries[tid] - count[tid];
501}
502
503// Might want to do something more complex if it knows how many instructions
504// will be issued this cycle.
505template <class Impl>
506bool
507InstructionQueue<Impl>::isFull()
508{
509    if (freeEntries == 0) {
510        return(true);
511    } else {
512        return(false);
513    }
514}
515
516template <class Impl>
517bool
518InstructionQueue<Impl>::isFull(ThreadID tid)
519{
520    if (numFreeEntries(tid) == 0) {
521        return(true);
522    } else {
523        return(false);
524    }
525}
526
527template <class Impl>
528bool
529InstructionQueue<Impl>::hasReadyInsts()
530{
531    if (!listOrder.empty()) {
532        return true;
533    }
534
535    for (int i = 0; i < Num_OpClasses; ++i) {
536        if (!readyInsts[i].empty()) {
537            return true;
538        }
539    }
540
541    return false;
542}
543
544template <class Impl>
545void
546InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
547{
548    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
549    // Make sure the instruction is valid
550    assert(new_inst);
551
552    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
553            new_inst->seqNum, new_inst->pcState());
554
555    assert(freeEntries != 0);
556
557    instList[new_inst->threadNumber].push_back(new_inst);
558
559    --freeEntries;
560
561    new_inst->setInIQ();
562
563    // Look through its source registers (physical regs), and mark any
564    // dependencies.
565    addToDependents(new_inst);
566
567    // Have this instruction set itself as the producer of its destination
568    // register(s).
569    addToProducers(new_inst);
570
571    if (new_inst->isMemRef()) {
572        memDepUnit[new_inst->threadNumber].insert(new_inst);
573    } else {
574        addIfReady(new_inst);
575    }
576
577    ++iqInstsAdded;
578
579    count[new_inst->threadNumber]++;
580
581    assert(freeEntries == (numEntries - countInsts()));
582}
583
584template <class Impl>
585void
586InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
587{
588    // @todo: Clean up this code; can do it by setting inst as unable
589    // to issue, then calling normal insert on the inst.
590    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
591
592    assert(new_inst);
593
594    nonSpecInsts[new_inst->seqNum] = new_inst;
595
596    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
597            "to the IQ.\n",
598            new_inst->seqNum, new_inst->pcState());
599
600    assert(freeEntries != 0);
601
602    instList[new_inst->threadNumber].push_back(new_inst);
603
604    --freeEntries;
605
606    new_inst->setInIQ();
607
608    // Have this instruction set itself as the producer of its destination
609    // register(s).
610    addToProducers(new_inst);
611
612    // If it's a memory instruction, add it to the memory dependency
613    // unit.
614    if (new_inst->isMemRef()) {
615        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
616    }
617
618    ++iqNonSpecInstsAdded;
619
620    count[new_inst->threadNumber]++;
621
622    assert(freeEntries == (numEntries - countInsts()));
623}
624
625template <class Impl>
626void
627InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
628{
629    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
630
631    insertNonSpec(barr_inst);
632}
633
634template <class Impl>
635typename Impl::DynInstPtr
636InstructionQueue<Impl>::getInstToExecute()
637{
638    assert(!instsToExecute.empty());
639    DynInstPtr inst = instsToExecute.front();
640    instsToExecute.pop_front();
641    if (inst->isFloating()){
642        fpInstQueueReads++;
643    } else {
644        intInstQueueReads++;
645    }
646    return inst;
647}
648
649template <class Impl>
650void
651InstructionQueue<Impl>::addToOrderList(OpClass op_class)
652{
653    assert(!readyInsts[op_class].empty());
654
655    ListOrderEntry queue_entry;
656
657    queue_entry.queueType = op_class;
658
659    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
660
661    ListOrderIt list_it = listOrder.begin();
662    ListOrderIt list_end_it = listOrder.end();
663
664    while (list_it != list_end_it) {
665        if ((*list_it).oldestInst > queue_entry.oldestInst) {
666            break;
667        }
668
669        list_it++;
670    }
671
672    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
673    queueOnList[op_class] = true;
674}
675
676template <class Impl>
677void
678InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
679{
680    // Get iterator of next item on the list
681    // Delete the original iterator
682    // Determine if the next item is either the end of the list or younger
683    // than the new instruction.  If so, then add in a new iterator right here.
684    // If not, then move along.
685    ListOrderEntry queue_entry;
686    OpClass op_class = (*list_order_it).queueType;
687    ListOrderIt next_it = list_order_it;
688
689    ++next_it;
690
691    queue_entry.queueType = op_class;
692    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
693
694    while (next_it != listOrder.end() &&
695           (*next_it).oldestInst < queue_entry.oldestInst) {
696        ++next_it;
697    }
698
699    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
700}
701
702template <class Impl>
703void
704InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
705{
706    DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
707    assert(!cpu->switchedOut());
708    // The CPU could have been sleeping until this op completed (*extremely*
709    // long latency op).  Wake it if it was.  This may be overkill.
710    iewStage->wakeCPU();
711
712    if (fu_idx > -1)
713        fuPool->freeUnitNextCycle(fu_idx);
714
715    // @todo: Ensure that these FU Completions happen at the beginning
716    // of a cycle, otherwise they could add too many instructions to
717    // the queue.
718    issueToExecuteQueue->access(-1)->size++;
719    instsToExecute.push_back(inst);
720}
721
722// @todo: Figure out a better way to remove the squashed items from the
723// lists.  Checking the top item of each list to see if it's squashed
724// wastes time and forces jumps.
725template <class Impl>
726void
727InstructionQueue<Impl>::scheduleReadyInsts()
728{
729    DPRINTF(IQ, "Attempting to schedule ready instructions from "
730            "the IQ.\n");
731
732    IssueStruct *i2e_info = issueToExecuteQueue->access(0);
733
734    DynInstPtr deferred_mem_inst;
735    int total_deferred_mem_issued = 0;
736    while (total_deferred_mem_issued < totalWidth &&
737           (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
738        issueToExecuteQueue->access(0)->size++;
739        instsToExecute.push_back(deferred_mem_inst);
740        total_deferred_mem_issued++;
741    }
742
743    // Have iterator to head of the list
744    // While I haven't exceeded bandwidth or reached the end of the list,
745    // Try to get a FU that can do what this op needs.
746    // If successful, change the oldestInst to the new top of the list, put
747    // the queue in the proper place in the list.
748    // Increment the iterator.
749    // This will avoid trying to schedule a certain op class if there are no
750    // FUs that handle it.
751    ListOrderIt order_it = listOrder.begin();
752    ListOrderIt order_end_it = listOrder.end();
753    int total_issued = 0;
754
755    while (total_issued < (totalWidth - total_deferred_mem_issued) &&
756           iewStage->canIssue() &&
757           order_it != order_end_it) {
758        OpClass op_class = (*order_it).queueType;
759
760        assert(!readyInsts[op_class].empty());
761
762        DynInstPtr issuing_inst = readyInsts[op_class].top();
763
764        issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
765
766        assert(issuing_inst->seqNum == (*order_it).oldestInst);
767
768        if (issuing_inst->isSquashed()) {
769            readyInsts[op_class].pop();
770
771            if (!readyInsts[op_class].empty()) {
772                moveToYoungerInst(order_it);
773            } else {
774                readyIt[op_class] = listOrder.end();
775                queueOnList[op_class] = false;
776            }
777
778            listOrder.erase(order_it++);
779
780            ++iqSquashedInstsIssued;
781
782            continue;
783        }
784
785        int idx = -2;
786        Cycles op_latency = Cycles(1);
787        ThreadID tid = issuing_inst->threadNumber;
788
789        if (op_class != No_OpClass) {
790            idx = fuPool->getUnit(op_class);
791            issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
792            if (idx > -1) {
793                op_latency = fuPool->getOpLatency(op_class);
794            }
795        }
796
797        // If we have an instruction that doesn't require a FU, or a
798        // valid FU, then schedule for execution.
799        if (idx == -2 || idx != -1) {
800            if (op_latency == Cycles(1)) {
801                i2e_info->size++;
802                instsToExecute.push_back(issuing_inst);
803
804                // Add the FU onto the list of FU's to be freed next
805                // cycle if we used one.
806                if (idx >= 0)
807                    fuPool->freeUnitNextCycle(idx);
808            } else {
809                Cycles issue_latency = fuPool->getIssueLatency(op_class);
810                // Generate completion event for the FU
811                FUCompletion *execution = new FUCompletion(issuing_inst,
812                                                           idx, this);
813
814                cpu->schedule(execution,
815                              cpu->clockEdge(Cycles(op_latency - 1)));
816
817                // @todo: Enforce that issue_latency == 1 or op_latency
818                if (issue_latency > Cycles(1)) {
819                    // If FU isn't pipelined, then it must be freed
820                    // upon the execution completing.
821                    execution->setFreeFU();
822                } else {
823                    // Add the FU onto the list of FU's to be freed next cycle.
824                    fuPool->freeUnitNextCycle(idx);
825                }
826            }
827
828            DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
829                    "[sn:%lli]\n",
830                    tid, issuing_inst->pcState(),
831                    issuing_inst->seqNum);
832
833            readyInsts[op_class].pop();
834
835            if (!readyInsts[op_class].empty()) {
836                moveToYoungerInst(order_it);
837            } else {
838                readyIt[op_class] = listOrder.end();
839                queueOnList[op_class] = false;
840            }
841
842            issuing_inst->setIssued();
843            ++total_issued;
844
845#if TRACING_ON
846            issuing_inst->issueTick = curTick() - issuing_inst->fetchTick;
847#endif
848
849            if (!issuing_inst->isMemRef()) {
850                // Memory instructions can not be freed from the IQ until they
851                // complete.
852                ++freeEntries;
853                count[tid]--;
854                issuing_inst->clearInIQ();
855            } else {
856                memDepUnit[tid].issue(issuing_inst);
857            }
858
859            listOrder.erase(order_it++);
860            statIssuedInstType[tid][op_class]++;
861            iewStage->incrWb(issuing_inst->seqNum);
862        } else {
863            statFuBusy[op_class]++;
864            fuBusy[tid]++;
865            ++order_it;
866        }
867    }
868
869    numIssuedDist.sample(total_issued);
870    iqInstsIssued+= total_issued;
871
872    // If we issued any instructions, tell the CPU we had activity.
873    // @todo If the way deferred memory instructions are handeled due to
874    // translation changes then the deferredMemInsts condition should be removed
875    // from the code below.
876    if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
877        cpu->activityThisCycle();
878    } else {
879        DPRINTF(IQ, "Not able to schedule any instructions.\n");
880    }
881}
882
883template <class Impl>
884void
885InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
886{
887    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
888            "to execute.\n", inst);
889
890    NonSpecMapIt inst_it = nonSpecInsts.find(inst);
891
892    assert(inst_it != nonSpecInsts.end());
893
894    ThreadID tid = (*inst_it).second->threadNumber;
895
896    (*inst_it).second->setAtCommit();
897
898    (*inst_it).second->setCanIssue();
899
900    if (!(*inst_it).second->isMemRef()) {
901        addIfReady((*inst_it).second);
902    } else {
903        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
904    }
905
906    (*inst_it).second = NULL;
907
908    nonSpecInsts.erase(inst_it);
909}
910
911template <class Impl>
912void
913InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
914{
915    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
916            tid,inst);
917
918    ListIt iq_it = instList[tid].begin();
919
920    while (iq_it != instList[tid].end() &&
921           (*iq_it)->seqNum <= inst) {
922        ++iq_it;
923        instList[tid].pop_front();
924    }
925
926    assert(freeEntries == (numEntries - countInsts()));
927}
928
929template <class Impl>
930int
931InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
932{
933    int dependents = 0;
934
935    // The instruction queue here takes care of both floating and int ops
936    if (completed_inst->isFloating()) {
937        fpInstQueueWakeupQccesses++;
938    } else {
939        intInstQueueWakeupAccesses++;
940    }
941
942    DPRINTF(IQ, "Waking dependents of completed instruction.\n");
943
944    assert(!completed_inst->isSquashed());
945
946    // Tell the memory dependence unit to wake any dependents on this
947    // instruction if it is a memory instruction.  Also complete the memory
948    // instruction at this point since we know it executed without issues.
949    // @todo: Might want to rename "completeMemInst" to something that
950    // indicates that it won't need to be replayed, and call this
951    // earlier.  Might not be a big deal.
952    if (completed_inst->isMemRef()) {
953        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
954        completeMemInst(completed_inst);
955    } else if (completed_inst->isMemBarrier() ||
956               completed_inst->isWriteBarrier()) {
957        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
958    }
959
960    for (int dest_reg_idx = 0;
961         dest_reg_idx < completed_inst->numDestRegs();
962         dest_reg_idx++)
963    {
964        PhysRegIndex dest_reg =
965            completed_inst->renamedDestRegIdx(dest_reg_idx);
966
967        // Special case of uniq or control registers.  They are not
968        // handled by the IQ and thus have no dependency graph entry.
969        // @todo Figure out a cleaner way to handle this.
970        if (dest_reg >= numPhysRegs) {
971            DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
972                    numPhysRegs);
973            continue;
974        }
975
976        DPRINTF(IQ, "Waking any dependents on register %i.\n",
977                (int) dest_reg);
978
979        //Go through the dependency chain, marking the registers as
980        //ready within the waiting instructions.
981        DynInstPtr dep_inst = dependGraph.pop(dest_reg);
982
983        while (dep_inst) {
984            DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
985                    "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
986
987            // Might want to give more information to the instruction
988            // so that it knows which of its source registers is
989            // ready.  However that would mean that the dependency
990            // graph entries would need to hold the src_reg_idx.
991            dep_inst->markSrcRegReady();
992
993            addIfReady(dep_inst);
994
995            dep_inst = dependGraph.pop(dest_reg);
996
997            ++dependents;
998        }
999
1000        // Reset the head node now that all of its dependents have
1001        // been woken up.
1002        assert(dependGraph.empty(dest_reg));
1003        dependGraph.clearInst(dest_reg);
1004
1005        // Mark the scoreboard as having that register ready.
1006        regScoreboard[dest_reg] = true;
1007    }
1008    return dependents;
1009}
1010
1011template <class Impl>
1012void
1013InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1014{
1015    OpClass op_class = ready_inst->opClass();
1016
1017    readyInsts[op_class].push(ready_inst);
1018
1019    // Will need to reorder the list if either a queue is not on the list,
1020    // or it has an older instruction than last time.
1021    if (!queueOnList[op_class]) {
1022        addToOrderList(op_class);
1023    } else if (readyInsts[op_class].top()->seqNum  <
1024               (*readyIt[op_class]).oldestInst) {
1025        listOrder.erase(readyIt[op_class]);
1026        addToOrderList(op_class);
1027    }
1028
1029    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1030            "the ready list, PC %s opclass:%i [sn:%lli].\n",
1031            ready_inst->pcState(), op_class, ready_inst->seqNum);
1032}
1033
1034template <class Impl>
1035void
1036InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1037{
1038    DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1039
1040    // Reset DTB translation state
1041    resched_inst->translationStarted(false);
1042    resched_inst->translationCompleted(false);
1043
1044    resched_inst->clearCanIssue();
1045    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1046}
1047
1048template <class Impl>
1049void
1050InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1051{
1052    memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1053}
1054
1055template <class Impl>
1056void
1057InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1058{
1059    ThreadID tid = completed_inst->threadNumber;
1060
1061    DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1062            completed_inst->pcState(), completed_inst->seqNum);
1063
1064    ++freeEntries;
1065
1066    completed_inst->memOpDone(true);
1067
1068    memDepUnit[tid].completed(completed_inst);
1069    count[tid]--;
1070}
1071
1072template <class Impl>
1073void
1074InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1075{
1076    deferredMemInsts.push_back(deferred_inst);
1077}
1078
1079template <class Impl>
1080typename Impl::DynInstPtr
1081InstructionQueue<Impl>::getDeferredMemInstToExecute()
1082{
1083    for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1084         ++it) {
1085        if ((*it)->translationCompleted() || (*it)->isSquashed()) {
1086            DynInstPtr ret = *it;
1087            deferredMemInsts.erase(it);
1088            return ret;
1089        }
1090    }
1091    return NULL;
1092}
1093
1094template <class Impl>
1095void
1096InstructionQueue<Impl>::violation(DynInstPtr &store,
1097                                  DynInstPtr &faulting_load)
1098{
1099    intInstQueueWrites++;
1100    memDepUnit[store->threadNumber].violation(store, faulting_load);
1101}
1102
1103template <class Impl>
1104void
1105InstructionQueue<Impl>::squash(ThreadID tid)
1106{
1107    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1108            "the IQ.\n", tid);
1109
1110    // Read instruction sequence number of last instruction out of the
1111    // time buffer.
1112    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1113
1114    // Call doSquash if there are insts in the IQ
1115    if (count[tid] > 0) {
1116        doSquash(tid);
1117    }
1118
1119    // Also tell the memory dependence unit to squash.
1120    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1121}
1122
1123template <class Impl>
1124void
1125InstructionQueue<Impl>::doSquash(ThreadID tid)
1126{
1127    // Start at the tail.
1128    ListIt squash_it = instList[tid].end();
1129    --squash_it;
1130
1131    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1132            tid, squashedSeqNum[tid]);
1133
1134    // Squash any instructions younger than the squashed sequence number
1135    // given.
1136    while (squash_it != instList[tid].end() &&
1137           (*squash_it)->seqNum > squashedSeqNum[tid]) {
1138
1139        DynInstPtr squashed_inst = (*squash_it);
1140        squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1141
1142        // Only handle the instruction if it actually is in the IQ and
1143        // hasn't already been squashed in the IQ.
1144        if (squashed_inst->threadNumber != tid ||
1145            squashed_inst->isSquashedInIQ()) {
1146            --squash_it;
1147            continue;
1148        }
1149
1150        if (!squashed_inst->isIssued() ||
1151            (squashed_inst->isMemRef() &&
1152             !squashed_inst->memOpDone())) {
1153
1154            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1155                    tid, squashed_inst->seqNum, squashed_inst->pcState());
1156
1157            // Remove the instruction from the dependency list.
1158            if (!squashed_inst->isNonSpeculative() &&
1159                !squashed_inst->isStoreConditional() &&
1160                !squashed_inst->isMemBarrier() &&
1161                !squashed_inst->isWriteBarrier()) {
1162
1163                for (int src_reg_idx = 0;
1164                     src_reg_idx < squashed_inst->numSrcRegs();
1165                     src_reg_idx++)
1166                {
1167                    PhysRegIndex src_reg =
1168                        squashed_inst->renamedSrcRegIdx(src_reg_idx);
1169
1170                    // Only remove it from the dependency graph if it
1171                    // was placed there in the first place.
1172
1173                    // Instead of doing a linked list traversal, we
1174                    // can just remove these squashed instructions
1175                    // either at issue time, or when the register is
1176                    // overwritten.  The only downside to this is it
1177                    // leaves more room for error.
1178
1179                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1180                        src_reg < numPhysRegs) {
1181                        dependGraph.remove(src_reg, squashed_inst);
1182                    }
1183
1184
1185                    ++iqSquashedOperandsExamined;
1186                }
1187            } else if (!squashed_inst->isStoreConditional() ||
1188                       !squashed_inst->isCompleted()) {
1189                NonSpecMapIt ns_inst_it =
1190                    nonSpecInsts.find(squashed_inst->seqNum);
1191
1192                if (ns_inst_it == nonSpecInsts.end()) {
1193                    assert(squashed_inst->getFault() != NoFault);
1194                } else {
1195
1196                    (*ns_inst_it).second = NULL;
1197
1198                    nonSpecInsts.erase(ns_inst_it);
1199
1200                    ++iqSquashedNonSpecRemoved;
1201                }
1202            }
1203
1204            // Might want to also clear out the head of the dependency graph.
1205
1206            // Mark it as squashed within the IQ.
1207            squashed_inst->setSquashedInIQ();
1208
1209            // @todo: Remove this hack where several statuses are set so the
1210            // inst will flow through the rest of the pipeline.
1211            squashed_inst->setIssued();
1212            squashed_inst->setCanCommit();
1213            squashed_inst->clearInIQ();
1214
1215            //Update Thread IQ Count
1216            count[squashed_inst->threadNumber]--;
1217
1218            ++freeEntries;
1219        }
1220
1221        instList[tid].erase(squash_it--);
1222        ++iqSquashedInstsExamined;
1223    }
1224}
1225
1226template <class Impl>
1227bool
1228InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1229{
1230    // Loop through the instruction's source registers, adding
1231    // them to the dependency list if they are not ready.
1232    int8_t total_src_regs = new_inst->numSrcRegs();
1233    bool return_val = false;
1234
1235    for (int src_reg_idx = 0;
1236         src_reg_idx < total_src_regs;
1237         src_reg_idx++)
1238    {
1239        // Only add it to the dependency graph if it's not ready.
1240        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1241            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1242
1243            // Check the IQ's scoreboard to make sure the register
1244            // hasn't become ready while the instruction was in flight
1245            // between stages.  Only if it really isn't ready should
1246            // it be added to the dependency graph.
1247            if (src_reg >= numPhysRegs) {
1248                continue;
1249            } else if (regScoreboard[src_reg] == false) {
1250                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1251                        "is being added to the dependency chain.\n",
1252                        new_inst->pcState(), src_reg);
1253
1254                dependGraph.insert(src_reg, new_inst);
1255
1256                // Change the return value to indicate that something
1257                // was added to the dependency graph.
1258                return_val = true;
1259            } else {
1260                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1261                        "became ready before it reached the IQ.\n",
1262                        new_inst->pcState(), src_reg);
1263                // Mark a register ready within the instruction.
1264                new_inst->markSrcRegReady(src_reg_idx);
1265            }
1266        }
1267    }
1268
1269    return return_val;
1270}
1271
1272template <class Impl>
1273void
1274InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1275{
1276    // Nothing really needs to be marked when an instruction becomes
1277    // the producer of a register's value, but for convenience a ptr
1278    // to the producing instruction will be placed in the head node of
1279    // the dependency links.
1280    int8_t total_dest_regs = new_inst->numDestRegs();
1281
1282    for (int dest_reg_idx = 0;
1283         dest_reg_idx < total_dest_regs;
1284         dest_reg_idx++)
1285    {
1286        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1287
1288        // Instructions that use the misc regs will have a reg number
1289        // higher than the normal physical registers.  In this case these
1290        // registers are not renamed, and there is no need to track
1291        // dependencies as these instructions must be executed at commit.
1292        if (dest_reg >= numPhysRegs) {
1293            continue;
1294        }
1295
1296        if (!dependGraph.empty(dest_reg)) {
1297            dependGraph.dump();
1298            panic("Dependency graph %i not empty!", dest_reg);
1299        }
1300
1301        dependGraph.setInst(dest_reg, new_inst);
1302
1303        // Mark the scoreboard to say it's not yet ready.
1304        regScoreboard[dest_reg] = false;
1305    }
1306}
1307
1308template <class Impl>
1309void
1310InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1311{
1312    // If the instruction now has all of its source registers
1313    // available, then add it to the list of ready instructions.
1314    if (inst->readyToIssue()) {
1315
1316        //Add the instruction to the proper ready list.
1317        if (inst->isMemRef()) {
1318
1319            DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1320
1321            // Message to the mem dependence unit that this instruction has
1322            // its registers ready.
1323            memDepUnit[inst->threadNumber].regsReady(inst);
1324
1325            return;
1326        }
1327
1328        OpClass op_class = inst->opClass();
1329
1330        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1331                "the ready list, PC %s opclass:%i [sn:%lli].\n",
1332                inst->pcState(), op_class, inst->seqNum);
1333
1334        readyInsts[op_class].push(inst);
1335
1336        // Will need to reorder the list if either a queue is not on the list,
1337        // or it has an older instruction than last time.
1338        if (!queueOnList[op_class]) {
1339            addToOrderList(op_class);
1340        } else if (readyInsts[op_class].top()->seqNum  <
1341                   (*readyIt[op_class]).oldestInst) {
1342            listOrder.erase(readyIt[op_class]);
1343            addToOrderList(op_class);
1344        }
1345    }
1346}
1347
1348template <class Impl>
1349int
1350InstructionQueue<Impl>::countInsts()
1351{
1352#if 0
1353    //ksewell:This works but definitely could use a cleaner write
1354    //with a more intuitive way of counting. Right now it's
1355    //just brute force ....
1356    // Change the #if if you want to use this method.
1357    int total_insts = 0;
1358
1359    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1360        ListIt count_it = instList[tid].begin();
1361
1362        while (count_it != instList[tid].end()) {
1363            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1364                if (!(*count_it)->isIssued()) {
1365                    ++total_insts;
1366                } else if ((*count_it)->isMemRef() &&
1367                           !(*count_it)->memOpDone) {
1368                    // Loads that have not been marked as executed still count
1369                    // towards the total instructions.
1370                    ++total_insts;
1371                }
1372            }
1373
1374            ++count_it;
1375        }
1376    }
1377
1378    return total_insts;
1379#else
1380    return numEntries - freeEntries;
1381#endif
1382}
1383
1384template <class Impl>
1385void
1386InstructionQueue<Impl>::dumpLists()
1387{
1388    for (int i = 0; i < Num_OpClasses; ++i) {
1389        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1390
1391        cprintf("\n");
1392    }
1393
1394    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1395
1396    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1397    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1398
1399    cprintf("Non speculative list: ");
1400
1401    while (non_spec_it != non_spec_end_it) {
1402        cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1403                (*non_spec_it).second->seqNum);
1404        ++non_spec_it;
1405    }
1406
1407    cprintf("\n");
1408
1409    ListOrderIt list_order_it = listOrder.begin();
1410    ListOrderIt list_order_end_it = listOrder.end();
1411    int i = 1;
1412
1413    cprintf("List order: ");
1414
1415    while (list_order_it != list_order_end_it) {
1416        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1417                (*list_order_it).oldestInst);
1418
1419        ++list_order_it;
1420        ++i;
1421    }
1422
1423    cprintf("\n");
1424}
1425
1426
1427template <class Impl>
1428void
1429InstructionQueue<Impl>::dumpInsts()
1430{
1431    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1432        int num = 0;
1433        int valid_num = 0;
1434        ListIt inst_list_it = instList[tid].begin();
1435
1436        while (inst_list_it != instList[tid].end()) {
1437            cprintf("Instruction:%i\n", num);
1438            if (!(*inst_list_it)->isSquashed()) {
1439                if (!(*inst_list_it)->isIssued()) {
1440                    ++valid_num;
1441                    cprintf("Count:%i\n", valid_num);
1442                } else if ((*inst_list_it)->isMemRef() &&
1443                           !(*inst_list_it)->memOpDone()) {
1444                    // Loads that have not been marked as executed
1445                    // still count towards the total instructions.
1446                    ++valid_num;
1447                    cprintf("Count:%i\n", valid_num);
1448                }
1449            }
1450
1451            cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1452                    "Issued:%i\nSquashed:%i\n",
1453                    (*inst_list_it)->pcState(),
1454                    (*inst_list_it)->seqNum,
1455                    (*inst_list_it)->threadNumber,
1456                    (*inst_list_it)->isIssued(),
1457                    (*inst_list_it)->isSquashed());
1458
1459            if ((*inst_list_it)->isMemRef()) {
1460                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1461            }
1462
1463            cprintf("\n");
1464
1465            inst_list_it++;
1466            ++num;
1467        }
1468    }
1469
1470    cprintf("Insts to Execute list:\n");
1471
1472    int num = 0;
1473    int valid_num = 0;
1474    ListIt inst_list_it = instsToExecute.begin();
1475
1476    while (inst_list_it != instsToExecute.end())
1477    {
1478        cprintf("Instruction:%i\n",
1479                num);
1480        if (!(*inst_list_it)->isSquashed()) {
1481            if (!(*inst_list_it)->isIssued()) {
1482                ++valid_num;
1483                cprintf("Count:%i\n", valid_num);
1484            } else if ((*inst_list_it)->isMemRef() &&
1485                       !(*inst_list_it)->memOpDone()) {
1486                // Loads that have not been marked as executed
1487                // still count towards the total instructions.
1488                ++valid_num;
1489                cprintf("Count:%i\n", valid_num);
1490            }
1491        }
1492
1493        cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1494                "Issued:%i\nSquashed:%i\n",
1495                (*inst_list_it)->pcState(),
1496                (*inst_list_it)->seqNum,
1497                (*inst_list_it)->threadNumber,
1498                (*inst_list_it)->isIssued(),
1499                (*inst_list_it)->isSquashed());
1500
1501        if ((*inst_list_it)->isMemRef()) {
1502            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1503        }
1504
1505        cprintf("\n");
1506
1507        inst_list_it++;
1508        ++num;
1509    }
1510}
1511