inst_queue_impl.hh revision 9184:a1a8f137b796
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <limits>
45#include <vector>
46
47#include "cpu/o3/fu_pool.hh"
48#include "cpu/o3/inst_queue.hh"
49#include "debug/IQ.hh"
50#include "enums/OpClass.hh"
51#include "params/DerivO3CPU.hh"
52#include "sim/core.hh"
53
54// clang complains about std::set being overloaded with Packet::set if
55// we open up the entire namespace std
56using std::list;
57
58template <class Impl>
59InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
60    int fu_idx, InstructionQueue<Impl> *iq_ptr)
61    : Event(Stat_Event_Pri, AutoDelete),
62      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
63{
64}
65
66template <class Impl>
67void
68InstructionQueue<Impl>::FUCompletion::process()
69{
70    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
71    inst = NULL;
72}
73
74
75template <class Impl>
76const char *
77InstructionQueue<Impl>::FUCompletion::description() const
78{
79    return "Functional unit completion";
80}
81
82template <class Impl>
83InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
84                                         DerivO3CPUParams *params)
85    : cpu(cpu_ptr),
86      iewStage(iew_ptr),
87      fuPool(params->fuPool),
88      numEntries(params->numIQEntries),
89      totalWidth(params->issueWidth),
90      numPhysIntRegs(params->numPhysIntRegs),
91      numPhysFloatRegs(params->numPhysFloatRegs),
92      commitToIEWDelay(params->commitToIEWDelay)
93{
94    assert(fuPool);
95
96    switchedOut = false;
97
98    numThreads = params->numThreads;
99
100    // Set the number of physical registers as the number of int + float
101    numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
102
103    //Create an entry for each physical register within the
104    //dependency graph.
105    dependGraph.resize(numPhysRegs);
106
107    // Resize the register scoreboard.
108    regScoreboard.resize(numPhysRegs);
109
110    //Initialize Mem Dependence Units
111    for (ThreadID tid = 0; tid < numThreads; tid++) {
112        memDepUnit[tid].init(params, tid);
113        memDepUnit[tid].setIQ(this);
114    }
115
116    resetState();
117
118    std::string policy = params->smtIQPolicy;
119
120    //Convert string to lowercase
121    std::transform(policy.begin(), policy.end(), policy.begin(),
122                   (int(*)(int)) tolower);
123
124    //Figure out resource sharing policy
125    if (policy == "dynamic") {
126        iqPolicy = Dynamic;
127
128        //Set Max Entries to Total ROB Capacity
129        for (ThreadID tid = 0; tid < numThreads; tid++) {
130            maxEntries[tid] = numEntries;
131        }
132
133    } else if (policy == "partitioned") {
134        iqPolicy = Partitioned;
135
136        //@todo:make work if part_amt doesnt divide evenly.
137        int part_amt = numEntries / numThreads;
138
139        //Divide ROB up evenly
140        for (ThreadID tid = 0; tid < numThreads; tid++) {
141            maxEntries[tid] = part_amt;
142        }
143
144        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
145                "%i entries per thread.\n",part_amt);
146    } else if (policy == "threshold") {
147        iqPolicy = Threshold;
148
149        double threshold =  (double)params->smtIQThreshold / 100;
150
151        int thresholdIQ = (int)((double)threshold * numEntries);
152
153        //Divide up by threshold amount
154        for (ThreadID tid = 0; tid < numThreads; tid++) {
155            maxEntries[tid] = thresholdIQ;
156        }
157
158        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
159                "%i entries per thread.\n",thresholdIQ);
160   } else {
161       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
162              "Partitioned, Threshold}");
163   }
164}
165
166template <class Impl>
167InstructionQueue<Impl>::~InstructionQueue()
168{
169    dependGraph.reset();
170#ifdef DEBUG
171    cprintf("Nodes traversed: %i, removed: %i\n",
172            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
173#endif
174}
175
176template <class Impl>
177std::string
178InstructionQueue<Impl>::name() const
179{
180    return cpu->name() + ".iq";
181}
182
183template <class Impl>
184void
185InstructionQueue<Impl>::regStats()
186{
187    using namespace Stats;
188    iqInstsAdded
189        .name(name() + ".iqInstsAdded")
190        .desc("Number of instructions added to the IQ (excludes non-spec)")
191        .prereq(iqInstsAdded);
192
193    iqNonSpecInstsAdded
194        .name(name() + ".iqNonSpecInstsAdded")
195        .desc("Number of non-speculative instructions added to the IQ")
196        .prereq(iqNonSpecInstsAdded);
197
198    iqInstsIssued
199        .name(name() + ".iqInstsIssued")
200        .desc("Number of instructions issued")
201        .prereq(iqInstsIssued);
202
203    iqIntInstsIssued
204        .name(name() + ".iqIntInstsIssued")
205        .desc("Number of integer instructions issued")
206        .prereq(iqIntInstsIssued);
207
208    iqFloatInstsIssued
209        .name(name() + ".iqFloatInstsIssued")
210        .desc("Number of float instructions issued")
211        .prereq(iqFloatInstsIssued);
212
213    iqBranchInstsIssued
214        .name(name() + ".iqBranchInstsIssued")
215        .desc("Number of branch instructions issued")
216        .prereq(iqBranchInstsIssued);
217
218    iqMemInstsIssued
219        .name(name() + ".iqMemInstsIssued")
220        .desc("Number of memory instructions issued")
221        .prereq(iqMemInstsIssued);
222
223    iqMiscInstsIssued
224        .name(name() + ".iqMiscInstsIssued")
225        .desc("Number of miscellaneous instructions issued")
226        .prereq(iqMiscInstsIssued);
227
228    iqSquashedInstsIssued
229        .name(name() + ".iqSquashedInstsIssued")
230        .desc("Number of squashed instructions issued")
231        .prereq(iqSquashedInstsIssued);
232
233    iqSquashedInstsExamined
234        .name(name() + ".iqSquashedInstsExamined")
235        .desc("Number of squashed instructions iterated over during squash;"
236              " mainly for profiling")
237        .prereq(iqSquashedInstsExamined);
238
239    iqSquashedOperandsExamined
240        .name(name() + ".iqSquashedOperandsExamined")
241        .desc("Number of squashed operands that are examined and possibly "
242              "removed from graph")
243        .prereq(iqSquashedOperandsExamined);
244
245    iqSquashedNonSpecRemoved
246        .name(name() + ".iqSquashedNonSpecRemoved")
247        .desc("Number of squashed non-spec instructions that were removed")
248        .prereq(iqSquashedNonSpecRemoved);
249/*
250    queueResDist
251        .init(Num_OpClasses, 0, 99, 2)
252        .name(name() + ".IQ:residence:")
253        .desc("cycles from dispatch to issue")
254        .flags(total | pdf | cdf )
255        ;
256    for (int i = 0; i < Num_OpClasses; ++i) {
257        queueResDist.subname(i, opClassStrings[i]);
258    }
259*/
260    numIssuedDist
261        .init(0,totalWidth,1)
262        .name(name() + ".issued_per_cycle")
263        .desc("Number of insts issued each cycle")
264        .flags(pdf)
265        ;
266/*
267    dist_unissued
268        .init(Num_OpClasses+2)
269        .name(name() + ".unissued_cause")
270        .desc("Reason ready instruction not issued")
271        .flags(pdf | dist)
272        ;
273    for (int i=0; i < (Num_OpClasses + 2); ++i) {
274        dist_unissued.subname(i, unissued_names[i]);
275    }
276*/
277    statIssuedInstType
278        .init(numThreads,Enums::Num_OpClass)
279        .name(name() + ".FU_type")
280        .desc("Type of FU issued")
281        .flags(total | pdf | dist)
282        ;
283    statIssuedInstType.ysubnames(Enums::OpClassStrings);
284
285    //
286    //  How long did instructions for a particular FU type wait prior to issue
287    //
288/*
289    issueDelayDist
290        .init(Num_OpClasses,0,99,2)
291        .name(name() + ".")
292        .desc("cycles from operands ready to issue")
293        .flags(pdf | cdf)
294        ;
295
296    for (int i=0; i<Num_OpClasses; ++i) {
297        std::stringstream subname;
298        subname << opClassStrings[i] << "_delay";
299        issueDelayDist.subname(i, subname.str());
300    }
301*/
302    issueRate
303        .name(name() + ".rate")
304        .desc("Inst issue rate")
305        .flags(total)
306        ;
307    issueRate = iqInstsIssued / cpu->numCycles;
308
309    statFuBusy
310        .init(Num_OpClasses)
311        .name(name() + ".fu_full")
312        .desc("attempts to use FU when none available")
313        .flags(pdf | dist)
314        ;
315    for (int i=0; i < Num_OpClasses; ++i) {
316        statFuBusy.subname(i, Enums::OpClassStrings[i]);
317    }
318
319    fuBusy
320        .init(numThreads)
321        .name(name() + ".fu_busy_cnt")
322        .desc("FU busy when requested")
323        .flags(total)
324        ;
325
326    fuBusyRate
327        .name(name() + ".fu_busy_rate")
328        .desc("FU busy rate (busy events/executed inst)")
329        .flags(total)
330        ;
331    fuBusyRate = fuBusy / iqInstsIssued;
332
333    for (ThreadID tid = 0; tid < numThreads; tid++) {
334        // Tell mem dependence unit to reg stats as well.
335        memDepUnit[tid].regStats();
336    }
337
338    intInstQueueReads
339        .name(name() + ".int_inst_queue_reads")
340        .desc("Number of integer instruction queue reads")
341        .flags(total);
342
343    intInstQueueWrites
344        .name(name() + ".int_inst_queue_writes")
345        .desc("Number of integer instruction queue writes")
346        .flags(total);
347
348    intInstQueueWakeupAccesses
349        .name(name() + ".int_inst_queue_wakeup_accesses")
350        .desc("Number of integer instruction queue wakeup accesses")
351        .flags(total);
352
353    fpInstQueueReads
354        .name(name() + ".fp_inst_queue_reads")
355        .desc("Number of floating instruction queue reads")
356        .flags(total);
357
358    fpInstQueueWrites
359        .name(name() + ".fp_inst_queue_writes")
360        .desc("Number of floating instruction queue writes")
361        .flags(total);
362
363    fpInstQueueWakeupQccesses
364        .name(name() + ".fp_inst_queue_wakeup_accesses")
365        .desc("Number of floating instruction queue wakeup accesses")
366        .flags(total);
367
368    intAluAccesses
369        .name(name() + ".int_alu_accesses")
370        .desc("Number of integer alu accesses")
371        .flags(total);
372
373    fpAluAccesses
374        .name(name() + ".fp_alu_accesses")
375        .desc("Number of floating point alu accesses")
376        .flags(total);
377
378}
379
380template <class Impl>
381void
382InstructionQueue<Impl>::resetState()
383{
384    //Initialize thread IQ counts
385    for (ThreadID tid = 0; tid <numThreads; tid++) {
386        count[tid] = 0;
387        instList[tid].clear();
388    }
389
390    // Initialize the number of free IQ entries.
391    freeEntries = numEntries;
392
393    // Note that in actuality, the registers corresponding to the logical
394    // registers start off as ready.  However this doesn't matter for the
395    // IQ as the instruction should have been correctly told if those
396    // registers are ready in rename.  Thus it can all be initialized as
397    // unready.
398    for (int i = 0; i < numPhysRegs; ++i) {
399        regScoreboard[i] = false;
400    }
401
402    for (ThreadID tid = 0; tid < numThreads; ++tid) {
403        squashedSeqNum[tid] = 0;
404    }
405
406    for (int i = 0; i < Num_OpClasses; ++i) {
407        while (!readyInsts[i].empty())
408            readyInsts[i].pop();
409        queueOnList[i] = false;
410        readyIt[i] = listOrder.end();
411    }
412    nonSpecInsts.clear();
413    listOrder.clear();
414    deferredMemInsts.clear();
415}
416
417template <class Impl>
418void
419InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
420{
421    activeThreads = at_ptr;
422}
423
424template <class Impl>
425void
426InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
427{
428      issueToExecuteQueue = i2e_ptr;
429}
430
431template <class Impl>
432void
433InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
434{
435    timeBuffer = tb_ptr;
436
437    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
438}
439
440template <class Impl>
441void
442InstructionQueue<Impl>::switchOut()
443{
444/*
445    if (!instList[0].empty() || (numEntries != freeEntries) ||
446        !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
447        dumpInsts();
448//        assert(0);
449    }
450*/
451    resetState();
452    dependGraph.reset();
453    instsToExecute.clear();
454    switchedOut = true;
455    for (ThreadID tid = 0; tid < numThreads; ++tid) {
456        memDepUnit[tid].switchOut();
457    }
458}
459
460template <class Impl>
461void
462InstructionQueue<Impl>::takeOverFrom()
463{
464    switchedOut = false;
465}
466
467template <class Impl>
468int
469InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
470{
471    if (iqPolicy == Partitioned) {
472        return numEntries / num_threads;
473    } else {
474        return 0;
475    }
476}
477
478
479template <class Impl>
480void
481InstructionQueue<Impl>::resetEntries()
482{
483    if (iqPolicy != Dynamic || numThreads > 1) {
484        int active_threads = activeThreads->size();
485
486        list<ThreadID>::iterator threads = activeThreads->begin();
487        list<ThreadID>::iterator end = activeThreads->end();
488
489        while (threads != end) {
490            ThreadID tid = *threads++;
491
492            if (iqPolicy == Partitioned) {
493                maxEntries[tid] = numEntries / active_threads;
494            } else if(iqPolicy == Threshold && active_threads == 1) {
495                maxEntries[tid] = numEntries;
496            }
497        }
498    }
499}
500
501template <class Impl>
502unsigned
503InstructionQueue<Impl>::numFreeEntries()
504{
505    return freeEntries;
506}
507
508template <class Impl>
509unsigned
510InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
511{
512    return maxEntries[tid] - count[tid];
513}
514
515// Might want to do something more complex if it knows how many instructions
516// will be issued this cycle.
517template <class Impl>
518bool
519InstructionQueue<Impl>::isFull()
520{
521    if (freeEntries == 0) {
522        return(true);
523    } else {
524        return(false);
525    }
526}
527
528template <class Impl>
529bool
530InstructionQueue<Impl>::isFull(ThreadID tid)
531{
532    if (numFreeEntries(tid) == 0) {
533        return(true);
534    } else {
535        return(false);
536    }
537}
538
539template <class Impl>
540bool
541InstructionQueue<Impl>::hasReadyInsts()
542{
543    if (!listOrder.empty()) {
544        return true;
545    }
546
547    for (int i = 0; i < Num_OpClasses; ++i) {
548        if (!readyInsts[i].empty()) {
549            return true;
550        }
551    }
552
553    return false;
554}
555
556template <class Impl>
557void
558InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
559{
560    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
561    // Make sure the instruction is valid
562    assert(new_inst);
563
564    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
565            new_inst->seqNum, new_inst->pcState());
566
567    assert(freeEntries != 0);
568
569    instList[new_inst->threadNumber].push_back(new_inst);
570
571    --freeEntries;
572
573    new_inst->setInIQ();
574
575    // Look through its source registers (physical regs), and mark any
576    // dependencies.
577    addToDependents(new_inst);
578
579    // Have this instruction set itself as the producer of its destination
580    // register(s).
581    addToProducers(new_inst);
582
583    if (new_inst->isMemRef()) {
584        memDepUnit[new_inst->threadNumber].insert(new_inst);
585    } else {
586        addIfReady(new_inst);
587    }
588
589    ++iqInstsAdded;
590
591    count[new_inst->threadNumber]++;
592
593    assert(freeEntries == (numEntries - countInsts()));
594}
595
596template <class Impl>
597void
598InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
599{
600    // @todo: Clean up this code; can do it by setting inst as unable
601    // to issue, then calling normal insert on the inst.
602    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
603
604    assert(new_inst);
605
606    nonSpecInsts[new_inst->seqNum] = new_inst;
607
608    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
609            "to the IQ.\n",
610            new_inst->seqNum, new_inst->pcState());
611
612    assert(freeEntries != 0);
613
614    instList[new_inst->threadNumber].push_back(new_inst);
615
616    --freeEntries;
617
618    new_inst->setInIQ();
619
620    // Have this instruction set itself as the producer of its destination
621    // register(s).
622    addToProducers(new_inst);
623
624    // If it's a memory instruction, add it to the memory dependency
625    // unit.
626    if (new_inst->isMemRef()) {
627        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
628    }
629
630    ++iqNonSpecInstsAdded;
631
632    count[new_inst->threadNumber]++;
633
634    assert(freeEntries == (numEntries - countInsts()));
635}
636
637template <class Impl>
638void
639InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
640{
641    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
642
643    insertNonSpec(barr_inst);
644}
645
646template <class Impl>
647typename Impl::DynInstPtr
648InstructionQueue<Impl>::getInstToExecute()
649{
650    assert(!instsToExecute.empty());
651    DynInstPtr inst = instsToExecute.front();
652    instsToExecute.pop_front();
653    if (inst->isFloating()){
654        fpInstQueueReads++;
655    } else {
656        intInstQueueReads++;
657    }
658    return inst;
659}
660
661template <class Impl>
662void
663InstructionQueue<Impl>::addToOrderList(OpClass op_class)
664{
665    assert(!readyInsts[op_class].empty());
666
667    ListOrderEntry queue_entry;
668
669    queue_entry.queueType = op_class;
670
671    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
672
673    ListOrderIt list_it = listOrder.begin();
674    ListOrderIt list_end_it = listOrder.end();
675
676    while (list_it != list_end_it) {
677        if ((*list_it).oldestInst > queue_entry.oldestInst) {
678            break;
679        }
680
681        list_it++;
682    }
683
684    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
685    queueOnList[op_class] = true;
686}
687
688template <class Impl>
689void
690InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
691{
692    // Get iterator of next item on the list
693    // Delete the original iterator
694    // Determine if the next item is either the end of the list or younger
695    // than the new instruction.  If so, then add in a new iterator right here.
696    // If not, then move along.
697    ListOrderEntry queue_entry;
698    OpClass op_class = (*list_order_it).queueType;
699    ListOrderIt next_it = list_order_it;
700
701    ++next_it;
702
703    queue_entry.queueType = op_class;
704    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
705
706    while (next_it != listOrder.end() &&
707           (*next_it).oldestInst < queue_entry.oldestInst) {
708        ++next_it;
709    }
710
711    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
712}
713
714template <class Impl>
715void
716InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
717{
718    DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
719    // The CPU could have been sleeping until this op completed (*extremely*
720    // long latency op).  Wake it if it was.  This may be overkill.
721    if (isSwitchedOut()) {
722        DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
723                inst->seqNum);
724        return;
725    }
726
727    iewStage->wakeCPU();
728
729    if (fu_idx > -1)
730        fuPool->freeUnitNextCycle(fu_idx);
731
732    // @todo: Ensure that these FU Completions happen at the beginning
733    // of a cycle, otherwise they could add too many instructions to
734    // the queue.
735    issueToExecuteQueue->access(-1)->size++;
736    instsToExecute.push_back(inst);
737}
738
739// @todo: Figure out a better way to remove the squashed items from the
740// lists.  Checking the top item of each list to see if it's squashed
741// wastes time and forces jumps.
742template <class Impl>
743void
744InstructionQueue<Impl>::scheduleReadyInsts()
745{
746    DPRINTF(IQ, "Attempting to schedule ready instructions from "
747            "the IQ.\n");
748
749    IssueStruct *i2e_info = issueToExecuteQueue->access(0);
750
751    DynInstPtr deferred_mem_inst;
752    int total_deferred_mem_issued = 0;
753    while (total_deferred_mem_issued < totalWidth &&
754           (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
755        issueToExecuteQueue->access(0)->size++;
756        instsToExecute.push_back(deferred_mem_inst);
757        total_deferred_mem_issued++;
758    }
759
760    // Have iterator to head of the list
761    // While I haven't exceeded bandwidth or reached the end of the list,
762    // Try to get a FU that can do what this op needs.
763    // If successful, change the oldestInst to the new top of the list, put
764    // the queue in the proper place in the list.
765    // Increment the iterator.
766    // This will avoid trying to schedule a certain op class if there are no
767    // FUs that handle it.
768    ListOrderIt order_it = listOrder.begin();
769    ListOrderIt order_end_it = listOrder.end();
770    int total_issued = 0;
771
772    while (total_issued < (totalWidth - total_deferred_mem_issued) &&
773           iewStage->canIssue() &&
774           order_it != order_end_it) {
775        OpClass op_class = (*order_it).queueType;
776
777        assert(!readyInsts[op_class].empty());
778
779        DynInstPtr issuing_inst = readyInsts[op_class].top();
780
781        issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
782
783        assert(issuing_inst->seqNum == (*order_it).oldestInst);
784
785        if (issuing_inst->isSquashed()) {
786            readyInsts[op_class].pop();
787
788            if (!readyInsts[op_class].empty()) {
789                moveToYoungerInst(order_it);
790            } else {
791                readyIt[op_class] = listOrder.end();
792                queueOnList[op_class] = false;
793            }
794
795            listOrder.erase(order_it++);
796
797            ++iqSquashedInstsIssued;
798
799            continue;
800        }
801
802        int idx = -2;
803        Cycles op_latency = Cycles(1);
804        ThreadID tid = issuing_inst->threadNumber;
805
806        if (op_class != No_OpClass) {
807            idx = fuPool->getUnit(op_class);
808            issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
809            if (idx > -1) {
810                op_latency = fuPool->getOpLatency(op_class);
811            }
812        }
813
814        // If we have an instruction that doesn't require a FU, or a
815        // valid FU, then schedule for execution.
816        if (idx == -2 || idx != -1) {
817            if (op_latency == Cycles(1)) {
818                i2e_info->size++;
819                instsToExecute.push_back(issuing_inst);
820
821                // Add the FU onto the list of FU's to be freed next
822                // cycle if we used one.
823                if (idx >= 0)
824                    fuPool->freeUnitNextCycle(idx);
825            } else {
826                Cycles issue_latency = fuPool->getIssueLatency(op_class);
827                // Generate completion event for the FU
828                FUCompletion *execution = new FUCompletion(issuing_inst,
829                                                           idx, this);
830
831                cpu->schedule(execution,
832                              cpu->clockEdge(Cycles(op_latency - 1)));
833
834                // @todo: Enforce that issue_latency == 1 or op_latency
835                if (issue_latency > Cycles(1)) {
836                    // If FU isn't pipelined, then it must be freed
837                    // upon the execution completing.
838                    execution->setFreeFU();
839                } else {
840                    // Add the FU onto the list of FU's to be freed next cycle.
841                    fuPool->freeUnitNextCycle(idx);
842                }
843            }
844
845            DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
846                    "[sn:%lli]\n",
847                    tid, issuing_inst->pcState(),
848                    issuing_inst->seqNum);
849
850            readyInsts[op_class].pop();
851
852            if (!readyInsts[op_class].empty()) {
853                moveToYoungerInst(order_it);
854            } else {
855                readyIt[op_class] = listOrder.end();
856                queueOnList[op_class] = false;
857            }
858
859            issuing_inst->setIssued();
860            ++total_issued;
861
862#if TRACING_ON
863            issuing_inst->issueTick = curTick() - issuing_inst->fetchTick;
864#endif
865
866            if (!issuing_inst->isMemRef()) {
867                // Memory instructions can not be freed from the IQ until they
868                // complete.
869                ++freeEntries;
870                count[tid]--;
871                issuing_inst->clearInIQ();
872            } else {
873                memDepUnit[tid].issue(issuing_inst);
874            }
875
876            listOrder.erase(order_it++);
877            statIssuedInstType[tid][op_class]++;
878            iewStage->incrWb(issuing_inst->seqNum);
879        } else {
880            statFuBusy[op_class]++;
881            fuBusy[tid]++;
882            ++order_it;
883        }
884    }
885
886    numIssuedDist.sample(total_issued);
887    iqInstsIssued+= total_issued;
888
889    // If we issued any instructions, tell the CPU we had activity.
890    // @todo If the way deferred memory instructions are handeled due to
891    // translation changes then the deferredMemInsts condition should be removed
892    // from the code below.
893    if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
894        cpu->activityThisCycle();
895    } else {
896        DPRINTF(IQ, "Not able to schedule any instructions.\n");
897    }
898}
899
900template <class Impl>
901void
902InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
903{
904    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
905            "to execute.\n", inst);
906
907    NonSpecMapIt inst_it = nonSpecInsts.find(inst);
908
909    assert(inst_it != nonSpecInsts.end());
910
911    ThreadID tid = (*inst_it).second->threadNumber;
912
913    (*inst_it).second->setAtCommit();
914
915    (*inst_it).second->setCanIssue();
916
917    if (!(*inst_it).second->isMemRef()) {
918        addIfReady((*inst_it).second);
919    } else {
920        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
921    }
922
923    (*inst_it).second = NULL;
924
925    nonSpecInsts.erase(inst_it);
926}
927
928template <class Impl>
929void
930InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
931{
932    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
933            tid,inst);
934
935    ListIt iq_it = instList[tid].begin();
936
937    while (iq_it != instList[tid].end() &&
938           (*iq_it)->seqNum <= inst) {
939        ++iq_it;
940        instList[tid].pop_front();
941    }
942
943    assert(freeEntries == (numEntries - countInsts()));
944}
945
946template <class Impl>
947int
948InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
949{
950    int dependents = 0;
951
952    // The instruction queue here takes care of both floating and int ops
953    if (completed_inst->isFloating()) {
954        fpInstQueueWakeupQccesses++;
955    } else {
956        intInstQueueWakeupAccesses++;
957    }
958
959    DPRINTF(IQ, "Waking dependents of completed instruction.\n");
960
961    assert(!completed_inst->isSquashed());
962
963    // Tell the memory dependence unit to wake any dependents on this
964    // instruction if it is a memory instruction.  Also complete the memory
965    // instruction at this point since we know it executed without issues.
966    // @todo: Might want to rename "completeMemInst" to something that
967    // indicates that it won't need to be replayed, and call this
968    // earlier.  Might not be a big deal.
969    if (completed_inst->isMemRef()) {
970        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
971        completeMemInst(completed_inst);
972    } else if (completed_inst->isMemBarrier() ||
973               completed_inst->isWriteBarrier()) {
974        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
975    }
976
977    for (int dest_reg_idx = 0;
978         dest_reg_idx < completed_inst->numDestRegs();
979         dest_reg_idx++)
980    {
981        PhysRegIndex dest_reg =
982            completed_inst->renamedDestRegIdx(dest_reg_idx);
983
984        // Special case of uniq or control registers.  They are not
985        // handled by the IQ and thus have no dependency graph entry.
986        // @todo Figure out a cleaner way to handle this.
987        if (dest_reg >= numPhysRegs) {
988            DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
989                    numPhysRegs);
990            continue;
991        }
992
993        DPRINTF(IQ, "Waking any dependents on register %i.\n",
994                (int) dest_reg);
995
996        //Go through the dependency chain, marking the registers as
997        //ready within the waiting instructions.
998        DynInstPtr dep_inst = dependGraph.pop(dest_reg);
999
1000        while (dep_inst) {
1001            DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
1002                    "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
1003
1004            // Might want to give more information to the instruction
1005            // so that it knows which of its source registers is
1006            // ready.  However that would mean that the dependency
1007            // graph entries would need to hold the src_reg_idx.
1008            dep_inst->markSrcRegReady();
1009
1010            addIfReady(dep_inst);
1011
1012            dep_inst = dependGraph.pop(dest_reg);
1013
1014            ++dependents;
1015        }
1016
1017        // Reset the head node now that all of its dependents have
1018        // been woken up.
1019        assert(dependGraph.empty(dest_reg));
1020        dependGraph.clearInst(dest_reg);
1021
1022        // Mark the scoreboard as having that register ready.
1023        regScoreboard[dest_reg] = true;
1024    }
1025    return dependents;
1026}
1027
1028template <class Impl>
1029void
1030InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1031{
1032    OpClass op_class = ready_inst->opClass();
1033
1034    readyInsts[op_class].push(ready_inst);
1035
1036    // Will need to reorder the list if either a queue is not on the list,
1037    // or it has an older instruction than last time.
1038    if (!queueOnList[op_class]) {
1039        addToOrderList(op_class);
1040    } else if (readyInsts[op_class].top()->seqNum  <
1041               (*readyIt[op_class]).oldestInst) {
1042        listOrder.erase(readyIt[op_class]);
1043        addToOrderList(op_class);
1044    }
1045
1046    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1047            "the ready list, PC %s opclass:%i [sn:%lli].\n",
1048            ready_inst->pcState(), op_class, ready_inst->seqNum);
1049}
1050
1051template <class Impl>
1052void
1053InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1054{
1055    DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1056
1057    // Reset DTB translation state
1058    resched_inst->translationStarted(false);
1059    resched_inst->translationCompleted(false);
1060
1061    resched_inst->clearCanIssue();
1062    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1063}
1064
1065template <class Impl>
1066void
1067InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1068{
1069    memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1070}
1071
1072template <class Impl>
1073void
1074InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1075{
1076    ThreadID tid = completed_inst->threadNumber;
1077
1078    DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1079            completed_inst->pcState(), completed_inst->seqNum);
1080
1081    ++freeEntries;
1082
1083    completed_inst->memOpDone(true);
1084
1085    memDepUnit[tid].completed(completed_inst);
1086    count[tid]--;
1087}
1088
1089template <class Impl>
1090void
1091InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1092{
1093    deferredMemInsts.push_back(deferred_inst);
1094}
1095
1096template <class Impl>
1097typename Impl::DynInstPtr
1098InstructionQueue<Impl>::getDeferredMemInstToExecute()
1099{
1100    for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1101         ++it) {
1102        if ((*it)->translationCompleted() || (*it)->isSquashed()) {
1103            DynInstPtr ret = *it;
1104            deferredMemInsts.erase(it);
1105            return ret;
1106        }
1107    }
1108    return NULL;
1109}
1110
1111template <class Impl>
1112void
1113InstructionQueue<Impl>::violation(DynInstPtr &store,
1114                                  DynInstPtr &faulting_load)
1115{
1116    intInstQueueWrites++;
1117    memDepUnit[store->threadNumber].violation(store, faulting_load);
1118}
1119
1120template <class Impl>
1121void
1122InstructionQueue<Impl>::squash(ThreadID tid)
1123{
1124    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1125            "the IQ.\n", tid);
1126
1127    // Read instruction sequence number of last instruction out of the
1128    // time buffer.
1129    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1130
1131    // Call doSquash if there are insts in the IQ
1132    if (count[tid] > 0) {
1133        doSquash(tid);
1134    }
1135
1136    // Also tell the memory dependence unit to squash.
1137    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1138}
1139
1140template <class Impl>
1141void
1142InstructionQueue<Impl>::doSquash(ThreadID tid)
1143{
1144    // Start at the tail.
1145    ListIt squash_it = instList[tid].end();
1146    --squash_it;
1147
1148    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1149            tid, squashedSeqNum[tid]);
1150
1151    // Squash any instructions younger than the squashed sequence number
1152    // given.
1153    while (squash_it != instList[tid].end() &&
1154           (*squash_it)->seqNum > squashedSeqNum[tid]) {
1155
1156        DynInstPtr squashed_inst = (*squash_it);
1157        squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1158
1159        // Only handle the instruction if it actually is in the IQ and
1160        // hasn't already been squashed in the IQ.
1161        if (squashed_inst->threadNumber != tid ||
1162            squashed_inst->isSquashedInIQ()) {
1163            --squash_it;
1164            continue;
1165        }
1166
1167        if (!squashed_inst->isIssued() ||
1168            (squashed_inst->isMemRef() &&
1169             !squashed_inst->memOpDone())) {
1170
1171            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1172                    tid, squashed_inst->seqNum, squashed_inst->pcState());
1173
1174            // Remove the instruction from the dependency list.
1175            if (!squashed_inst->isNonSpeculative() &&
1176                !squashed_inst->isStoreConditional() &&
1177                !squashed_inst->isMemBarrier() &&
1178                !squashed_inst->isWriteBarrier()) {
1179
1180                for (int src_reg_idx = 0;
1181                     src_reg_idx < squashed_inst->numSrcRegs();
1182                     src_reg_idx++)
1183                {
1184                    PhysRegIndex src_reg =
1185                        squashed_inst->renamedSrcRegIdx(src_reg_idx);
1186
1187                    // Only remove it from the dependency graph if it
1188                    // was placed there in the first place.
1189
1190                    // Instead of doing a linked list traversal, we
1191                    // can just remove these squashed instructions
1192                    // either at issue time, or when the register is
1193                    // overwritten.  The only downside to this is it
1194                    // leaves more room for error.
1195
1196                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1197                        src_reg < numPhysRegs) {
1198                        dependGraph.remove(src_reg, squashed_inst);
1199                    }
1200
1201
1202                    ++iqSquashedOperandsExamined;
1203                }
1204            } else if (!squashed_inst->isStoreConditional() ||
1205                       !squashed_inst->isCompleted()) {
1206                NonSpecMapIt ns_inst_it =
1207                    nonSpecInsts.find(squashed_inst->seqNum);
1208
1209                if (ns_inst_it == nonSpecInsts.end()) {
1210                    assert(squashed_inst->getFault() != NoFault);
1211                } else {
1212
1213                    (*ns_inst_it).second = NULL;
1214
1215                    nonSpecInsts.erase(ns_inst_it);
1216
1217                    ++iqSquashedNonSpecRemoved;
1218                }
1219            }
1220
1221            // Might want to also clear out the head of the dependency graph.
1222
1223            // Mark it as squashed within the IQ.
1224            squashed_inst->setSquashedInIQ();
1225
1226            // @todo: Remove this hack where several statuses are set so the
1227            // inst will flow through the rest of the pipeline.
1228            squashed_inst->setIssued();
1229            squashed_inst->setCanCommit();
1230            squashed_inst->clearInIQ();
1231
1232            //Update Thread IQ Count
1233            count[squashed_inst->threadNumber]--;
1234
1235            ++freeEntries;
1236        }
1237
1238        instList[tid].erase(squash_it--);
1239        ++iqSquashedInstsExamined;
1240    }
1241}
1242
1243template <class Impl>
1244bool
1245InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1246{
1247    // Loop through the instruction's source registers, adding
1248    // them to the dependency list if they are not ready.
1249    int8_t total_src_regs = new_inst->numSrcRegs();
1250    bool return_val = false;
1251
1252    for (int src_reg_idx = 0;
1253         src_reg_idx < total_src_regs;
1254         src_reg_idx++)
1255    {
1256        // Only add it to the dependency graph if it's not ready.
1257        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1258            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1259
1260            // Check the IQ's scoreboard to make sure the register
1261            // hasn't become ready while the instruction was in flight
1262            // between stages.  Only if it really isn't ready should
1263            // it be added to the dependency graph.
1264            if (src_reg >= numPhysRegs) {
1265                continue;
1266            } else if (regScoreboard[src_reg] == false) {
1267                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1268                        "is being added to the dependency chain.\n",
1269                        new_inst->pcState(), src_reg);
1270
1271                dependGraph.insert(src_reg, new_inst);
1272
1273                // Change the return value to indicate that something
1274                // was added to the dependency graph.
1275                return_val = true;
1276            } else {
1277                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1278                        "became ready before it reached the IQ.\n",
1279                        new_inst->pcState(), src_reg);
1280                // Mark a register ready within the instruction.
1281                new_inst->markSrcRegReady(src_reg_idx);
1282            }
1283        }
1284    }
1285
1286    return return_val;
1287}
1288
1289template <class Impl>
1290void
1291InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1292{
1293    // Nothing really needs to be marked when an instruction becomes
1294    // the producer of a register's value, but for convenience a ptr
1295    // to the producing instruction will be placed in the head node of
1296    // the dependency links.
1297    int8_t total_dest_regs = new_inst->numDestRegs();
1298
1299    for (int dest_reg_idx = 0;
1300         dest_reg_idx < total_dest_regs;
1301         dest_reg_idx++)
1302    {
1303        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1304
1305        // Instructions that use the misc regs will have a reg number
1306        // higher than the normal physical registers.  In this case these
1307        // registers are not renamed, and there is no need to track
1308        // dependencies as these instructions must be executed at commit.
1309        if (dest_reg >= numPhysRegs) {
1310            continue;
1311        }
1312
1313        if (!dependGraph.empty(dest_reg)) {
1314            dependGraph.dump();
1315            panic("Dependency graph %i not empty!", dest_reg);
1316        }
1317
1318        dependGraph.setInst(dest_reg, new_inst);
1319
1320        // Mark the scoreboard to say it's not yet ready.
1321        regScoreboard[dest_reg] = false;
1322    }
1323}
1324
1325template <class Impl>
1326void
1327InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1328{
1329    // If the instruction now has all of its source registers
1330    // available, then add it to the list of ready instructions.
1331    if (inst->readyToIssue()) {
1332
1333        //Add the instruction to the proper ready list.
1334        if (inst->isMemRef()) {
1335
1336            DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1337
1338            // Message to the mem dependence unit that this instruction has
1339            // its registers ready.
1340            memDepUnit[inst->threadNumber].regsReady(inst);
1341
1342            return;
1343        }
1344
1345        OpClass op_class = inst->opClass();
1346
1347        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1348                "the ready list, PC %s opclass:%i [sn:%lli].\n",
1349                inst->pcState(), op_class, inst->seqNum);
1350
1351        readyInsts[op_class].push(inst);
1352
1353        // Will need to reorder the list if either a queue is not on the list,
1354        // or it has an older instruction than last time.
1355        if (!queueOnList[op_class]) {
1356            addToOrderList(op_class);
1357        } else if (readyInsts[op_class].top()->seqNum  <
1358                   (*readyIt[op_class]).oldestInst) {
1359            listOrder.erase(readyIt[op_class]);
1360            addToOrderList(op_class);
1361        }
1362    }
1363}
1364
1365template <class Impl>
1366int
1367InstructionQueue<Impl>::countInsts()
1368{
1369#if 0
1370    //ksewell:This works but definitely could use a cleaner write
1371    //with a more intuitive way of counting. Right now it's
1372    //just brute force ....
1373    // Change the #if if you want to use this method.
1374    int total_insts = 0;
1375
1376    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1377        ListIt count_it = instList[tid].begin();
1378
1379        while (count_it != instList[tid].end()) {
1380            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1381                if (!(*count_it)->isIssued()) {
1382                    ++total_insts;
1383                } else if ((*count_it)->isMemRef() &&
1384                           !(*count_it)->memOpDone) {
1385                    // Loads that have not been marked as executed still count
1386                    // towards the total instructions.
1387                    ++total_insts;
1388                }
1389            }
1390
1391            ++count_it;
1392        }
1393    }
1394
1395    return total_insts;
1396#else
1397    return numEntries - freeEntries;
1398#endif
1399}
1400
1401template <class Impl>
1402void
1403InstructionQueue<Impl>::dumpLists()
1404{
1405    for (int i = 0; i < Num_OpClasses; ++i) {
1406        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1407
1408        cprintf("\n");
1409    }
1410
1411    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1412
1413    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1414    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1415
1416    cprintf("Non speculative list: ");
1417
1418    while (non_spec_it != non_spec_end_it) {
1419        cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1420                (*non_spec_it).second->seqNum);
1421        ++non_spec_it;
1422    }
1423
1424    cprintf("\n");
1425
1426    ListOrderIt list_order_it = listOrder.begin();
1427    ListOrderIt list_order_end_it = listOrder.end();
1428    int i = 1;
1429
1430    cprintf("List order: ");
1431
1432    while (list_order_it != list_order_end_it) {
1433        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1434                (*list_order_it).oldestInst);
1435
1436        ++list_order_it;
1437        ++i;
1438    }
1439
1440    cprintf("\n");
1441}
1442
1443
1444template <class Impl>
1445void
1446InstructionQueue<Impl>::dumpInsts()
1447{
1448    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1449        int num = 0;
1450        int valid_num = 0;
1451        ListIt inst_list_it = instList[tid].begin();
1452
1453        while (inst_list_it != instList[tid].end()) {
1454            cprintf("Instruction:%i\n", num);
1455            if (!(*inst_list_it)->isSquashed()) {
1456                if (!(*inst_list_it)->isIssued()) {
1457                    ++valid_num;
1458                    cprintf("Count:%i\n", valid_num);
1459                } else if ((*inst_list_it)->isMemRef() &&
1460                           !(*inst_list_it)->memOpDone()) {
1461                    // Loads that have not been marked as executed
1462                    // still count towards the total instructions.
1463                    ++valid_num;
1464                    cprintf("Count:%i\n", valid_num);
1465                }
1466            }
1467
1468            cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1469                    "Issued:%i\nSquashed:%i\n",
1470                    (*inst_list_it)->pcState(),
1471                    (*inst_list_it)->seqNum,
1472                    (*inst_list_it)->threadNumber,
1473                    (*inst_list_it)->isIssued(),
1474                    (*inst_list_it)->isSquashed());
1475
1476            if ((*inst_list_it)->isMemRef()) {
1477                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1478            }
1479
1480            cprintf("\n");
1481
1482            inst_list_it++;
1483            ++num;
1484        }
1485    }
1486
1487    cprintf("Insts to Execute list:\n");
1488
1489    int num = 0;
1490    int valid_num = 0;
1491    ListIt inst_list_it = instsToExecute.begin();
1492
1493    while (inst_list_it != instsToExecute.end())
1494    {
1495        cprintf("Instruction:%i\n",
1496                num);
1497        if (!(*inst_list_it)->isSquashed()) {
1498            if (!(*inst_list_it)->isIssued()) {
1499                ++valid_num;
1500                cprintf("Count:%i\n", valid_num);
1501            } else if ((*inst_list_it)->isMemRef() &&
1502                       !(*inst_list_it)->memOpDone()) {
1503                // Loads that have not been marked as executed
1504                // still count towards the total instructions.
1505                ++valid_num;
1506                cprintf("Count:%i\n", valid_num);
1507            }
1508        }
1509
1510        cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1511                "Issued:%i\nSquashed:%i\n",
1512                (*inst_list_it)->pcState(),
1513                (*inst_list_it)->seqNum,
1514                (*inst_list_it)->threadNumber,
1515                (*inst_list_it)->isIssued(),
1516                (*inst_list_it)->isSquashed());
1517
1518        if ((*inst_list_it)->isMemRef()) {
1519            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1520        }
1521
1522        cprintf("\n");
1523
1524        inst_list_it++;
1525        ++num;
1526    }
1527}
1528